Algebraic *D*-groups and non-linear differential Galois theory

Daniel Bertrand (Inst. Math. Jussieu)

- I. Functional Schanuel and its use
- II. Picard-Vessiot & Kolchin theories
- **III.** *D*-groups and Pillay's theory
- **IV. A prototype : Kummer theory**
- V. Gauss-Manin & the logarithmic case.
- VI . The exponential case

Luminy School, September 2009

Bibliography

[1] A. Buium : Differential algebraic groups of finite dimension; Springer LN 1506, 1992.

[2] R. Coleman : Manin's proof of the Mordell conjecture over function fields; L'Ens. math., 36, 1990, 393-427.

[3] A. Pillay : Algebraic *D*-groups and differential Galois theory; Pacific J. Maths, 216, 2004, 343-360.

[4] J-P. Serre : Groupes algébriques et corps de classes; Herrman, 1959.

I. Ax-Schanuel : how and why ?

Ax (1970)

$$x = (x_1, ..., x_n) \in (\mathbb{C}\{\{z_1, ..., z_t\}\})^n$$

$$\forall i, y_i(z) := exp(x_i(z)) \in \mathbb{C}\{\{z_1, ..., z_t\}\}$$

$$\rightsquigarrow y = exp(x) \in (\mathbb{C}\{\{z_1, ..., z_t\}\}^*)^n$$

Assume x non-degenerate, i.e. $\forall m \in \mathbb{Z}^n \setminus 0, m_1 x_1 + ... + m_n x_n \notin \mathbb{C}.$ Then, $tr.deg.(\mathbb{C}(x, y)/\mathbb{C}) \ge n + rk(\frac{Dx}{Dz}).$ If $K = \mathbb{C}(z_1, ..., z_t)$, it suffices to show that $tr.deg.(K(x, y)/K) \ge n.$ Choosing a sufficiently general curve in \mathbb{C}^t , it suffices to check it when t = 1. So :

$$K = \mathbb{C}(z)^{alg}, \partial = \frac{d}{dz}$$

(\mathcal{K}, ∂) a differential extension, with $\mathcal{K}^{\partial} = \mathbb{C}$
 $(x, y) \in (\mathcal{K} \times \mathcal{K}^*)^n$, x non-degenerate. Then
 $\partial y/y = \partial x \Rightarrow deg.tr.K(x, y)/K \ge n$

2

. More generally (cf. Ax (1972))

•
$$K = \mathbb{C}(z)^{alg}, \partial = \frac{d}{dz}, (\mathcal{K}, \partial), \mathcal{K}^{\partial} = \mathbb{C}$$

• G: commutative algebraic group defined over \mathbb{C} , with no additive quotient; typically,

$$G = \mathbf{G}_m^n$$
, or $G = A$, an ab. var.

• so, Lie algebra LG/\mathbb{C} . Let $x \in LG(\mathcal{K})$ s.t. for any proper algebraic subgroup H/K of G

$$x \notin LH(\mathcal{K}) + LG(\mathbb{C}).$$

• $y = exp_G(x) \in G(\mathcal{K}) \Leftrightarrow \partial \ell n_G(y) = \partial_{LG}(x);$

$$\Rightarrow$$
 tr.deg.(K(x,y)/K) \geq dimG.

Here

We assume :

- $x \in K$ (exponential case, Lindemann-Weierstrass) or
- $y \in K$ (logarithmic case, Grothendieck conjecture) but we allow

G non-constant, i.e. G/K.

Why?

Bombieri-Pila-Wilkie-Pila-Zannier-Masser-Pila-..., for instance :

Manin-Mumford (easier version): Let A/\mathbb{Q}^{alg} be an abelian variety. An algebraic subvariety X/\mathbb{Q}^{alg} of A passes through finitely many torsion points of A, unless X contains a translate of a non-zero abelian subvariety of A.

Strategy of the proof: : write $A = \mathbb{R}^{2g}/\mathbb{Z}^{2g}$, so the torsion points become rational points in $[0,1]^{2g}$ while X pulls back to a real analytic variety \mathcal{X} . By *o*-minimality, \mathcal{X} meets $<< T^{\epsilon}$ rational points of denominator $\leq T$, *outside of the semi-algebraic subvarieties* \mathcal{Z} *it contains*. But back to A, one point generates many by Galois action (Kummer for Mordell-Lang), so their orders are bounded.

Requires a control of the ${\mathcal Z}$ in ${\mathcal X}$.

 $exp_A(\mathcal{Z}) \subset \mathcal{X}$ provides an algebraic dependence relation over \mathbb{C} for the restriction of the $exp(x_i)$ to \mathcal{Z} and then, Ax forces the $x_{i|\mathcal{Z}}$ to be \mathbb{Z} -lin dep., so \mathcal{Z} must be "linear" ("geodesic"), yelding a translate of abelian subvariety of A in X.

Relative Manin-Mumford (Pink-type conj.): a proper subscheme X/S of an abelian scheme A/S meets finitely many of the torsion points of the various fibers, unless it contains a translate of an abelian subscheme.

Requires studying a non constant G/K.

Refs. :

D. Masser, U. Zannier : Torsion anomalous points and families of elliptic curves; CRAS Paris 346, 2008, 491-494.

J. Pila : Rational points of definable sets and finiteness results for special subvarieties, Prep. 20090721

Connexions with other talks

Legendre-Gauss: (E) : $\eta^2 = \xi(\xi - 1)(\xi - z)$ over $S = \mathbf{P}_1 \setminus \{0, 1, \infty\}$. Then, $\omega = \frac{d\xi}{\eta} \in H^0(E, \Omega^1_{E/S}) \subset H^1_{dR}(E/S)$ satisfies

$$L(\omega) = \frac{1}{2}d(\frac{\eta}{(\xi-z)^2}) \equiv 0 \in H^1_{dR}(E/S)$$

where $L := z(1-z)\frac{d^2}{dz^2} + (1-2z)\frac{d}{dz} - \frac{1}{4}$. For a section $y(z) := (\xi(z), \eta(z)) \in E(S)$, set:

$$\ell n_E(\mathbf{y}(z)) = \int_{\infty}^{\mathbf{y}(z)} \omega := \mathbf{x}(z) \in LieE(\tilde{S}^{an}).$$

On torsion sections,

On a general section,

 $L(\mathbf{x}(z)) \in \mathcal{O}(S) \subset \mathbb{C}(S) \subset K!!!$ Call this $\mu(\mathbf{y}(z))$. So, $\mathbf{x}(z)$ satisfies the inhomogeneous LDE: $L(\mathbf{x}(z)) = \mu(\mathbf{y}(z))$

But μ is also related to the non linear Painlevé VI equation

 \rightsquigarrow Guy's talks.

P VI

$$\begin{split} \frac{d^2\xi}{dz^2} &= \frac{1}{2} (\frac{1}{\xi} + \frac{1}{\xi - 1} + \frac{1}{\xi - z}) (\frac{d\xi}{dz})^2 - (\frac{1}{z} + \frac{1}{z - 1} + \frac{1}{\xi - z}) \frac{d\xi}{dz} \\ &+ \frac{\xi(\xi - 1)(\xi - z)}{z^2(z - 1)^2} (\alpha + \beta \frac{z}{\xi^2} + \gamma \frac{z - 1}{(\xi - 1)^2} + \delta \frac{z(z - 1)}{(\xi - z)^2}) \\ \text{For any } (\mathcal{K}, \partial =') \text{ over } (\mathcal{K}, d/dz): \\ &\mu : E(\mathcal{K}) \to \mathbb{G}_a(\mathcal{K}) \\ \mu(\mathbf{y}) &= \frac{1}{2} \frac{\eta}{(\xi - z)^2} + \left(z(1 - z)\frac{\xi'}{\eta}\right)' + z(1 - z)\frac{\xi'}{\eta} \cdot \frac{\eta'}{\eta}, \\ \text{R. Fuchs rewrote PVI as:} \\ &z(1 - z)\mu(\mathbf{y}) = \alpha \eta + \beta t \frac{\eta}{\xi^2} + \gamma(z - 1) \frac{\eta}{(\xi - 1)^2} \\ &+ (\delta - \frac{1}{2})z(z - 1) \frac{\eta}{(\xi - z)^2}. \\ \text{Set } z &= z(\tau) \text{ (Legendre's } \lambda), \ \xi \sim \wp_{\{1,\tau\}}(\zeta). \\ \text{Then, } \omega \rightsquigarrow d\zeta, \ L \rightsquigarrow \frac{d^2\zeta}{d\tau^2}, 2 \text{-tor.} \rightsquigarrow \epsilon_i, \alpha' \text{s} \rightsquigarrow \kappa_i, \\ \text{and PVI reads: find } \zeta(\tau) \in LieE(\tilde{S}^{an}) \text{ s.t.} \\ &\frac{d^2\zeta}{d\tau^2} = \frac{1}{4\pi^2} \sum_{i=0}^3 \kappa_i \wp'_{\{1,\tau\}}(\zeta + \varepsilon_i). \\ \\ \text{Exercises : i) rewrite in terms of } q = e^{2\pi i \tau} \\ & \longrightarrow \text{ Jacques } \& \text{ Lucia's talks.} \end{split}$$

ii) replace \mathbb{C} by \mathbb{C}_p (cf. Coleman) \rightsquigarrow **Bruno's talks**.

•

•

II. Picard-Vessiot & Kolchin

 (K,∂) : a diff. field with $K^{\partial} = C$ alg. closed. (\hat{K},∂) : a fixed differential closure, $\hat{K}^{\partial} = C$. G/C: a connected algebraic group (possibly non commutative), say $G \subset GL_{n/C}$. Then ∂ extends to a derivation

Then, ∂ extends to a derivation

 $D_{\partial} : K[G] \to K[G]$

respecting the group structure : $D_{\partial} = 0$ on the coordinates functions of G/\mathbb{C} .

For $y \in G(K)$, $T_yG \simeq LG$. Pulling $\partial y \in T_yG$ to 1_G by translation by y, we get the *logarithmic* derivative on G

$$\partial \ell n_G : G \to LG.$$

 $G \subset GL_n \rightsquigarrow \partial \ell n_G y = \partial y. y^{-1}.$
E.g., $\partial \ell n_{\mathbf{G}_m} y = \frac{\partial y}{y}$, while $\partial \ell n_{\mathbf{G}_a} y = \partial y.$

Given $a \in LG(K)$, P-V. theory studies the differential extension K(y)/K, where y is a (any) solution in $G(\hat{K})$ of

$$\partial \ell n_G(y) = a$$
,

and its Galois group

 $Aut_{\partial}(K(y)/K) = J_a(C) \subset G(C).$

In general, $\partial \ell n_G(uv) = \partial \ell n_G u + u(\partial \ell n_G v)u^{-1}$, $\partial \ell n(u^{-1}v) = u^{-1}(-\partial \ell n u + \partial \ell n v)u$.

So: i) K(y) depends only on the *orbit* of aunder the action of $u \in G(K)$. Namely, if $\partial \ell n y = a$, then, $\tilde{y} = uy$ satisfies $\partial \ell n(\tilde{y}) = \tilde{a}$, where $\tilde{a} = \partial \ell n u + uau^{-1}$, and $K(y) = K(\tilde{y})$. . ii) $\forall \sigma \in Aut_{\partial}, \sigma y = y.\rho(\sigma), \rho(\sigma) \in G^{\partial}(\hat{K}),$ Here $G^{\partial}(\hat{K}) = \{g \in G(\hat{K}), \partial \ell n g = 0\} = G(C)$. **Thm.** : $Im(\rho) = J_a(C)$, where J_a/C is an algebraic subgroup of G/C; there is a Galois correspondence (e.g., $K(y)^{J_a(C)} = K$); and $tr.deg.(K(y)/K) = dim(J_a)$.

How to compute $(J_a)^0$? From the Gospel, Michael I.31.(1) & Marius I.31.(2), we get: **Thm.** : assume K alg. closed. Then, J_a is a minimal algebraic subgroup J/C of G such that LJ(K) meets the orbit of a under G(K).

Assume a non degenerate : for any proper algebraic subgroup $H \subset G$, the G(K)-orbit of a does not meet LH(K). Then $J_a = G$. If G is abelian, $a \rightsquigarrow \overline{a} \in LG(K)/\partial \ell n_G G(K)$, hence

- Kolchin's theorem on \mathbf{G}_m^n
- Ostrowski's theorem on \mathbf{G}_a^n .

III. *D*-groups and Pillay's theory

 (K,∂) :alg. closed diff. field with $K^{\partial} = C$. (\hat{K},∂) : a fixed differential closure, $\hat{K}^{\partial} = C$. G/K : a connected commutative algebraic group over K. Say G is commutative.

Assume that ∂ extends to a derivation $D_{\partial}: K[G] \to K[G]$

respecting the group structure (we then say that G is a D-group). Equivalently, the twisted tangent bundle

 $0 \to LG \to T_{\partial}G \to G \to 0$ admits a regular section $s: G \to T_{\partial}G$.

For $y \in G(K), \partial y \in (T_{\partial}G)_y$, so D_{∂} yields a logarithmic derivative on G:

 $\partial \ell n_{G,s} : G \to LG : y \mapsto \partial y - s(y).$

Given $a \in LG(K)$, Pillay's theory studies the differential extension K(y)/K, where y is a solution in $G(\hat{K})$ of

 $\partial \ell n_G(y) = a$, and its Galois group $Aut_{\partial}(K(y)/K)$. To avoid "new constants", we request that

G is "K-large : $G^{\partial}(\hat{K}) = G^{\partial}(K)$ where $G^{\partial}(\hat{K}) = \{g \in G(\hat{K}), \partial \ell n_G g = 0\}.$. Since $\partial \ell n_G(uv) = \partial \ell n_G u + \partial \ell n_G v$,

. i) K(y) depends only on the class of a in $Coker(\partial \ell n_G, K) := LG(K)/\partial \ell n_G(G(K)).$

. ii) $\forall \sigma \in Aut_{\partial}, \ \sigma y = y + \xi(\sigma), \xi(\sigma) \in G^{\partial}(K),$

Thm.: $Im(\xi) = N_a^{\partial}(K)$, where N_a/K is a connected algebraic *D*-subgroup of (G/K, s); there is a Galois correspondence (in particular, $K(y)^{N_a^{\partial}(K)} = K$); and

 $tr.deg.(K(y)/K) = dim(N_a).$

How to *compute* N_a ? Going to G/N_a , we get :

Thm.: N_a is a minimal algebraic *D*-subgroup *N* of (G, s) such that *a* lies in $LN(K) + \partial \ell n_G G(K)$.

Assume a non degenerate : for any proper algebraic D-subgroup $H \subset G$, $a + \partial \ell n_G G(K)$ does not meet LH(K). Then $N_a = G$.

Example : *D*-modules

G = V/K, with $s(y) = By, B \in Hom(V, V)$. Then, $\partial \ell n_V := \partial_V : V \to LV \simeq V :$ $y \mapsto \partial_V(y) = \partial y - By$. So, (V, s) is "large" only over the alg. closure $\mathbf{K}_{(B)}$ of the P-V field $K_V = K(V_{(B)}^{\partial})$.

Given $a \in (LV = V)(K)$, we study the DE

 $\partial_V y = a, i.e. \ \partial y - By = a.$

Its Galois group $Gal_{\partial}(\mathbf{K}(y)/\mathbf{K}) = (N_a)^{\partial}(\mathbf{K})$ is a \mathbb{C} -subspace N^{∂} of V^{∂} , where N is a minimal **K**-vector subspace of $V \otimes \mathbf{K}$ stable under ∂_V , such that $v \in \partial_V(V(\mathbf{K})) + N(\mathbf{K})$.

Actually, N must then be defined over K (see Part V). Moreover, if V is completely reducible over K, one can speak of *the* minimal D-submodule N satisfying these properties; furthermore, they then automatically descend to K. So, in this "pure" case, N is the smallest D-submodule of V over K such that $v \in \partial_V(V(K)) + N(K)$.

Abelian varieties provide another example of "pure" algebraic *D*-groups, and we will now restrict to this case. • $K = \mathbb{C}(S); \partial \in H^0(S, TS)$: a vector field;

• $\pi : \mathbf{G} \to S$: a group scheme; $\mathbf{e} = 0$ -section,

• LG: the pull-back $e^*(T_{G|S})$ of the relative tangent bundle of G over S.

• At the generic point of S, we get G/K, with (relative) tangent bundle $TG \simeq G \times LG$

• The (full) tangent bundle $T\mathbf{G}$ of \mathbf{G} sits in an exact sequence

 $0 \to T_{\mathbf{G}|S} \to T\mathbf{G} \to \pi^*(TS) \to 0$

of vector bundles over \mathbf{G} , and is also a group scheme over TS. When t runs through S, its fibers $(T\mathbf{G})_{(t,\partial_t)}$ yield a group scheme $T_{\partial}\mathbf{G}$ over S, whose generic fiber is the **twisted tangent bundle** $T_{\partial}G/K$.

• A section x of G/S provides a section $x_*(\partial)$ of $T_{\partial}G/S$, written ∂x at the generic point.

• Viewed over K, $T_{\partial}G$ is a group extension of G by LG;

• Viewed over G, $T_{\partial}G$ is a *torsor under* LG, whose class in $H^1(G,TG)$ is given, in the proper case, by the **Kodaira-Spencer** map.

IV . Interlude : Kummer theory

- K = number field, $\overline{K} =$ algebraic closure.
- A = an abelian variety over K, dimA := g. Set $End(A/K) = End(A/\overline{K}) := O$.

• $y \in A(K)$. Assume that y generates A, i.e. $\mathbb{Z}.y$ is Zariski closed in $A \Leftrightarrow Ann_{\mathcal{O}}(y) = 0$.

Following the elliptic work of Bashmakov and Tate-Coates (\sim 1970), we have :

Theorem K : there exists c = c(A, K, y) > 0such that for all n > 0, $[K(\frac{1}{n}y) : K] \ge cn^{2g}$.

Refs.: K. Ribet : Duke math. J. 46, 1979, 745-761; D.B. : Proc. Durham Conference 1986, "New advances in transcendence theory", ed. A. Baker, CUP 1988, 37-55.

•
$$A_{tor} = \bigcup_n A[n], \ K_{\infty} = K(A_{tor})$$

•
$$L_{\infty} = \bigcup_n K_{\infty}(\frac{1}{n}y), \quad L_{(\ell)} = \bigcup_m K_{\infty}(\frac{1}{\ell^m}y).$$

•
$$T_{\infty}(A) := proj.lim_n A[n] = \prod_{\ell \in \mathcal{P}} T_{\ell}(A)$$

We will actually prove that $Gal(L_{\infty}/K_{\infty})$ is isomorphic to an open subgroup of $T_{\infty}(A)$, or equivalently (Nakayama) :

i) for all primes ℓ , $Gal(L_{(\ell)}/K_{\infty})$ is an open subgroup of $T_{\ell}(A) \simeq \mathbb{Z}_{\ell}^{2g}$;

ii) for almost all ℓ , $Gal(K_{\infty}(\frac{1}{\ell}y)/K_{\infty}) \simeq A[\ell]$.

$$K$$

$$|$$

$$K_{\infty}(\frac{1}{n}y) \qquad \xi_{y}$$

$$| \qquad \}N \qquad \to \qquad A[n] \simeq (\mathbb{Z}/n\mathbb{Z})^{2g}$$

$$K_{\infty} \qquad \rho$$

$$| \qquad \}J \qquad \to \qquad GL(T_{\infty}(A))$$

$$K$$

 $\xi_y(\sigma) = \sigma(\frac{1}{n}y) - \frac{1}{n}y, \quad \xi_y(\tau\sigma\tau^{-1}) = \tau(\xi_y(\sigma)).$

Proof (in the mod ℓ case)

1. Galois theoretic step .

(Of necessity, base extension to $K_{\infty} \rightsquigarrow A$ becomes " K_{∞} -large" for the morphism $[\ell]_A$.)

 $Im(\xi_y) \simeq N$ is a *J*-submodule of $A[\ell]$. Assume $N \neq A[\ell]$. Then $\exists \alpha \in \mathcal{O}, \alpha \notin \ell \mathcal{O}$ s.t. $\alpha.y$ is divisible by ℓ in $A(K_{\infty})$.

2. Galois descent

There exists $\ell_0(A, K)$ such that $\forall \ell > \ell_0$, if a point $y' \in A(K)$ is divisible by ℓ in $A(K_\infty)$, then, y' is already divisible by ℓ in A(K), i.e. $A(K)/\ell \cdot A(K) \hookrightarrow A(K_\infty)/\ell \cdot A(K_\infty)$

3. (Diophantine) geometric step

There exists $\ell_1(A, K, y)$ such that $\alpha. y \in \ell. A(K)$ with $\ell > \ell_1$ implies $\alpha \in \ell. \mathcal{O}$.

Proof of 1.

- $A[\ell]$ is a semi-simple *J*-module (Faltings), so there exists $\alpha_{\ell} \in End_J(A[\ell])$ killing *N*. - $End_J(A[\ell]) \simeq End(A) \otimes \mathbf{F}_{\ell}$ (Faltings), so α_{ℓ} yields $\alpha \in \mathcal{O}, \alpha \notin \ell \mathcal{O}$ killing *N*. - $\xi_{\alpha,y} = \alpha \xi_y$, so, $\frac{1}{\ell} \alpha . y$ is fixed by *N*.

Proof of 2.

Proof of 3.

Mordell-Weil (or a trick of Cassels's), both based on heights.

[Similar arguments in the ℓ -adic case.]

V. Logarithms on abelian schemes

• $K = \mathbb{C}(S)$ or $\mathbb{C}(S)^{alg}$, $S/\mathbb{C} =$ smooth affine curve, $\partial =$ a derivation on K with $K^{\partial} = \mathbb{C}$, $\widehat{K} =$ diff. closure, $\mathcal{U} =$ univ. domain.

• A/K, coming from an abelian scheme $\mathcal{A} \rightarrow S$. $A_0 =$ its K/\mathbb{C} -trace. Its universal extension \tilde{A} has dimension 2g:

 $0 \to W_A \to \tilde{A} \to^{\pi} A \to 0$

Exponential sequence :

 $0 \to T_B \tilde{\mathcal{A}} \to L \tilde{\mathcal{A}}^{an} \to e^{xp} \tilde{\mathcal{A}}^{an} \to 0$

• $y \in \tilde{A}(K)$, generating \tilde{A} , i.e. : $\forall H \subsetneq \tilde{A}, y \notin H + \tilde{A}_0(\mathbb{C})$. Chose $\ell n(y) \in exp^{-1}(y)$. Then :

Theorem L (André, 1992) $tr.dg.(K(\ell n(y))/K) = 2g.$ \tilde{A} has a structure of algebraic $D\text{-}\mathrm{group},$ with $\partial\ell n_{\tilde{A}}:\tilde{A}\to L\tilde{A}$

Gauss-Manin connection :

$$\begin{array}{l} \partial_{L\widetilde{A}} = \partial \ell n_{\widetilde{A}} \circ exp : L\widetilde{A} \to L\widetilde{A} \\ \text{So } \ell n(y) \rightsquigarrow x \in L\widetilde{A}(\widehat{K}) \text{ solution of the inhomogeneous LDE} : \partial_{L\widetilde{A}}(x) = \partial \ell n_{\widetilde{A}}y. \end{array}$$

• $K_{L\tilde{A}} = K(T_B(\tilde{A})) =$ Picard-Vessiot extension for $\partial_{L\tilde{A}}(-) = 0$, with solution space $(L\tilde{A})^{\partial} = T_B(\tilde{A}) \otimes \mathbb{C} \simeq \mathbb{C}^{2g}$.

We will actually prove that $Gal_{\partial}(K_{L\tilde{A}}(\ell n(y))/K_{L\tilde{A}}) \simeq (L\tilde{A})^{\partial}.$

$$\begin{array}{cccc}
\hat{K} & & \\
 & | \\
 & K_{L\tilde{A}}(\ell n(y)) & \xi_{y} \\
 & K_{L\tilde{A}} & | \\
 & K_{L\tilde{A}} & \rho \\
 & | \\
 & K & \\
\end{array} \\
\begin{array}{c}
 & K \\
 & I \\
 & K
\end{array} \\
\begin{array}{c}
 & I \\
 & I \\
 & I \\
 & K
\end{array} \\
\begin{array}{c}
 & I \\
 & I \\
\end{array}$$

 $\xi_y(\sigma) = \sigma(\ell n(y)) - \ell n(y), \quad \xi_y(\tau \sigma \tau^{-1}) = \tau(\xi_y(\sigma)).$

Proof (in a "generic" case)

By Deligne, $L\tilde{A}$ is a semi-simple *D*-module. For simplicity, suppose that it is irreducible.

1. Galois theoretic step .

(Of necessity, base extension to $K_{L\tilde{A}} \rightsquigarrow L\tilde{A}$ becomes " $K_{L\tilde{A}}$ -large" for the morphism $[exp]_{\tilde{A}}$.)

 $Im(\xi_y) \simeq N$ is a *J*-submodule of $(L\tilde{A})^{\partial}$. Assume $N \neq (L\tilde{A})^{\partial}$. Then $N = 0, x \in L\tilde{A}(K_{L\tilde{A}})$ and

$$\partial \ell n_{\tilde{A}} y = \partial_{L\tilde{A}}(x) \in \partial_{L\tilde{A}}(L\tilde{A}(K_{L\tilde{A}})).$$

2. Galois descent

If a point $z \in L\tilde{A}(K)$ lies in $\partial_{L\tilde{A}}(L\tilde{A}(K_{L\tilde{A}}))$, then, z already lies in $\partial_{L\tilde{A}}(L\tilde{A}(K))$, i.e.

$$Coker(\partial_{L\tilde{A}}, L\tilde{A}(K)) \hookrightarrow Coker(\partial_{L\tilde{A}}, L\tilde{A}(K_{L\tilde{A}}))$$

Indeed, J is reductive, so $H^1(J, (L\tilde{A})^{\partial}) = 0$.

3. Geometric step

Manin's theorem : if $\partial \ell n_{\tilde{A}} y = \partial_{L\tilde{A}}(x)$ for some $x \in L\tilde{A}(K)$, then $y \in W_A + \tilde{A}_0(\mathbb{C}) + \tilde{A}_{tor}$.

VI. Exponentials on abelian schemes

$$K = \mathbb{C}(S), \ \partial, \ A/K, \ A_0/\mathbb{C}, \ \tilde{A}.$$
$$0 \to T_B \tilde{\mathcal{A}} \to L \tilde{\mathcal{A}}^{an} \to {}^{exp} \tilde{\mathcal{A}}^{an} \to 0$$

• $x \in L\tilde{A}(K)$, generating $L\tilde{A}$, i.e. : $\forall H \subsetneq \tilde{A}, x \notin LH + L\tilde{A}_0(\mathbb{C})$. Then :

Theorem E (Be-Pillay, JAMS, 201?) tr.dg.(K(exp(x)/K) = 2g.

As in V, we have

$$\begin{array}{c} \partial \ell n_{\tilde{A}} : \tilde{A} \to L \tilde{A} \\ \partial_{L \tilde{A}} = \partial \ell n_{\tilde{A}} \circ exp : L \tilde{A} \to L \tilde{A}. \end{array}$$

So $exp(x) \rightsquigarrow y \in \tilde{A}(\hat{K})$ solution of the inhomogeneous NLDE : $\partial \ell n_{\tilde{A}}(y) = \partial_{L\tilde{A}}x$.

Let $K_{\tilde{A}}$ be the differential extension of \overline{K} generated by all points in

$$\tilde{A}^{\partial} = \{ z \in \tilde{A}(\hat{K}), \partial \ell n_{\tilde{A}}(z) = 0. \}$$

Using . • Pillay's Galois theory . • + a Galois descent , we will actually prove that $Gal_{\partial}(K_{\tilde{A}}(exp(x))/K_{\tilde{A}}) \simeq \tilde{A}^{\partial}.$

$$\begin{array}{ccc} \widehat{K} & & \\ & \mid \\ K_{\widetilde{A}}(exp(x)) & \xi_{X} & \\ & \mid \\ & \mid \\ & \mid \\ & K_{\widetilde{A}} & \rho & \\ & \downarrow \\ & & I \end{array} \right) N \xrightarrow{} \widetilde{A}^{\partial} \\ M_{\widetilde{A}} & \rho & \\ & & \downarrow \\ & & I \end{array}$$

$$\xi_x(\sigma) = \sigma(exp(x)) - exp(x).$$

In generic cases (e.g. when the Kodaira-Spencer rank of A/S is maximal, e.g. when $L\tilde{A}$ is irreducible),

$$K_{\tilde{A}} = \overline{K}$$
 :

the *D*-group \tilde{A} is \overline{K} -large, and no descent is required ! We then merely need :

1. Galois theoretic step

 $Im(\xi_x) \simeq N = H^{\partial}$ for some algebraic *D*subgroup *H* of \tilde{A} . Assume $H \neq \tilde{A}$. Then there is a non trivial *D*-quotient $\pi : \tilde{A} \to \overline{A}$ sending *x* to $\overline{x} \in L\overline{A}(K)$, with

 $\partial_{L\overline{A}}(\overline{x}) = \partial \ell n_{\overline{A}}(\overline{y})$ for some $\overline{y} \in \overline{A}(K)$.

3. Geometric step

If $\overline{A} \simeq \widetilde{B}$ for some abelian variety quotient Bof A, just apply Manin's theorem: $\overline{x} \in LW_B + L\widetilde{B}_0(\mathbb{C})$, so x cannot generate $L\widetilde{A}$.

The general case requires Chai's sharpening of Manin's theorem.

That $\overline{A} \simeq \tilde{B}$ happens automatically when W_A contains no non trivial *D*-subgroup. When $A_0 = 0$, this is equivalent to \tilde{A} being \overline{K} -large. In general,

2. Galois descent in Pillay's theory

Write K for \overline{K} , and let U be the maximal D-subgroup of \tilde{A} (equivalently D-submodule of $L\tilde{A}$) contained in W_A .

$$0 \to U \to \tilde{A} \to \overline{A} \to 0.$$

- Hrushovski-Sokolovic, Marker-Pillay $\Rightarrow \overline{A}$ is *K*-large : $\overline{A}^{\partial}(\widehat{K}) = \overline{A}^{\partial}(K)$.
- Manin-Chai $\Rightarrow \overline{A}^{\partial}(K) = \overline{A}_{tor} + A_0(C).$
- $0 \to U^{\partial}(\widehat{K}) \to \widetilde{A}^{\partial}(\widehat{K}) \to \overline{A}^{\partial}(\widehat{K}) \to 0.$ Therefore

 $K_{\tilde{A}} = K_U$ is a P-V extension of Kand $\tilde{J} = Gal_{\partial}(K_{\tilde{A}}/K) := J_U$ is a factor of the reductive group $J = Gal_{\partial}(K_{L\tilde{A}}/K)$. Actually (Deligne), J, hence J_U , is semi-simple.

By Step 1 over $K_{\tilde{A}}$, and rigidity of D-subgroups of \tilde{A} , we have :

 $\partial_{L\overline{A}}(\overline{x}) = \partial \ell n_{\overline{A}}(\overline{y})$ for some $\overline{y} \in \overline{A}(K_U)$. and it remains to show that $L\overline{A}(K)/\partial \ell n_{\overline{A}}(\overline{A}(K)) \hookrightarrow L\overline{A}(K_U)/\partial \ell n_{\overline{A}}(\overline{A}(K_U)),$ i.e. that we may take $\overline{y} \in \overline{A}(K)$. The cocycle $\hat{\xi}_{\overline{y}} : J_U \to \overline{A}^{\partial} : \sigma \mapsto \sigma \overline{y} - \overline{y}$ is a group homomorphism. Since $J_U = [J_U, J_U]$, while \overline{A}^{∂} is abelian, $\xi_{\overline{y}}$ vanishes, so that indeed \overline{y} is defined over K.

Conclusion

• This shows that just as P-V., Pillay's theory can (sometimes) cover relative situations. Does the same hold of Malgrange's theory ?

• The method works in other contexts, e.g., considering the differential equation

$$\partial \ell n(y) = \lambda . \partial \ell n(x)$$

on \mathbb{G}_m , with $\lambda \in \mathbb{C}, \lambda \notin \mathbb{Q}$:

if $x_1, ..., x_n \in \mathbb{G}_m(K)$ are multiplicatively independent modulo $\mathbb{G}_m(\mathbb{C})$, then, $x_1^{\lambda}, ..., x_n^{\lambda}$ are algebraically independent over $K = \mathbb{C}(z)$.

For more general (Schanuel-type) results on x^{λ} , see work of M. Bayes, J. Kirby, A. Wilkie, (arXiv: 0810.4457, 2008) and P. Kowalski (Ann. PAL, 156, 2008, 96-109).