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I. Ax-Schanuel : how and why ?

Ax (1970)

x = (x1, ..., xn) ∈ (C{{z1, .., zt}})n

∀i, yi(z) := exp(xi(z)) ∈ C{{z1, .., zt}}
 y = exp(x) ∈ (C{{z1, ..., zt}}∗)n

Assume x non-degenerate, i.e.

∀m ∈ Zn \ 0, m1x1 + ... + mnxn /∈ C.

Then, tr.deg.(C(x, y)/C) ≥ n + rk(Dx
Dz).

If K = C(z1, ..., zt), it suffices to show that

tr.deg.(K(x, y)/K) ≥ n.

Choosing a sufficiently general curve in Ct,

it suffices to check it when t = 1. So :

K = C(z)alg, ∂ = d
dz

(K, ∂) a differential extension, with K∂ = C
(x, y) ∈ (K×K∗)n, x non-degenerate. Then

∂y/y = ∂x ⇒ deg.tr.K(x, y)/K ≥ n
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. More generally (cf. Ax (1972))

• K = C(z)alg, ∂ = d
dz , (K, ∂),K∂ = C

• G: commutative algebraic group defined

over C, with no additive quotient; typically,

G = Gn
m, or G = A, an ab. var.

• so, Lie algebra LG/C. Let x ∈ LG(K) s.t.

for any proper algebraic subgroup H/K of G

x /∈ LH(K) + LG(C).

• y = expG(x) ∈ G(K) ⇔ ∂`nG(y) = ∂LG(x);

⇒ tr.deg.(K(x, y)/K) ≥ dimG.

Here

We assume :

x ∈ K (exponential case, Lindemann-Weierstrass)

or

y ∈ K (logarithmic case, Grothendieck conjecture)

but we allow

G non-constant, i.e. G/K.
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Why ?

Bombieri-Pila-Wilkie-Pila-Zannier-Masser-

Pila-..., for instance :

Manin-Mumford (easier version): Let A/Qalg

be an abelian variety. An algebraic subvariety

X/Qalg of A passes through finitely many tor-

sion points of A, unless X contains a trans-

late of a non-zero abelian subvariety of A.

Strategy of the proof: : write A = R2g/Z2g,

so the torsion points become rational points

in [0,1]2g while X pulls back to a real an-

alytic variety X . By o-minimality, X meets

<< T ε rational points of denominator ≤ T ,

outside of the semi-algebraic subvarieties Z
it contains. But back to A, one point gen-

erates many by Galois action (Kummer for

Mordell-Lang), so their orders are bounded.

Requires a control of the Z in X .
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expA(Z) ⊂ X provides an algebraic depen-

dence relation over C for the restriction of

the exp(xi) to Z and then, Ax forces the

xi|Z to be Z-lin dep., so Z must be “linear”

(“geodesic”), yelding a translate of abelian

subvariety of A in X.

Relative Manin-Mumford (Pink-type conj.):

a proper subscheme X/S of an abelian scheme

A/S meets finitely many of the torsion points

of the various fibers, unless it contains a

translate of an abelian subscheme.

Requires studying a non constant G/K.

Refs. :

D. Masser, U. Zannier : Torsion anomalous

points and families of elliptic curves; CRAS

Paris 346, 2008, 491-494.

J. Pila : Rational points of definable sets

and finiteness results for special subvarieties,

Prep. 20090721
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. Connexions with other talks

Legendre-Gauss: (E) : η2 = ξ(ξ − 1)(ξ − z)
over S = P1 \ {0,1,∞}. Then, ω = dξ

η ∈
H0(E,Ω1

E/S) ⊂ H1
dR(E/S) satisfies

L(ω) = 1
2d( η

(ξ−z)2
) ≡ 0 ∈ H1

dR(E/S)

where L := z(1− z) d2

dz2 + (1− 2z) d
dz −

1
4.

For a section y(z) := (ξ(z), η(z)) ∈ E(S), set:

`nE

(
y(z)

)
=

∫ y(z)

∞
ω := x(z) ∈ LieE(S̃an).

On torsion sections,

y(z) = (1,0) 7→ x(z) = πF (1
2, 1

2,1; z);
y(z) = (z,0) iπF (1

2, 1
2,1; 1− z);

ξdξ
η gives F (−1

2, 1
2,1, z), etc ....

.  Frits’s talks.

On a general section,

L(x(z)) ∈ O(S) ⊂ C(S) ⊂ K!!! Call this µ(y(z)).
So, x(z) satisfies the inhomogeneous LDE:

L(x(z)) = µ(y(z))
But µ is also related to the non linear Painlevé
VI equation

.  Guy’s talks.
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P VI

d2ξ

dz2
=

1

2
(
1

ξ
+

1

ξ − 1
+

1

ξ − z
)(

dξ

dz
)2−(

1

z
+

1

z − 1
+

1

ξ − z
)
dξ

dz

+
ξ(ξ − 1)(ξ − z)

z2(z − 1)2

(
α+β

z

ξ2
+γ

z − 1

(ξ − 1)2
+δ

z(z − 1)

(ξ − z)2

)
.

For any (K, ∂ =′) over (K, d/dz):

µ : E(K) → Ga(K)

µ(y) =
1

2

η

(ξ − z)2
+

(
z(1−z)

ξ′

η

)′
+z(1−z)

ξ′

η
.
η′

η
,

R. Fuchs rewrote PVI as:

z(1− z)µ(y) = αη + βt η
ξ2

+ γ(z − 1) η
(ξ−1)2

+(δ − 1
2)z(z − 1) η

(ξ−z)2
.

Set z = z(τ) (Legendre’s λ), ξ ∼ ℘{1,τ}(ζ).

Then, ω  dζ, L d2ζ
dτ2, 2-tor.  εi, α’s  κi,

and PVI reads: find ζ(τ) ∈ LieE(S̃an) s.t.
d2ζ
dτ2 = 1

4π2

∑3
i=0 κi℘

′
{1,τ}(ζ + εi).

Exercises : i) rewrite in terms of q = e2πiτ

.  Jacques & Lucia’s talks.

. ii) replace C by Cp (cf. Coleman)
.  Bruno’s talks.
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II. Picard-Vessiot & Kolchin

(K, ∂) : a diff. field with K∂ = C alg. closed.

(K̂, ∂) : a fixed differential closure, K̂∂ = C.

G/C : a connected algebraic group (possibly

non commutative), say G ⊂ GLn/C.

Then, ∂ extends to a derivation

D∂ : K[G] → K[G]

respecting the group structure : D∂ = 0 on

the coordinates functions of G/C.

For y ∈ G(K), TyG ' LG. Pulling ∂y ∈ TyG to

1G by translation by y, we get the logarithmic

derivative on G

∂`nG : G → LG.

G ⊂ GLn  ∂`nGy = ∂y.y−1.

E.g., ∂`nGm
y = ∂y

y , while ∂`nGa
y = ∂y.

Given a ∈ LG(K), P-V. theory studies the

differential extension K(y)/K, where y is a

(any) solution in G(K̂) of

∂`nG(y) = a,

and its Galois group

Aut∂(K(y)/K) = Ja(C) ⊂ G(C).
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In general, ∂`nG(uv) = ∂`nGu+u(∂`nGv)u−1,

∂`n(u−1v) = u−1(−∂`nu + ∂`nv)u.

So: i) K(y) depends only on the orbit of a

under the action of u ∈ G(K). Namely, if
∂`ny = a, then, ỹ = uy satisfies ∂`n(ỹ) = ã,
where ã = ∂`nu + uau−1, and K(y) = K(ỹ).

. ii) ∀σ ∈ Aut∂, σy = y.ρ(σ), ρ(σ) ∈ G∂(K̂),
Here G∂(K̂) = {g ∈ G(K̂), ∂`ng = 0} = G(C).

Thm. : Im(ρ) = Ja(C), where Ja/C is an
algebraic subgroup of G/C; there is a Galois
correspondence (e.g., K(y)Ja(C) = K); and

tr.deg.(K(y)/K) = dim(Ja).

How to compute (Ja)0 ? From the Gospel,
Michael I.31.(1) & Marius I.31.(2), we get:
Thm. : assume K alg. closed. Then, Ja is
a minimal algebraic subgroup J/C of G such
that LJ(K) meets the orbit of a under G(K).

Assume a non degenerate : for any proper
algebraic subgroup H ⊂ G, the G(K)-orbit of
a does not meet LH(K). Then Ja = G.
If G is abelian, a  a ∈ LG(K)/∂`nGG(K),
hence
. • Kolchin’s theorem on Gn

m
. • Ostrowski’s theorem on Gn

a.
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III. D-groups and Pillay’s theory

(K, ∂) :alg. closed diff. field with K∂ = C.
(K̂, ∂) : a fixed differential closure, K̂∂ = C.
G/K : a connected commutative algebraic
group over K. Say G is commutative.

Assume that ∂ extends to a derivation
D∂ : K[G] → K[G]

respecting the group structure (we then say
that G is a D-group). Equivalently, the twisted
tangent bundle

0 → LG → T∂G → G → 0
admits a regular section s : G → T∂G.

For y ∈ G(K), ∂y ∈ (T∂G)y, so D∂ yields a
logarithmic derivative on G :

∂`nG,s : G → LG : y 7→ ∂y − s(y).

Given a ∈ LG(K), Pillay’s theory studies the
differential extension K(y)/K, where y is a
solution in G(K̂) of

∂`nG(y) = a,
and its Galois group Aut∂(K(y)/K). To avoid
“new constants”, we request that

G is “K-large : G∂(K̂) = G∂(K)

where G∂(K̂) = {g ∈ G(K̂), ∂`nGg = 0}.
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. Since ∂`nG(uv) = ∂`nGu + ∂`nGv,

. i) K(y) depends only on the class of a in

Coker(∂`nG, K) := LG(K)/∂`nG(G(K)).

. ii) ∀σ ∈ Aut∂, σy = y + ξ(σ), ξ(σ) ∈ G∂(K),

Thm.: Im(ξ) = N∂
a (K), where Na/K is a

connected algebraic D-subgroup of (G/K, s);

there is a Galois correspondence (in particu-

lar, K(y)N∂
a (K) = K); and

tr.deg.(K(y)/K) = dim(Na).

How to compute Na ? Going to G/Na, we

get :

Thm.: Na is a minimal algebraic D-subgroup N

of (G, s) such that a lies in LN(K)+∂`nGG(K).

Assume a non degenerate : for any proper

algebraic D-subgroup H ⊂ G, a + ∂`nGG(K)

does not meet LH(K). Then Na = G.
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Example : D-modules

G = V/K, with s(y) = By, B ∈ Hom(V, V ).
Then, ∂`nV := ∂V : V → LV ' V :

y 7→ ∂V (y) = ∂y −By.
So, (V, s) is “large” only over the alg. closure
K(B) of the P-V field KV = K(V ∂

(B)).

Given a ∈ (LV = V )(K), we study the DE

∂V y = a, i.e. ∂y −By = a.

Its Galois group Gal∂(K(y)/K) = (Na)∂(K) is
a C-subspace N∂ of V ∂, where N is a minimal
K-vector subspace of V ⊗K stable under ∂V ,
such that v ∈ ∂V (V (K)) + N(K).

Actually, N must then be defined over K
(see Part V). Moreover, if V is completely
reducible over K, one can speak of the min-
imal D-submodule N satisfying these prop-
erties; furthermore, they then automatically
descend to K. So, in this “pure” case, N is
the smallest D-submodule of V over K such
that v ∈ ∂V (V (K)) + N(K).

Abelian varieties provide another example of
“pure” algebraic D-groups, and we will now
restrict to this case.
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• K = C(S); ∂ ∈ H0(S, TS): a vector field;

• π : G → S : a group scheme; e = 0-section,

• LG : the pull-back e∗(TG|S) of the relative

tangent bundle of G over S.

• At the generic point of S, we get G/K, with

(relative) tangent bundle TG ' G× LG

• The (full) tangent bundle TG of G sits in

an exact sequence

0 → TG|S → TG → π∗(TS) → 0

of vector bundles over G, and is also a group

scheme over TS. When t runs through S, its

fibers (TG)(t,∂t) yield a group scheme T∂G

over S, whose generic fiber is the twisted

tangent bundle T∂G/K.

• A section x of G/S provides a section x∗(∂)

of T∂G/S, written ∂x at the generic point.

• Viewed over K, T∂G is a group extension

of G by LG;

• Viewed over G, T∂G is a torsor under LG,

whose class in H1(G, TG) is given, in the

proper case, by the Kodaira-Spencer map.
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IV . Interlude : Kummer theory

• K = number field, K = algebraic closure.

• A = an abelian variety over K, dimA := g.

Set End(A/K) = End(A/K) := O.

• y ∈ A(K). Assume that y generates A, i.e.

Z.y is Zariski closed in A ⇔ AnnO(y) = 0.

Following the elliptic work of Bashmakov and

Tate-Coates (∼ 1970), we have :

Theorem K : there exists c = c(A, K, y) > 0

such that for all n > 0, [K(1
ny) : K] ≥ cn2g.

Refs.: K. Ribet : Duke math. J. 46, 1979,

745-761;

D.B. : Proc. Durham Conference 1986, “New

advances in transcendence theory”, ed. A.

Baker, CUP 1988, 37-55.
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• Ator = ∪nA[n], K∞ = K(Ator)

• L∞ = ∪nK∞(1
ny), L(`) = ∪mK∞( 1

`my).

• T∞(A) := proj.limn A[n] = Π`∈PT`(A)

We will actually prove that Gal(L∞/K∞) is

isomorphic to an open subgroup of T∞(A),

or equivalently (Nakayama) :

i) for all primes `, Gal(L(`)/K∞) is an open

subgroup of T`(A) ' Z2g
` ;

ii) for almost all `, Gal(K∞(1
`y)/K∞) ' A[`].

K
|

K∞(1
ny) ξy

| }N ↪→ A[n] ' (Z/nZ)2g

K∞ ρ
| }J ↪→ GL(T∞(A))

K

ξy(σ) = σ(1
ny)− 1

ny, ξy(τστ−1) = τ(ξy(σ)).
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Proof (in the mod ` case)

1. Galois theoretic step .

(Of necessity, base extension to K∞  A

becomes “K∞-large” for the morphism [`]A.)

Im(ξy) ' N is a J-submodule of A[`]. As-

sume N 6= A[`]. Then ∃α ∈ O, α /∈ `O s.t.

α.y is divisible by ` in A(K∞).

2. Galois descent

There exists `0(A, K) such that ∀` > `0 , if

a point y′ ∈ A(K) is divisible by ` in A(K∞),

then, y′ is already divisible by ` in A(K), i.e.

A(K)/`.A(K) ↪→ A(K∞)/`.A(K∞)

3. (Diophantine) geometric step

There exists `1(A, K, y) such that α.y ∈ `.A(K)

with ` > `1 implies α ∈ `.O.
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Proof of 1.

- A[`] is a semi-simple J-module (Faltings),

so there exists α` ∈ EndJ(A[`]) killing N .

- EndJ(A[`]) ' End(A)⊗ F` (Faltings), so α`

yields α ∈ O, α /∈ `O killing N .

- ξα.y = αξy, so, 1
`α.y is fixed by N .

Proof of 2.

? → A(K)/`.A(K) → A(K∞)/`.A(K∞)
↓ ↓ ↓

H1(J, A[`]) → H1(ΓK, A[`]) → H1(ΓK∞, A[`])J

Serre’s result on homotheties and Sah’s lemma

imply H1(J, A[`]) = 0 for large `.

Proof of 3.

Mordell-Weil (or a trick of Cassels’s), both

based on heights.

[Similar arguments in the `-adic case.]
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V. Logarithms on abelian schemes

• K = C(S) or C(S)alg, S/C = smooth affine

curve, ∂ = a derivation on K with K∂ = C,

K̂ = diff. closure, U = univ. domain.

• A/K, coming from an abelian scheme A →
S. A0 = its K/C-trace. Its universal exten-

sion Ã has dimension 2g :

0 → WA → Ã →π A → 0

Exponential sequence :

0 → TBÃ → LÃan →exp Ãan → 0

• y ∈ Ã(K), generating Ã, i.e. : ∀H ( Ã, y /∈
H + Ã0(C). Chose `n(y) ∈ exp−1(y). Then :

Theorem L (André, 1992)

tr.dg.(K(`n(y))/K) = 2g.
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Ã has a structure of algebraic D-group, with
∂`nÃ : Ã → LÃ

Gauss-Manin connection :
∂LÃ = ∂`nÃ ◦ exp : LÃ → LÃ

So `n(y)  x ∈ LÃ(K̂) solution of the inho-
mogeneous LDE : ∂LÃ(x) = ∂`nÃy.

• KLÃ = K(TB(Ã)) = Picard-Vessiot exten-
sion for ∂LÃ(−) = 0, with solution space
(LÃ)∂ = TB(Ã)⊗ C ' C2g.

We will actually prove that
Gal∂(KLÃ(`n(y))/KLÃ) ' (LÃ)∂.

K̂
|

KLÃ(`n(y)) ξy

| }N ↪→ (LÃ)∂

KLÃ ρ

| }J ↪→ GL((LÃ)∂)
K

ξy(σ) = σ(`n(y))− `n(y), ξy(τστ−1) = τ(ξy(σ)).
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Proof (in a “generic” case)

By Deligne, LÃ is a semi-simple D-module.
For simplicity, suppose that it is irreducible.

1. Galois theoretic step .
(Of necessity, base extension to KLÃ  LÃ
becomes “KLÃ-large” for the morphism [exp]Ã.)

Im(ξy) ' N is a J-submodule of (LÃ)∂. As-
sume N 6= (LÃ)∂. Then N = 0, x ∈ LÃ(KLÃ)
and

∂`nÃy = ∂LÃ(x) ∈ ∂LÃ

(
LÃ(KLÃ)

)
.

2. Galois descent

If a point z ∈ LÃ(K) lies in ∂LÃ

(
LÃ(KLÃ)

)
,

then, z already lies in ∂LÃ(LÃ(K)), i.e.

Coker(∂LÃ, LÃ(K)) ↪→ Coker(∂LÃ, LÃ(KLÃ))

Indeed, J is reductive, so H1(J, (LÃ)∂) = 0.

3. Geometric step

Manin’s theorem : if ∂`nÃy = ∂LÃ(x) for
some x ∈ LÃ(K), then y ∈ WA+Ã0(C)+Ãtor.
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VI. Exponentials on abelian schemes

As in V,

K = C(S), ∂, A/K, A0/C, Ã.

0 → TBÃ → LÃan →exp Ãan → 0

• x ∈ LÃ(K), generating LÃ, i.e. : ∀H (
Ã, x /∈ LH + LÃ0(C). Then :

Theorem E (Be-Pillay, JAMS, 201?)

tr.dg.(K(exp(x)/K) = 2g.

As in V, we have

∂`nÃ : Ã → LÃ

∂LÃ = ∂`nÃ ◦ exp : LÃ → LÃ.

So exp(x)  y ∈ Ã(K̂) solution of the inho-

mogeneous NLDE : ∂`nÃ(y) = ∂LÃx.

Let KÃ be the differential extension of K gen-

erated by all points in

Ã∂ = {z ∈ Ã(K̂), ∂`nÃ(z) = 0.}
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Using
. • Pillay’s Galois theory
. • + a Galois descent ,
we will actually prove that

Gal∂(KÃ(exp(x))/KÃ) ' Ã∂.

K̂
|

KÃ(exp(x)) ξx

| }N ↪→ Ã∂

KÃ ρ

| }J̃ ↪→ Aut(Ã∂)
K

ξx(σ) = σ(exp(x))− exp(x).

In generic cases (e.g. when the Kodaira-
Spencer rank of A/S is maximal, e.g. when
LÃ is irreducible),

KÃ = K :

the D-group Ã is K-large, and no descent is
required ! We then merely need :
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1. Galois theoretic step

Im(ξx) ' N = H∂ for some algebraic D-

subgroup H of Ã. Assume H 6= Ã. Then

there is a non trivial D-quotient π : Ã → A

sending x to x ∈ LA(K), with

∂LA(x) = ∂`nA(y) for some y ∈ A(K).

3. Geometric step

If A ' B̃ for some abelian variety quotient B

of A, just apply Manin’s theorem:

x ∈ LWB+LB̃0(C), so x cannot generate LÃ.

The general case requires Chai’s sharpening

of Manin’s theorem.

That A ' B̃ happens automatically when WA

contains no non trivial D-subgroup. When

A0 = 0, this is equivalent to Ã being K-large.

In general,
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2. Galois descent in Pillay’s theory

Write K for K, and let U be the maximal

D-subgroup of Ã (equivalently D-submodule

of LÃ) contained in WA.

0 → U → Ã → A → 0.

• Hrushovski-Sokolovic, Marker-Pillay ⇒ A is

K-large : A
∂(K̂) = A

∂(K).

• Manin-Chai ⇒ A
∂(K) = Ator + A0(C).

• 0 → U∂(K̂) → Ã∂(K̂) → A
∂(K̂) → 0.

Therefore

KÃ = KU is a P-V extension of K

and J̃ = Gal∂(KÃ/K) := JU is a

factor of the reductive group J = Gal∂(KLÃ/K).

Actually (Deligne), J, hence JU , is semi-simple.

By Step 1 over KÃ, and rigidity of D-subgroups

of Ã, we have :

∂LA(x) = ∂`nA(y) for some y ∈ A(KU).

and it remains to show that

LA(K)/∂`nA(A(K)) ↪→ LA(KU)/∂`nA(A(KU)),

i.e. that we may take y ∈ A(K).
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The cocycle ξ̂y : JU → A
∂ : σ 7→ σy − y is a

group homomorphism. Since JU = [JU , JU ],
while A

∂ is abelian, ξy vanishes, so that in-
deed y is defined over K.

Conclusion

• This shows that just as P-V., Pillay’s the-
ory can (sometimes) cover relative situations.
Does the same hold of Malgrange’s theory ?

• The method works in other contexts, e.g.,
considering the differential equation

∂`n(y) = λ.∂`n(x)

on Gm, with λ ∈ C, λ /∈ Q :

if x1, ..., xn ∈ Gm(K) are multiplicatively inde-
pendent modulo Gm(C), then, xλ

1, ..., xλ
n are

algebraically independent over K = C(z).

For more general (Schanuel-type) results on
xλ, see work of M. Bayes, J. Kirby, A. Wilkie,
(arXiv: 0810.4457, 2008) and P. Kowalski
(Ann. PAL, 156, 2008, 96-109).
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