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I. AXx-Schanuel : how and why 7?

Ax (1970)
r = (x1,....,2n) € (C{{z1, .., ze}})"
Vi, yi(2) 1= exp(z;(2)) € C{{z1, .., 2t} }
w~y = exp(x) € (C{{z1, ..., 2} }*)"

Assume x non-degenerate, i.e.
Vm € Z™\ 0,mix1 + ... + mpxn & C.

Then, tr.deg.(C(x,y)/C) > n + rk(%)

If K =C(21,...,2), it suffices to show that

tr.deg.(K(x,y)/K) > n.
Choosing a sufficiently general curve in Ct,
it suffices to check it when t=1. So :

K = C(:)9,0 = &

(K,d) a differential extension, with K¢ = C

(z,y) € (K x K*)", £ non-degenerate. Then
Oy/y = 0x = deg.tr. K(xz,y)/K >n



. More generally (cf. Ax (1972))
e K =C(2)49,0=2% (K,0),K=C

o (5: commutativedzalgebraic group defined
over C, with no additive quotient:; typically,
G =G}, or G=A, an ab. var.

e SO, Lie algebra LG/C. Let x € LG(K) s.t.
for any proper algebraic subgroup H/K of G
x & LH(K) + LG(C).

e y = expg(z) € G(K) & Ing(y) = Irg(=);
= tr.deg.(K(z,y)/K) > dimQG.
Here

We assume :
x € K (exponential case, Lindemann-Weierstrass)
or
y € K (logarithmic case, Grothendieck conjecture)
but we allow
G non-constant, i.e. G/K.



Why 7?7

Bombieri-Pila-Wilkie-Pila-Zannier-Masser-
Pila-..., for instance :

Manin-Mumford (easier version): Let A/Q%9
be an abelian variety. An algebraic subvariety
X/Q9 of A passes through finitely many tor-
sion points of A, unless X contains a trans-
late of a non-zero abelian subvariety of A.

Strategy of the proof: : write A = R29/729,
sO the torsion points become rational points
in [0,1]%9 while X pulls back to a real an-
alytic variety X. By o-minimality, X meets
<< T€ rational points of denominator < T,
outside of the semi-algebraic subvarieties Z
it contains. But back to A, one point gen-
erates many by Galois action (Kummer for
Mordell-Lang), so their orders are bounded.

Requires a control of the Z in X .



expa(Z) C X provides an algebraic depen-
dence relation over C for the restriction of
the exp(x;) to Z and then, Ax forces the
Tz to be Z-lin dep., so Z must be “linear”
(“geodesic”), yelding a translate of abelian
subvariety of A in X.

Relative Manin-Mumford (Pink-type conj.):
a proper subscheme X /S of an abelian scheme
A /S meets finitely many of the torsion points
of the various fibers, unless it contains a
translate of an abelian subscheme.

Requires studying a non constant G/K.

Refs.

D. Masser, U. Zannier : Torsion anomalous
points and families of elliptic curves, CRAS
Paris 346, 2008, 491-494.

J. Pila : Rational points of definable sets
and finiteness results for special subvarieties,
Prep. 20090721



Connexions with other talks
Legendre-Gauss: (E) : n? = £(& — 1)(€ — 2)
over S = P71\ {0,1,00}. Then, w = %5 €
HO(E, lez/s) C Hi,(E/S) satisfies

L(w) = %d(#) =0¢c HI,(E/S)
where L:=z(1-2)%5 +(1-22)% 1.

For a section y(z) := (£(2),n(2)) € E(S), set:

EnE(y(z)> = /Y(Z) w = x(z) € LieE(S5).

©.@)
On torsion sections,

y(z) = (1,0) = x(2) = 7F(3,3,1;2);
y(2) = (2,0) ~ irF(3,3,1;1 - 2);
% gives F(—3,%,1,2), etc ....
~ Frits’s talks.
On a general section,

L(x(z)) € O(S) c C(S) c K"l Call this u(y(z)).
So, x(z) satisfies the inhomogeneous LDE:
L(x(z)) = p(y(2))
But u is also related to the non linear Painlevé
VI equation
~ GQuy’s talks.
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P VI

d2£111 1  de, 1 1 1 d¢
dz? E(E 5—1+§—z)(dz) _(;_I_z—l_l_f—z)dz

£ —1)(€ —2) z—1 z(z—1)
PG Pt ety
For any (K,0 =') over (K, d/dz)
w: E(K) — Ge(K)
1 n Y, /
n(y) = 2 _ Z)Q-I-(Z(l—z)g) +2(1-2 P ;

R. Fuchs rewrote PVI as:
2(1 - 2)u(y) = an+ 5?55% + (2 — 1)#
+(5 T %)Z(Z o 1)(5_72)2
Set 2 = z(7) (Legendre's \), & ~ 01, T}(g‘)

Then, w~ d(, qu 2-tor. ~ €;,a’s ~ K;,
and PVI reads: find C(T) € LieE(5%) s.t.

giC — 47r2 Z ’%@{1,7-}(@ + ).

Exercises : i) rewrite in terms of ¢ = €277
~ Jacques & Lucia’s talks.

i) replace C by C, (cf. Coleman)
~ Bruno’s talks.
7



II. Picard-Vessiot & Kolchin

(K,d) : a diff. field with K9 = C alg. closed.
(K,d) : a fixed differential closure, K9 = C.
G/C . a connected algebraic group (possibly
non commutative), say G C GLn/C.
Then, 0 extends to a derivation
Da : K[G] — K[G]
respecting the group structure : Dg = 0 on
the coordinates functions of G/C.
For y € G(K),TyG ~ LG. Pulling 9y € TyG to
14 by translation by y, we get the logarithmic
derivative on G
afnG G — LG.
G C GLy ~ dngy = Oy.y~ L.

E.g., Ofng, y = %, while dfng y = Jy.

Given a € LG(K), P-V. theory studies the
differential extension K(y)/K, where y is a
(any) solution in G(K) of
oUng(y) = a,
and its Galois group
Auty(K (y)/K) = Ja(C) C G(C).



In general, d¢ngo(ww) = Mngu+u(dnov)u™1,
n(u1v) = w1 (=0nu + dtnv)u.
So: i) K(y) depends only on the orbit of a
under the action of v € G(K). Namely, if
ofny = a, then, § = wy satisfies 0/n(y) = a,
where @ = d¢nu + uau™1, and K(y) = K (7).
. i) Vo € Auty, oy = y.p(0), p(o) € GI(K),
Here GY9(K) = {g € G(K),8¢ng = 0} = G(C).
Thm. : Im(p) = Jo(C), where J,/C is an
algebraic subgroup of G/C; there is a Galois
correspondence (e.g., K(y)’+(C) = K); and
tr.deg.(K(y)/K) = dim(Jy).

How to compute (J,)° ? From the Gospel,
Michael 1.31.(1) & Marius 1.31.(2), we get:

Thm. : assume K alg. closed. Then, J, iIs
a minimal algebraic subgroup J/C of G such
that LJ(K) meets the orbit of a under G(K).

Assume a non degenerate : for any proper
algebraic subgroup H C G, the G(K)-orbit of
a does not meet LH(K). Then J, =G.
If G is abelian, a ~ a@ € LG(K)/0naG(K),
hence

e Kolchin's theorem on G},

e Ostrowski’'s theorem on GJ.



III. D-groups and Pillay’s theory

(K, ) :alg. closed diff. field with K9 = C.
(K,d) : a fixed differential closure, K9 = C.
G/K : a connected commutative algebraic
group over K. Say GG is commutative.
Assume that 0 extends to a derivation
Da : K[G] — K[G]
respecting the group structure (we then say
that G is a D-group). Equivalently, the twisted
tangent bundle
O— LG —T5G — G —0

admits a regular section s : G — T5G.
For y € G(K),0y € (TyG)y, so Dy yields a
logarithmic derivative on GG :

OMngs: G — LG :yw— 0y —s(y).

Given a € LG(K), Pillay's theory studies the
differential extension K(y)/K, where y is a
solution in G(K) of

olng(y) = a,
and its Galois group Autyg(K(y)/K). To avoid
“new constants”, we request that

G is “K-large : G9(K) = GY(K)
where G9(K) = {g € G(K), dlnzg = 0}.
10



. Since dng(uv) = dngu + Obnaw,

i) K(y) depends only on the class of a in
Coker(0fng, K) := LG(K)/0tng(G(K)).
i) Vo € Auty, oy =y + £(0),£(0) € GI(K),
Thm.: Im(¢) = N2(K), where Ny/K is a
connected algebraic D-subgroup of (G/K,s);
there is a Galois correspondence (in particu-
lar, K(y)NeE) = K): and

tr.deg.(K(y)/K) = dim(Nyg).

How to compute N, 7 Going to G/Ng,, we
get :

Thm.: Ngisaminimal algebraic D-subgroup N
of (G, s) such that a lies in LN(K)40¢noG(K).

Assume a non degenerate : for any proper
algebraic D-subgroup H C G, a + 0lngG(K)
does not meet LH(K). Then Ng = G.
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Example : D-modules

G = V/K, with s(y) = By,B € Hom(V,V).
Then, aﬁnv = av V- LV ~V

y — Oy (y) = 0y — By.
So, (V,s) is “large” only over the alg. closure
K p) of the P-V field Ky = K(V(%)).
Given a € (LV = V)(K), we study the DE

Ooyy = a, t.e. Oy — By = a.

Its Galois group Galy(K(y)/K) = (No)2(K) is
a C-subspace N9 of V9, where N is a minimal
K-vector subspace of V ® K stable under 0y,
such that v € 9y (V(K)) + N(K).

Actually, N must then be defined over K
(see Part V). Moreover, if V is completely
reducible over K, one can speak of the min-
imal D-submodule N satisfying these prop-
erties; furthermore, they then automatically
descend to K. So, in this “pure” case, N is
the smallest D-submodule of V over K such
that v € 9y (V(K)) + N(K).

Abelian varieties provide another example of
“pure” algebraic D-groups, and we will now
restrict to this case.

12



e K =C(5);0 e HOS,TS): a vector field;

e m. G — S : agroup scheme; e = 0-section,
e LG : the pull-back e*(TG|S) of the relative
tangent bundle of G over S.

e At the generic point of S, we get G/K, with
(relative) tangent bundle TG ~ G x LG

e The (full) tangent bundle TG of G sits in
an exact sequence

O—>TG|S—>TG—>7T*(TS)—>O

of vector bundles over G, and is also a group
scheme over T'S. When t runs through S, its
fibers (T'G); ,) vield a group scheme TyHG
over S, whose generic fiber is the twisted
tangent bundle T3G/K.

e A section x of G/S provides a section x«(0)
of TG /S, written Ox at the generic point.

e Viewed over K, TyG is a group extension
of G by LG,

e Viewed over G, T3G is a torsor under LG,
whose class in HY(G,TG) is given, in the
proper case, by the Kodaira-Spencer map.

13



IV . Interlude : Kummer theory
e K = number field, K = algebraic closure.

e A = an abelian variety over K, dimA = g.
Set End(A/K) = End(A/K) := O.

e yc A(K). Assume that y generates A, i.e.
Z.y is Zariski closed in A < Annp(y) = 0.

Following the elliptic work of Bashmakov and
Tate-Coates (~ 1970), we have :

Theorem K : there exists c = c(A,K,y) >0
such that for all n > 0, [K(Ly) : K] > en?9.

Refs.: K. Ribet : Duke math. J. 46, 1979,
745-761;

D.B.: Proc. Durham Conference 1986, “New
advances in transcendence theory”, ed. A.
Baker, CUP 1988, 37-55.
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o Ator = UnAln], Koo = K(Ator)

o Loo = UnKoo(Gy), Ly = UmKoo(my)-

o Too(A) :=proj.limn Aln] = NyepTy(A)

We will actually prove that Gal(Leo/Kx) IS
isomorphic to an open subgroup of Teo(A),

or equivalently (Nakayama) :

i) for all primes /¥, Gal(L(@/Koo) iS an open
subgroup of Ty(A) ~ Z?g;

i) for almost all ¢, Gal(Koo(3y)/Koo) =~ A[].

K

|

| }N — Aln] >~ (Z/nZ)%9
Koo P

| P o= GL(Tx(A))
K

&y(0) =0(iy) — py,  &y(ror™1) = 7(&y(a)).

15



Proof (in the mod /¢ case)

1. Galois theoretic step .
(Of necessity, base extension to Ko ~~ A
becomes “Kso-large” for the morphism [£] 4.)

Im(&) ~ N is a J-submodule of A[f]. As-
sume N #= A[f]. Then Ja € O,a & O s.t.
a.y is divisible by £ in A(Ko).

2. QGalois descent

There exists ¢g(A, K) such that V¢ > ¢y , if

a point ¢’ € A(K) is divisible by ¢ in A(Ko),

then, ¢/ is already divisible by ¢ in A(K), i.e.
A(K) JLAK) — A(Koso) /L. A(Kxo)

3. (Diophantine) geometric step

There exists 1 (A, K,y) such that a.y € £.A(K)
with ¢ > ¢1 implies a € £.0.

16



Proof of 1.

- A[f] is a semi-simple J-module (Faltings),
so there exists ay € Endj(A[f]) Killing N.

- Endj(A[f]) ~ End(A) ® F, (Faltings), so ay
yields a € O, a & O Killing N.

- €ay = afy, SO, ya.y is fixed by N.

Proof of 2.
7 — A(K)/LAK) — A(Kxo)/l.A(Kxo)
| | |

HY(J,Al) — HY (Mg, Al) — HY Mg, Al
Serre’s result on homotheties and Sah’s lemma
imply H1(J, A[¢]) = 0 for large ¢.

Proof of 3.

Mordell-Weil (or a trick of Cassels’'s), both
based on heights.

[Similar arguments in the ¢-adic case.]

17



V. Logarithms on abelian schemes

o K = C(S) or C(8)%9, S/C = smooth affine
curve, & = a derivation on K with K9 = C,

.

K = diff. closure, U4 = univ. domain.

e A/K, coming from an abelian scheme A —
S. Ag = its K/C-trace. Its universal exten-
sion A has dimension 2g :
0—-Wy —-A-TA—-0
Exponential sequence :
0 — TgA — LA —erp fan _, (

o yc A(K), generating A, i.e. : VH C Ay ¢
H + Ay(C). Chose ¢n(y) € exp~1(y). Then :

Theorem L (André, 1992)
tr.dg.(K(¢n(y))/K) = 2g.

18



A has a structure of algebraic D-group, with
(‘%n;‘ . A — LA
Gauss-Manin connection :
Or g =0lnzoexp: LA — LA

So /n(y) ~ z € LA(K) solution of the inho-
mogeneous LDE : 9; z(x) = 9¢n zy.

e K; x = K(Tp(A)) = Picard-Vessiot exten-
sion for 6LA~(—) — 0, with solution space
(LA)? = Tg(4A) @ C ~ C29.

We will actually prove that
Gala(KLg(ﬁn(y))/KLg) = (LA)a-

K
|
K; 7(Un(y)) &y
| IN < (LA)?
Ky 1 P
| VJ — GL((LA)?)
K

&y(o) = o(n(y)) —In(y), &(ror™ 1) = 7(&y(0)).

19



Proof (in a ‘'generic’ case)

By Deligne, LA is a semi-simple D-module.
For simplicity, suppose that it is irreducible.

1. Galois theoretic step .
(Of necessity, base extension to Ky 3 ~ LA
becomes “K; z-large” for the morphism [exp] z.)

Im(&y) ~ N is a J-submodule of (LA)?. As-
sume N # (LA)?. Then N =0,z € LA(K; z)
and

8£nA~y = 61“4(33) c 8[“4 (LA(KLA'")).

2. QGalois descent

If a point z € LA(K) lies in aLA(LA(KLA))'
then, z already lies in 9; z(LA(K)), i.e.

Coker(0; z, LA(K)) — Coker(9; z, LA(KLA))
Indeed, J is reductive, so H(J, (LA)?) = 0.
3. Geometric step

Manin’'s theorem : if 0¢nzy = 0; 5(x) for
some z € LA(K), theny € W4+ Ag(C)+ Az

20



VI. Exponentials on abelian schemes

As in V,
K =C(9), 0, A/K, Ay/C, A.
0 — TgA — LA —erp fan _, (

e xr ¢ LA(K), generating LA, i.e. : VH C
A,x ¢ LH+ LAg(C). Then :

Theorem E (Be-Pillay, JAMS, 2017)
tr.dg.(K(exp(z)/K) = 2g.

As in V, we have
8€nA~A—>LA
8LA=8€nAoeajp:Lﬁ—>LA.

So exp(z) ~ y € A(K) solution of the inho-
mogeneous NLDE : d¢n 3(y) = 0; zz.

Let K ; be the differential extension of K gen-
erated by all points in

A9 = {z ¢ A(K),0tn z(z) = 0.}

21



Using

e Pillay’'s Galois theory
. e |+ a Galois descent ,
we will actually prove that

Galg(K z(exp(z))/K 7) ~ A9

A~

K
K z(exp(x)) §x 3
N — A9
K x p
W o Aut(A9)
K

(o) = o(exp(z)) — exp(x).

In generic cases (e.g. when the Kodaira-
Spencer rank of A/S is maximal, e.g. when
LA is irreducible),

K:=K:

the D-group A is K-large, and no descent is
required ! We then merely need :

22



1. Galois theoretic step

Im(&:) ~ N = H9 for some algebraic D-
subgroup H of A. Assume H # A. Then
there is a non trivial D-quotient 7 : A — A
sending = to ¥ € LA(K), with

0;#(T) = dn(7) for some j € A(K).

3. Geometric step

If A~ B for some abelian variety quotient B
of A, just apply Manin’'s theorem:
T € LW+ LBg(C), so z cannot generate LA.

The general case requires Chai’'s sharpening
of Manin’'s theorem.

That A ~ B happens automatically when Wy
contains no non trivial D-subgroup. When
Ag = 0, this is equivalent to A being K-large.
In general,

23



2. Galois descent in Pillay’s theory

Write K for K, and let U be the maximal
D-subgroup of A (equivalently D-submodule
of LA) contained in Wy.

O—-U A— A 0.

e Hrushovski-Sokolovic, Marker-Pillay = A is

K-large : A2(R) = A%(K).

e Manin-Chai = A%(K) = Ao, + Ag(C).

e 0—UYR)— AYR) - A%(R) — 0.

T herefore

K7 = Ky is a P-V extension of K
and J = Galg(K 3/K) :=Jy is a

factor of the reductive group J = Galsp(K; 7/K).
Actually (Deligne), J, hence Jy, is semi-simple.

By Step 1 over K 3, and rigidity of D-subgroups
of A, we have :
0;7(T) = dn(7) for some 57 € A(Ky).
and it remains to show that
LA(K)/0tn5(A(K)) — LA(Ky)/0tnz(A(Ky)),
i.e. that we may take y € A(K).
24



The cocycle gg C Jp — A% o+— oy — 1y IS a
group homomorphism. Since Jy = [Jy, Jyl,
while A2 is abelian, & vanishes, so that in-
deed 7 is defined over K.

Conclusion

e [ his shows that just as P-V., Pillay’'s the-
ory can (sometimes) cover relative situations.
Does the same hold of Malgrange's theory ?

e T he method works in other contexts, e.g.,
considering the differential equation

n(y) = X.0¢n(x)
on Gm, with A e C,A ¢ Q :

if z1,...,zn € Gy (K) are multiplicatively inde-
pendent modulo G, (C), then, z7,...,z; are
algebraically independent over K = C(z).

For more general (Schanuel-type) results on
., see work of M. Bayes, J. Kirby, A. Wilkie,
(arXiv: 0810.4457, 2008) and P. Kowalski
(Ann. PAL, 156, 2008, 96-109).
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