Lucia Di Vizio

September 25th, 2009

q-difference equations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 • ���?

- 3 Analogy between the p-adic and the differential setting
 - For *p*-adic differential equations
 - For q-difference equations
 - Example $2x^2$
- 5 Small divisor problem
 - Diophantine assumption on q
 - Relative small divisor problem
- (6) Analytic classification with |q| = 1
 - Picard group
 - Isomorphisms with the associated graded modules
- Modules with only the zero slope • Carcaterisation of the objects of \mathcal{B}_{a}^{Dio}
 - Essential singularity

< ロ > < 同 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

q-difference equations Landscape

q-diff. equa./ \mathbb{C} , |q|
eq 1

q-difference equations

q-difference equations Landscape

$$q$$
-diff. equa./ \mathbb{C} , $|q| \neq 1$ $\uparrow \cong$ p -adic q -diff. equa., $|q| \neq 1$

q-difference equations

(日) (四) (王) (王) (王)

diff. equa./
$$\mathbb{C}$$

 \uparrow
 q -diff. equa./ \mathbb{C} , $|q| \neq 1$
 \uparrow
 p -adic q -diff. equa., $|q| \neq 1$

$$p$$
-adic q -diff. equa., $|q| = 1$
 $\equiv \downarrow$
 p -adic diff. equa.

diff. equa./
$$\mathbb{C}$$

 \uparrow
 q -diff. equa./ \mathbb{C} , $|q| \neq 1$
 \uparrow
 p -adic q -diff. equa., $|q| \neq 1$

$$q$$
-diff. equa./ \mathbb{C} , $|q|=1$

p-adic q-diff. equa.,
$$|q| = 1$$

$$= \oint \\ \rho\text{-adic diff. equa.}$$

$$\begin{array}{c} \text{diff. equa.}/\mathbb{C} \\ & \uparrow \\ \hline \\ \hline \\ q-\text{diff. equa.}/\mathbb{C}, \ |q| \neq 1 \\ & \uparrow \\ \hline \\ \hline \\ p-\text{adic } q-\text{diff. equa.}, \ |q| \neq 1 \\ \hline \\ \hline \\ p-\text{adic } q-\text{diff. equa.}, \ |q| = 1 \\ & = \uparrow \\ \hline \\ \hline \\ \hline \\ p-\text{adic diff. equa.} \\ \hline \end{array}$$

q-difference equations Landscape

q-difference equations

(日) (部) (E) (E) (E)

・ロット (雪) (日) (日)

Ð.

Analogy between the p-adic and the differential setting For p-adic differential equations

Let
$$a \in \mathbb{Z}_p \smallsetminus \mathbb{Z}$$
.

$$x\frac{d}{dx}\circ\left(x\frac{d}{dx}-(a+x)\right)y(x)=0$$

Solution:

$$y(x)=\sum_{n\geq 0}rac{x''}{(1-a)_n}\in \mathbb{Q}_p[[x]]\,,$$
 where $(1-a)_n=(1-a)(2-a)\cdots(n-a).$

\mathbb{Z} is dense in $\mathbb{Z}_p \Rightarrow \exists a \in \mathbb{Z}_p$ s.t y(x) is divergent

Rmk. a is an exponent

q-difference equations

Analogy between the p-adic and the differential setting For q-difference equations

Let
$$q, \alpha \in \mathbb{C}$$
, $|q| = |\alpha| = 1$, $d_q f(x) = \frac{f(qx) - f(x)}{(q-1)x}$

$$xd_q \circ \left(\alpha q^{-1}xd_q + \frac{\alpha q^{-1} - 1}{q - 1} - x\right)y(x) = 0$$

$$y(x) = \sum_{n\geq 0} \frac{(1-q)^n x^n}{(\alpha;q)_n},$$

where
$$(\alpha; q)_n = (1 - \alpha)(1 - q\alpha) \cdots (1 - q^{n-1}\alpha)$$
.

Remark:

- When $|\alpha| = |q| = 1$ this series may diverge.
- $\alpha^{-1}q$ is an exponent.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example

$$q\in\mathbb{C}$$
, $|q|=1$, $\mathsf{K}=\mathbb{C}(\{x\}).$

The series

$$\Phi(x) = \sum_{n\geq 0} \frac{(1-q)^n x^n}{(1-q\lambda)\cdots(1-q^n\lambda)},$$

 $\lambda \in \mathbb{C}^*$, $\lambda
ot \in q^{\mathbb{Z}_{<0}}$, is solution of

$$\mathcal{L} = (\sigma_q - 1) \circ [\lambda \sigma_q - ((q - 1)x + 1)]$$
 .

The modules associated to $\mathcal L$ is analytically isomorphic to:

$$\begin{array}{cccc} \mathbf{K}^2 & \longrightarrow & \mathbf{K}^2 \\ \mathbf{y}(x) & \longmapsto & \begin{pmatrix} 1 & 0 \\ 0 & \lambda^{-1} \end{pmatrix} \mathbf{y}(qx) \end{array}$$

if and only if $\Phi(x)$ is convergent (\rightarrow diophantine condition).

q-difference equations

э

q-difference equations Small divisor problem Diophantine assumption on q

$$e_q(x) = \sum_{n \geq 0} rac{x^n}{(q;q)_n}$$
 is solution of $y(qx) = (1+x)y(x)$

It may have radius of convergence between 0 and 1

For any $r \in [0, 1]$ there exists $q \in \mathbb{C}$, |q| = 1, not a root of unity, such that the radius of convergence of $e_q(x)$ is equal to r.

$$\log e_q(x) = \sum_{n \ge 1} \frac{(-1)^{n+1}}{n(1-q^n)} x^n \qquad (\mathsf{Hardy-Wright})$$

For a complete study of $e_q(x)$; cf. Lubinsky, 1998.

(ロ) (部) (注) (注) (注)

q-difference equations Small divisor problem Diophantine assumption on *q*

$$E_q(x) = \sum_{n\geq 1} rac{(q;q)_n}{(1-q)^n} x^{n+1}$$
 is solution of $x^2 d_q y(x) - y(x) = -x \, .$

It converges for |x| < |1 - q|, independently of the choice of q.

Hint. A weak version of the equidistribution criteria allows to prove that

$$\limsup_{n\to\infty} |(q;q)_n|^{1/n} = 1;$$

cf. Driver-Lubinsky-Petruska-Sarnak, 1991.

q-difference equations Small divisor problem Relative small divisor problem

The series

$$\Phi(x) = \sum_{n\geq 0} \frac{(1-q)^n x^n}{(1-q\lambda)\cdots(1-q^n\lambda)},$$

 $\lambda \in \mathbb{C}^*$, $\lambda
ot \in q^{\mathbb{Z}_{<0}}$, solution of

$$\mathcal{L} = (\sigma_q - 1) \circ [\lambda \sigma_q - ((q - 1)x + 1)],$$

can have any radius of convergence in [0, 1].

Lemma $\Phi(x) = (1 - \lambda) \left(\sum_{n \ge 0} \frac{x^n}{(q;q)_n} \right) \left(\sum_{n \ge 0} q^{n(n+1)/2} \frac{1}{(1 - q^n \lambda)} \frac{(-x)^n}{(q;q)_n} \right)$

q-difference equations

・ロト ・聞ト ・ヨト ・ヨト

Э

q-difference equations Small divisor problem Relative small divisor problem

The series $\sum_{n>0} (\lambda; q)_n x^n$, solution of

$$(\sigma_q-1)\circ(x\lambda\sigma_q-(x-1))\,y(x)=0\,,$$

is always convergent of radius of convergence \geq 1.

cf. Driver-Lubinsky-Petruska-Sarnak, 1991, and Petruska, 1992.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

```
q-difference equations
Analytic classification with |q|=1
Picard group
```

Analytic classification with |q| = 1

 \mathcal{B}_q = category of q-difference modules over $\mathbf{K} = \mathbb{C}(\{x\})$. $\widehat{\mathcal{B}}_q$ = category of q-difference modules over $\widehat{\mathbf{K}} = \mathbb{C}((x))$.

Proposition (Soibelman-Vologosky)

If $e_q(x)$ is convergent, then

$$\mathsf{Pic}\,(\mathsf{K},\sigma_q)=\mathsf{Pic}(\mathcal{O}(\mathbb{C}^*,\sigma_q)=\mathbb{C}^*/q^{\mathbb{Z}} imes\mathbb{Z}\,.$$

q-difference equations

イロト 不良と 不良と 不良と 一世

Analytic classification with $|m{q}|=1$

Isomorphisms with the associated graded modules

Let
$$\mathcal{M} = (M, \Sigma_q)$$
 be an object of \mathcal{B}_q , having Newton polygon $\{(\mu_i, r_i) : i = 1, \dots, \kappa\}.$

Theorem (DV)

If $e_q(x)$ is convergent, then the q-difference module \mathcal{M} can be decomposed in a direct sum:

$$\mathcal{M}=\mathcal{M}_1\oplus\mathcal{M}_2\oplus\cdots\oplus\mathcal{M}_\kappa\,,$$

such that the Newton polygon of \mathcal{M}_i has only the slope μ_i and rank r_i .

Remark. Notice that if $\mu_i \in \mathbb{Z}$ then $\mathcal{M}_i \otimes_{\mathbf{K}} \hat{\mathbf{K}}$ admits a basis \underline{e} such that $\Sigma_q \underline{e} = \underline{e} A x^{-\mu_i}$, with $A \in Gl_{\nu}(\mathbb{C})$.

イロト イロト イヨト イヨト 三日

q-difference equations Analytic classification with |q| = 1Isomorphisms with the associated graded modules

 \mathcal{B}_q^f = full subcategory of \mathcal{B}_q containing the objects whose Newton polygon has only the zero slope.

Corollary

If $e_q(x)$ is convergent, then \mathcal{B}_q is equivalent to the category of \mathbb{Q} -graded objects of \mathcal{B}_q^f .

イロト イロト イヨト イヨト 三日

Modules with only the zero slope

Problem

Some isoanalytic classes correspond 1 : 1 to their isoformal classes. Which one?ls this phenomenon generic?

q-difference equations

Modules with only the zero slope

$$\mathcal{M} = (M, \Sigma_q) \in \mathcal{B}_q$$
 with N.P. $\{(\mu, r)\}$ and $\mu \in \mathbb{Z}$
 $\Rightarrow \exists \ \underline{e}$ basis of $\widehat{\mathcal{M}} = \mathcal{M} \otimes_{\mathbf{K}} \mathbb{C}((x))$ s.t.

$$\Sigma_q \underline{e} = \underline{e} rac{A}{\chi^{\mu}} \,, \, \, ext{with} \, \, A \in \mathit{GL}_r(\mathbb{C}) \,.$$

 $\Lambda = \{\lambda_1, \dots, \lambda_r\}$ = eigenvalue of A, called exponents.

If $\mu \in \mathbb{Q}$ then $r\mu \in \mathbb{Z}$ and we can reduce to the previous situation by extending the scalars to $K(x^{1/r'})$, for some r' dividing r. In this way we can still define the set Λ .

Consider:

$$\Phi_{\mathcal{M}}(x) = \sum_{n \ge 1} \left(\prod_{\substack{\lambda_i, \lambda_j \in \Lambda \\ \lambda_i/\lambda_j \notin q^{\mathbb{Z} \le 1}}} \frac{1}{(1 - q\lambda_i/\lambda_j)(1 - q^2\lambda_i/\lambda_j)(1 - q^n\lambda_i/\lambda_j)} \right) x^n$$

q-difference equations

・ロト ・四ト ・ヨト ・ヨト

Let \mathcal{B}_q^{Dio} the full subcategory of \mathcal{B}_q of the objects are direct sum of isoclinic objects \mathcal{M} such that $\Phi_{\mathcal{M}}(x)$ is convergent.

Theorem

The category \mathcal{B}_q^{Dio} is the largest full subcategory of \mathcal{B}_q such that the scalar extension $-\otimes_{\mathbf{K}} \widehat{\mathbf{K}}$ induces an equivalence of category with its essential image in $\widehat{\mathcal{B}}_q$.

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

q-difference equations Modules with only the zero slope Carcaterisation of the objects of \mathcal{B}_{q}^{Dio}

Simple objects of \mathcal{B}_{q}^{Dio} :

- rank one modules associated with equation of the form: $y(qx) = \frac{\lambda}{x^{\mu}} y(x), \ \lambda \in \mathbb{C}^*, \ \mu \in \mathbb{Z}.$ Isomorphism class: $\rightarrow (\lambda q^{\mathbb{Z}}, \mu).$ (simple objects of slope μ)
- K-modules obtain by restriction of scalars $\mathsf{K} \hookrightarrow \mathsf{K}(x^{1/r})$ from rank 1 $q^{1/r}$ -modules associated to the equation: $y(q^{1/r}x^{1/r}) = \frac{\lambda}{x^{\mu/r}}y(x^{1/r}), \ \lambda \in \mathbb{C}^*, \ \mu \in \mathbb{Z}, \ (\mu, r) = 1.$ (simple objects of slope $\mu/r \in \mathbb{Q}$)

Modules with only the zero slope Carcaterisation of the objects of \mathcal{B}_{a}^{Dio}

Indecomposable objects of \mathcal{B}_{q}^{Dio} :

Iterated nontrivial extensions of simple a object by itself.

- **Remark.** This is the analogue for |q| = 1 of:
- 1. van der Put-Reversat,2006, for $|q| \neq 1$
- 2. Soibelmann-Vologodsky, 2003, formal case, q not a root of unity.

(ロ) (部) (注) (注) (注)

ightarrow Extension of scalars to $\mathcal{O}(\mathbb{C}^*)$ ightarrow fiber bundles on elliptic curves:

- $|q| \neq 1$:
 - Baranovsky-Ginzburg (1996)
 - 2 Sauloy (2004)
 - 3 van der Put-Reversat (2006)
- |q| = 1:
 - Polishchuk-Schwarz (2002, ...)
 - Soibelmann-Vologosky (2003)
 - Mahanta-van Suijlekom (2008)