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Theorem[Holder, 1887] The Gamma function I'(x + 1) = x['(x) does not
satisfy a polynomial differential equation.
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Ex: For I'(x), L() = g(x + 1) — g(x)???



Theorem([lshizaki, 1998] Let (a, b) € C(x)* x C(x), g € C*, |q| # 1 and
let z(x) ¢ C(x) meromorphic over C, solution of the equation

z(gx) = a(x)z(x) + b(x). (1)

Then, z(x) is not differentially algebraic over the field of g-periodic
functions.
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z(x) meromorphic over C* and satisfies (1).
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Theorem[H.- Singer, 2007] z(x) differentially algebraic iff a(x) = cx" and
b=oq4(f) — af, for f € C(x) if a# q", or
b= o4(f) — af + dx", for f € C(x), d € C if a = q" where r € Z.
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k-field, o-automorphism.
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Difference equation : o(Y) = AY, A € Gl,(k).
Decomposition ring : k[Y, ﬁm] Y = (y;j) indet., o(Y) = AY,

M ideal 0 — maximal.

o-Picard-Vessiot Ring R = k[Y, ﬁ(y)]/M = k[Z, de%(Zﬂ
e M is radical => R is reduced
o If C =k ={c€ kloc=c}is alg. closed => R is unique and
R =C
Ex:
k=C,o(y)=—y

R=Cly, il/(ﬁ 1)
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o-Galois group:
Gal,(R/k)={¢:R—R:¢isa o —k— automorphism}

Ex.

k=C,o(y)=—-y=>R=Cly, %]/(y2 —1)

Gal, = Z/27Z

a(y)—yzﬁfek:>o—<(1J )1’>:<(1) i)((l) {)

p€Gal, =>¢(y) =y +cgp,cp €C
Gal, = (C,+) ou = {0}



o ¢ € Gal,,0(Z2) = AZ => ¢(Z) = Z[¢], [¢] € GL,(C)
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o ¢ € Gal,,0(Z2) = AZ => ¢(Z) = Z[¢], [¢] € GL,(C)
Gal, — GL,(C) and the image is Zariski closed.

Gal, = G(C), G a lin. alg. group /C

e R = coordinate ring of a G-torsor
RGal,, — k

dim(G) = Krulldimy(R)(= trans. degree of fraction field)



The structure of Gal, measure the algebraic relations between the
solutions
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Ex. fi,....,fy € k, k a difference field with an alg. closed field of constants

oyi)—=y1 = h

U()/n) —-Yn = f
Picard-Vessiot Ring= K|y, ..., a]

Prop v1,...,y, alg. dep. over k if and only if

Jdg € k and a linear form with constant coeff. L t.q. L(y1,....,¥n) = &

(equiv.,c1fi + ... + cofy = 0(g) — &)

1
1£g(x+1)—g(x) => y(x) is not algebraic over C(x)
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Linear differential algebraic groups

(k,d) = a differential field differentially closed

Definition: A sub-group G C GL,(k) C k™ is a linear differential
algebraic group if it is Kolchin-closed in GL,(k), i. e., G is the sub-set in
GL,(k) of the zeros of a collection of differential polynomials in n?
variables.

Ex. Every algebraic group defined over k.

Ex. Let C = Ker(¢d) and let G(k) a linear algebraic group defined over k.
Then G(C) is a linear differential algebraic group (add the differential
equations {dy;; = 0}];_;!)



Ex. Differential sub-groups of G?(k) = (k",+)
The linear differential algebraic sub-groups are of the form

Gt ={(z1,.... z4) € K"|L(z1, ..., z) = 0,VL € L}

where L is a set of linear homogeneous differential polynomials.



Ex. H is a Zariski-dense proper differential sub-group of G C GL,(k), a
simple algebraic group , defined over C = Ker(6)

—> Jg € GLy(k) t.q. gHg L = G(C), C = Ker(5).
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Ex.
C(x) U(X):X—Fl,d—a

d

o(x) = gx, 5_xa

0
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Difference equations: o(Y) = AY, A € GL,(k)
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Differential Galois theory of linear difference equations

— a field, o- an automorphism, d-a derivation s.t. ¢d = do

Ex.

d
o(x )—qxd_xa

C(x,t) Ux:x—i—l,(?:%

= AY, A € GLy(k)

Difference equations: o(Y)
KLY, 6Y .82V, ..., g

Decomposition Ring: k{Y, ﬁm}
Y = (y; ;) differential indeterminate
a(Y)=AY,c(dY) = A(0Y) + (A)Y

M = ¢ — maximal ideal

o0-Picard-Vessiot Ring= R = k{Y, det }//\/I k{Zz ’detl(Z)}
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k — o8 — field
o(Y) =AY, A € GLy(k)
1

R=HKZ, gy

— 00 — Picard-Vessiot ring

e R is reduced

o If C = k% ={c € klo(c) = c} is differentially closed => R is
unique and R? = C.
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od-Galois group:

Gal, 5(R/k) ={¢:R—R:¢isa odk — automorphism}

o ¢ € Galys,0(Z) = AZ => ¢(Z) = Z[4], [¢] € GLn(C)

Galys — GL,(C) and the image is Kolchin closed.
Galy,s = G(C), G a linear differential alg. group /C

o Gal,s is Zariski dense in Gal,

e R = coordinate ring of a G-torsor

_ RGalm; — k
- If G is connected. Then
diff .dimc(G) = diff .tr.degi(F)(where F=fraction field of R)
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Differential relations between the solutions of a linear difference equation
Groups measure differential relations

k — 0d — corps, C = k7 differentially closed.

Differential sub-groups of GZ(k) = (k",+) are given by
Gt ={(z1, ..., z0) € k"|L(z1, ..., 2,) = 0, VL € L}

where L is a collection of homogeneous linear differential polynomials.

I

Proposition Let R a od-Picard-Vessiot ring, extension de k containing
Z1,...,Zp S.t.
o(z)—z=Ffi=1,..n.

where f; € k. Then z, ..., z, are differentially dependent over k iff there
exists an homogeneous linear differential polynomial L over C s.t.

L(z1,...,zn) = g,8 € k

or equivalently, L(f,....,f,) = o(g) — &.



Corollary Let fi, ..., f, € C(x), o(x) = x+1, 6 = & and let z, ..., z, s.t.
o(z;))—z=Ff,i=1..n.

where f; € k. Then zi, ..., z, are differentially dependent over F(x) (F is
the field of 1-periodic field) iff there exists a linear differential polynomial
L over C s.t.

L(z1,...,2zn) = g,8 € C(x)

Equivalently, L(f;, ..., f,) = o(g) — &.

-Similar results for g-differences oy; = f;y;
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The I function is hypertranscendent

z(x) = ["(x)/T (x) satisfies o(z) —z =1

If z(x) satisfies a differential polynomial equation then

EILE(C[ ]ge(C(x)st L() g(x+1)—g(x)

L(1) has a pole => g(x) has a pole
If g(x) has a pole, then g(x + 1)
L($) has exactly one pole.

X =

— g(x) has at least two poles but



Let H be a proper, Zariski-dense differential sub-group of G C GL,(k), a
simple algebraic group defined over C

=>3g € SL,(k) s.t. gHg™* = G(C), C = Ker(¥).




Let H be a proper, Zariski-dense differential sub-group of G C GL,(k), a
simple algebraic group defined over C

=>3g € SL,(k) s.t. gHg™* = G(C), C = Ker(¥).

I

Proposition Let A € Gl,(k). If the o-Galois group of o(Y) = AY is a
simple linear algebraic group, non-commutative of dimension t. Let
R=k{Z, ﬁ(z)} the 06-P.V. ring.

The differential trans. degree of R over k is strictly smaller than t

(i
3B € gly(k) t.q. o(B) = ABA™! + §(A)A™!
(in that case (6Z — BZ)Z™* € gl,(k7))
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Comments

e General Theory: Integrable Systems of Equations w.r.t.
Z = {0'1, ceey 0’,}7 A = {81, ...,(95}

and differential dependency w.r.t a set of auxilliary derivations
(5].7 eeey 6t-

e Isomonodromy <=> group defined over the constants

e Inverse Problem



