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Theorem[Holder, 1887] The Gamma function Γ(x + 1) = xΓ(x) does not
satisfy a polynomial differential equation.

Theorem[H. , 2005 ] Let b1(x), ..., bn(x) ∈ C(x) and let u1(x), ..., un(x)
be n non zero functions, meromorphic over C s.t.

ui (x + 1) = bi (x)ui (x), for all i = 1, ..., n.

The functions u1, ..., un are algebraically differentially dependent over the
field of meromorphic 1-periodic functions if and only if there exists a non
zero linear homogeneous differential polynomial L(Y1, ...,Yn) with
constant coefficients and g ∈ C(x) s.t.

L(
∂(b1(x))

b1(x)
, ...,

∂(bn(x))

bn(x)
) = g(x + 1)− g(x)

.

Ex : For Γ(x), L( 1
x ) = g(x + 1)− g(x)???
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Theorem[Ishizaki, 1998] Let (a, b) ∈ C(x)∗ × C(x), q ∈ C∗, |q| 6= 1 and
let z(x) /∈ C(x) meromorphic over C, solution of the equation

z(qx) = a(x)z(x) + b(x). (1)

Then, z(x) is not differentially algebraic over the field of q-periodic
functions.

z(x) meromorphic over C∗ and satisfies (1).
Assume that the poles and zeros of a(x) are distinct modulo qZ.

Theorem[H.- Singer, 2007] z(x) differentially algebraic iff a(x) = cxn and

b = σq(f )− af , for f ∈ C(x) if a 6= qr , or

b = σq(f )− af + dx r , for f ∈ C(x), d ∈ C if a = qr where r ∈ Z.
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Theorem[Roques, 2007] Let y1(x), y2(x) two linearly independent
soutions of

y(q2x)− 2ax − 2

a2x − 1
y(qx)− x − 1

a2x − q2x
y(x) = 0

where a /∈ qZ and a2 ∈ qZ. Then y1(x), y2(x), y1(qx) are algebraically
independent

[H.-Singer, 2007] y1(x), y2(x), y1(qx) are differentially algebraically
independent.
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Galois theory of linear difference equations

k-field, σ-automorphism.
Ex : k = C(x), σ(x) = x + 1, σ(x) = qx .

Difference equation : σ(Y ) = AY ,A ∈ Gln(k).

Decomposition ring : k[Y , 1
det(Y ) ], Y = (yi,j) indet., σ(Y ) = AY ,

M ideal σ −maximal.

σ-Picard-Vessiot Ring R = k[Y , 1
det(Y ) ]/M = k[Z , 1

det(Z) ].

• M is radical => R is reduced

• If C = kσ = {c ∈ k|σc = c} is alg. closed => R is unique and
Rσ = C

Ex:
k = C, σ(y) = −y

R = C[y ,
1

y
]/(y2 − 1)
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σ-Galois group:
Galσ(R/k) = {φ : R → R : φ is a σ − k− automorphism}

Ex.

k = C, σ(y) = −y => R = C[y ,
1

y
]/(y2 − 1)

Galσ = Z/2Z

Ex.

σ(y)− y = f , f ∈ k => σ

(
1 y
0 1

)
=

(
1 f
0 1

) (
1 y
0 1

)
φ ∈ Galσ => φ(y) = y + cφ, cφ ∈ C

Galσ = (C,+) ou = {0}
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• φ ∈ Galσ, σ(Z) = AZ => φ(Z) = Z[φ], [φ] ∈ GLn(C)

Galσ ↪→ GLn(C) and the image is Zariski closed.

Galσ = G(C),G a lin. alg. group /C

• R = coordinate ring of a G -torsor

RGalσ = k

dim(G ) = Krulldimk(R)(' trans. degree of fraction field)
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The structure of Galσ measure the algebraic relations between the
solutions



Ex. f1, ..., fn ∈ k, k a difference field with an alg. closed field of constants

σ(y1)− y1 = f1
...

σ(yn)− yn = fn

Picard-Vessiot Ring= K [y1, ..., yn]

Prop y1, ..., yn alg. dep. over k if and only if

∃g ∈ k and a linear form with constant coeff. L t.q. L(y1, ..., yn) = g

(equiv.,c1f1 + ... + cnfn = σ(g)− g)

Ex. y(x + 1)− y(x) = 1
x

1
x 6= g(x + 1)− g(x) => y(x) is not algebraic over C(x)
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Linear differential algebraic groups

(k, δ) = a differential field differentially closed

Definition: A sub-group G ⊂ GLn(k) ⊂ kn2

is a linear differential
algebraic group if it is Kolchin-closed in GLn(k), i. e., G is the sub-set in
GLn(k) of the zeros of a collection of differential polynomials in n2

variables.

Ex. Every algebraic group defined over k.

Ex. Let C = Ker(δ) and let G (k) a linear algebraic group defined over k.
Then G (C ) is a linear differential algebraic group (add the differential
equations {δyi,j = 0}n

i,j=1!)
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Ex. Differential sub-groups of Gn
a(k) = (kn,+)

The linear differential algebraic sub-groups are of the form

GL
a = {(z1, ..., zn) ∈ kn|L(z1, ..., zn) = 0,∀L ∈ L}

where L is a set of linear homogeneous differential polynomials.



Ex. H is a Zariski-dense proper differential sub-group of G ⊂ GLn(k), a
simple algebraic group , defined over C = Ker(δ)

=> ∃g ∈ GLn(k) t.q. gHg−1 = G (C ),C = Ker(δ).



Differential Galois theory of linear difference equations

k− a field, σ- an automorphism, δ-a derivation s.t. σδ = δσ

Ex.

C(x) : σ(x) = x + 1, δ =
d

dx

σ(x) = qx , δ = x
d

dx

C(x , t) : σx = x + 1, δ =
∂

∂t

Difference equations: σ(Y ) = AY ,A ∈ GLn(k)
Decomposition Ring: k{Y , 1

det(Y )} = k[Y , δY , δ2Y , ..., 1
det(Y ) ]

Y = (yi,j) differential indeterminate

σ(Y ) = AY , σ(δY ) = A(δY ) + (δA)Y , ...

M = σδ −maximal ideal

σδ-Picard-Vessiot Ring= R = k{Y , 1
det(Y )}/M = k{Z , 1

det(Z)}
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k − σδ − field

σ(Y ) = AY ,A ∈ GLn(k)

R = k{Z ,
1

det(Z )
} − σδ − Picard-Vessiot ring

• R is reduced

• If C = kσ = {c ∈ k|σ(c) = c} is differentially closed => R is
unique and Rσ = C .
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σδ-Galois group:

Galσ,δ(R/k) = {φ : R → R : φ is a σδk− automorphism}

• φ ∈ Galσδ, σ(Z) = AZ => φ(Z) = Z[φ], [φ] ∈ GLn(C)

Galσδ ↪→ GLn(C) and the image is Kolchin closed.

Galσδ = G(C),G a linear differential alg. group /C

• Galσδ is Zariski dense in Galσ

• R = coordinate ring of a G -torsor

- RGalσδ = k
- If G is connected. Then

diff .dimC (G) = diff .tr .degk(F )(where F=fraction field of R)
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Ex.
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1

y
]/(y2 − 1)
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Differential relations between the solutions of a linear difference equation
Groups measure differential relations

k − σδ − corps,C = kσ differentially closed.

Differential sub-groups of Gn
a(k) = (kn,+) are given by

GL
a = {(z1, ..., zn) ∈ kn|L(z1, ..., zn) = 0, ∀L ∈ L}

where L is a collection of homogeneous linear differential polynomials.

⇓

Proposition Let R a σδ-Picard-Vessiot ring, extension de k containing
z1, ..., zn s.t.

σ(zi )− zi = fi , i = 1, ..., n.

where fi ∈ k. Then z1, ..., zn are differentially dependent over k iff there
exists an homogeneous linear differential polynomial L over C s.t.

L(z1, ..., zn) = g , g ∈ k

or equivalently, L(f1, ..., fn) = σ(g)− g .
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Corollary Let f1, ..., fn ∈ C(x), σ(x) = x + 1, δ = d
dx and let z1, ..., zn s.t.

σ(zi )− zi = fi , i = 1, ..., n.

where fi ∈ k. Then z1, ..., zn are differentially dependent over F(x) (F is
the field of 1-periodic field) iff there exists a linear differential polynomial
L over C s.t.

L(z1, ..., zn) = g , g ∈ C(x)

Equivalently, L(f1, ..., fn) = σ(g)− g .

-Similar results for q-differences σyi = fiyi



The Γ function is hypertranscendent

• z(x) = Γ′(x)/Γ(x) satisfies σ(z)− z = 1
x

• If z(x) satisfies a differential polynomial equation then

∃L ∈ C[
d

dx
], g ∈ C(x) s.t. L(

1

x
) = g(x + 1)− g(x)

• L( 1
x ) has a pole => g(x) has a pole

• If g(x) has a pole, then g(x + 1)− g(x) has at least two poles but
L( 1

x ) has exactly one pole.
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Let H be a proper, Zariski-dense differential sub-group of G ⊂ GLn(k), a
simple algebraic group defined over C

=> ∃g ∈ SLn(k) s.t. gHg−1 = G (C ),C = Ker(δ).

⇓

Proposition Let A ∈ Gln(k). If the σ-Galois group of σ(Y ) = AY is a
simple linear algebraic group, non-commutative of dimension t. Let
R = k{Z , 1

det(Z)} the σδ-P.V. ring.

The differential trans. degree of R over k is strictly smaller than t

m

∃B ∈ gln(k) t.q. σ(B) = ABA−1 + δ(A)A−1

(in that case (δZ − BZ )Z−1 ∈ gln(k
σ))



Let H be a proper, Zariski-dense differential sub-group of G ⊂ GLn(k), a
simple algebraic group defined over C

=> ∃g ∈ SLn(k) s.t. gHg−1 = G (C ),C = Ker(δ).

⇓

Proposition Let A ∈ Gln(k). If the σ-Galois group of σ(Y ) = AY is a
simple linear algebraic group, non-commutative of dimension t. Let
R = k{Z , 1

det(Z)} the σδ-P.V. ring.

The differential trans. degree of R over k is strictly smaller than t

m

∃B ∈ gln(k) t.q. σ(B) = ABA−1 + δ(A)A−1

(in that case (δZ − BZ )Z−1 ∈ gln(k
σ))



Comments

• General Theory: Integrable Systems of Equations w.r.t.

Σ = {σ1, ..., σr},∆ = {∂1, ..., ∂s}

and differential dependency w.r.t a set of auxilliary derivations
δ1, ..., δt .

• Isomonodromy <=> group defined over the constants

• Inverse Problem
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