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Abstract

At the beginning, we have been interested in a formal solution
∞∑

n=0
en2τ+nζ of the following heat equation with a initial condition:

{
∂τu − ∂ζζu = 0,

u(ζ, 0) = 1
1−eζ ,

where ζ ∈ C \ 2πZi and τ > 0.

If set q = e−τ ∈ (0, 1), z = eζ , then the above series takes the form

∞∑
n=0

q−n2

zn,

which is also a solution of a q-difference equation (see the talk of J.

SAULOY, but we will assume that 0 < |q| < 1):

z

q
y(

z

q2
)− y(z) = −1. (1)

21-25 septembre 2009 CIRM, Marseille-Luminy



Abstract

So we naturally think that it would be workable to study
∞∑

n=0
q−n2

zn with the analytic theory of q-difference equations.

In the following, I will employe two very different methods for

constructing solutions of (1), i.e., consider sums given by means of

Heat Kernel and Theta function respectively.

At the end of this talk, we will discover a generalized result

on the Mordell’s Theorem when comparing the difference between

the two sums by a Stokes analysis.
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Before Starting

we remember that Jacobi Theta function

θ(z , q) =
∑
n∈Z

qn2
zn

satisfies the functional equation

qzθ(q2z , q) = θ(z , q),

and also the modular relation

θ(z , q) =

√
π

log 1/q
e

(log z)2

4 log 1/q θ(z∗, q∗),

where 0 < |q| < 1, and where q∗ = e
π2

log q and z∗ = e−πi log z
log q are

modular variables.
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Outline

Part I. Introduction

Part II. Summing
∞∑

n=0
q−n2

zn by means of the Heat Kernel

Part III. Summing
∞∑

n=0
q−n2

zn by means of Theta function

Part IV. Generalization of Mordell’s Theorem by comparing sums

of
∞∑

n=0
q−n2

zn
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Outline

In Part I., I shall give some motivations of the study of (1)

from a point view of the analytic theory of numbers. Namely, I

shall give a brief exposition on a paper of Mordell and see how to

lead to the q-difference equation (1).

The equation (1) has a unique power series:

∞∑
n=0

q−n2
zn,

which is divergent for all z ∈ C∗ := C \ {0}, as it is assumed that

0 < |q| < 1.
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Outline

In Part II. and Part III., I shall present two different

summation procedures, each of which allows to define one family

of solutions of (1) that are all asymptotic to the above divergent

series when z → 0 in a suitable domain.

The first procedure (Part II.) will be formed by integrals

involving the Heat Kernel, which are no uniform and so are studied

in terms of the angular argument variable. The second one is

related to Jacobi’s Theta function, which is entirely uniform but

admits a spiral of simple poles.
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Outline

In Part IV., I shall compare the functions defined in the

previous parts and give a natural generalization of Mordell’s

Theorem such as∫ ∞

−∞

e
πt2

iω
+ 2πtx

ω

e2πt − 1
dt = −

√
log 1/q

π

e
(log z)2

4 log 1/q

θ(λ
z )

∑
n∈Z

qn2

1− λq2n
(
λ

z
)n

+
i

θ∗(λ∗

z∗ )

∑
n∈Z

q∗n
2

1− λ∗q∗2n
(
λ∗

z∗
)n,

where

q = eπiω, q∗ = e
π2

log q ,

λ ∈ C∗ \ q2Z, λ∗ = e−πi log λ
log q ,

z = e−2πix ∈ C∗ \ (−λq2Z+1), z∗ = e−πi log z
log q .
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Part I. Introduction

L. J. Mordell, The value of the definite integral
∫∞
−∞

eax2+bx

ecx+d dx ,

Quarterly Journal of Mathematics 68 (1920), 329-342.

L. J. Mordell, The definite integral
∫∞
−∞

eax2+bx

ecx+d dx and the

analytic theory of Numbers, Acta Math. 61 (1933), 323-360.
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Part I. Introduction

Mordell begun his paper(1933) with the following observation:

Professor Siegel in a memoir recently published dealing

with the manuscripts left by Riemann has pointed out that

Riemann dealt with some integrals of the type

I =

∫ ∞

−∞

eax2+bx

ecx + d
dx

in his researches on the zetafunction. Not only can the usual

functional equation be thus found, but also an asymptotic

formula is obtained for the zetafunction of which the first

term gives the well known approximate functional equation

due to Hardy and Littlewood...
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Part I. Introduction

On the other hand, as said by Mordell himself, the starting

point of his investigations was the theory of the positive, definite

binary quadratic form

ax2 + 2hxy + by2,

where a, h, b are integers, so that the determinant of the form is

h2 − ab = −D < 0, say .

Let F (D) be the number of uneven classes of forms of given

determinant −D, that is, classes of forms in which a and b are not

both even.
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Part I. Introduction

The formulae for the class number known since

Dirichlet(1839), shows that when −D is negative and has no

squared factors > 1,

F (D) =
2

π

√
D((

−D

1
) +

1

3
(
−D

3
) +

1

5
(
−D

5
) + · · · ).

Let q = eπiω with =ω > 0 and let

Ω(ω) =
∞∑

n=1

F (n)qn

be the generating function for F (n).
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Part I. Introduction

Mordell(1916) discovered the following expression for the

generating function for Ω(ω) :

Ω(ω) =
i

4π

f
′
01(0)

θ01
,

where f01(x) denotes the unique integral function defined by the

functional equations

f01(x + 1) = f01(x),

f01(x + ω) + f01(x) = θ01(x)

and where θ01 = θ01(0, ω), θ01(x , ω) being one of the four Jacobi

functions:

θ01(x , ω) =
∞∑

n=−∞
(−1)nqn2

e2nπix .

21-25 septembre 2009 CIRM, Marseille-Luminy



Part I. Introduction

In order to express ”modular” relations connecting Ω(ω) and

Ω(− 1
ω ), Mordell(1919) used the integrals

∫∞
−∞

teπiωt2

e2πt±1
dt:∫ ∞

−∞

teπiωt2

e2πt − 1
dt = −2Ω(ω) +

2

ω2

√
(−iω)Ω(− 1

ω
) +

1

4
θ3
00(0, ω),

∫ ∞

−∞

teπiωt2

e2πt + 1
dt =

∞∑
n=1

(−1)nF (4n − 1)q
1
4
(4n−1)

+
2

ω2

√
(−iω)

∞∑
n=1

(−1)n−1F (n)qn
1 ,

where q1 = e−πi/ω and θ00(x , ω) =
∞∑

n=−∞
qn2

e2nπix .
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Part I. Introduction

Mordell published his paper about the definite integral∫∞
−∞

eax2+bx

ecx+d dx in 1933.
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Part I. Introduction

Theorem(Mordell,1933) Let =ω > 0. Let f be the integral

function of x defined as follows:

if (x , ω) =
±∞∑

m odd

(−1)
1
2 (m−1)q

1
4 m2

emπix

1 + qm
.

Let θ11 be the following Jacobi theta function:

iθ11(x , ω) =
±∞∑

m odd

(−1)
1
2 (m−1)q

1
4 m2

emπix .

Then ∫ ∞

−∞

eπiωt2−2πtx

e2πt − 1
dt =

f ( x
ω ,− 1

ω ) + iωf (x , ω)

ωθ11(x , ω)
,

where the path of integration may be taken as either the real axis of t indented

by the lower half of a small circle described about the origin as center, say the

path (−∞, 0,∞), or as a straight line parallel to the real axis of t and below it

at a distance less than unity. Such a path may be denoted by P0,−1.
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Part I. Introduction

The above-used integral function f can be uniquely defined

by two equations such as

f (x + 1) + f (x) = 0,

f (x + ω) + f (x) = θ11(x).

By the way, the integral function f01(x) is another function of the

type f (x).

On the other hand,

θ11(x + 1) = −θ11(x),

θ11(x + ω) = −e−πi(2x+ω)θ11(x).
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Part I. Introduction

If set g(x) = f (x)
θ11(x) , then

g(x + 1) = g(x),

e−πi(2x+ω)g(x + ω)− g(x) = −1.

As before, let q = eπiω. If z = e−2πiω and G (z) = g(x),

then:

G (e2πiz) = G (z),

z

q
G (

z

q2
)− G (z) = −1.
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Part I. Introduction

So we shall consider the q-difference equation (1):

z

q
y(

z

q2
)− y(z) = −1,

which admits a unique power series solution, i.e.,

ŷ(z) :=
∞∑

n=0

q−n2
zn.

As 0 <| q |< 1, the formal solution ŷ(z) diverges for all z 6= 0, so

we can say the equation (1) admits an irregular singular point at

z = 0.
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Part I. Introduction

It is well-known that a similar phenomenon occurs for the

non-Fucshian differential equation, the so-called Euler’s differential

equation (see J. SAULOY’s talk):

z2y ′(z)− y(z) = 1,

which has the power series solution
∑
n≥0

n!zn, obviously divergent

for any z ∈ C∗ := C \ {0}.
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Part II. Summing
∞∑

n=0
q−n2

zn by means of the Heat Kernel

99KBased on q-Gevrey asymptotic analysis
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Part II. Summing
∞∑

n=0
q−n2

zn by means of the Heat Kernel

From now on, assume ω ∈ R+i and write τ = −πiω > 0,

ζ = −2πix , i.e.,

q = e−τ ∈ (0, 1), z = eζ .

Then the q-series
∞∑

n=0
q−n2

zn takes the form

∞∑
n=0

en2τ+nζ ,

which, as we know, is the formal solution of a Cauchy problem

related to the Heat equation:{
∂τu − ∂ζζu = 0,

u(ζ, 0) = 1
1−eζ .

21-25 septembre 2009 CIRM, Marseille-Luminy



Part II. Summing
∞∑

n=0
q−n2

zn by means of the Heat Kernel

Suppose ζ be over a line parallel to the real axis but not

passing by any complex number of the form 2πmi ,

m = 0, ±1, ±2, · · · , i.e., ζ ∈ (−∞+ αi ,∞+ αi) for α ∈ R\2πZ.

By means of the Heat Kernel, the above-stated initial value

problem on the line (−∞+ αi ,∞+ αi) has the following solution:

uα(ζ, τ) =

∫ ∞+αi

−∞+αi

e−
(ζ−ξ)2

4τ

√
4πτ

1

1− eξ
dξ.

And it is easily seen that the right integral remains convergent

when extending the interval of definition of the variable ζ to the

whole complex plane C, which is still denoted by uα(ζ, τ).

21-25 septembre 2009 CIRM, Marseille-Luminy



Part II. Summing
∞∑

n=0
q−n2

zn by means of the Heat Kernel

Theorem 1(Zhang, 1999). For any α ∈ R \ 2πZ and any z

over the Riemann surface C̃∗ of the logarithm, we define

fα(z , q) = uα(log z , ln 1/q).

Then (i) fα(z , q) is holomorphic over C̃∗, and if α and β belong to

a common interval of the set {α ∈ R \ 2πZ}, then

fα(z , q) = fβ(z , q).

(ii) fα(ze−2πi , q)− fα(z , q) = i
√

π
ln 1/q e

(log z−2πkα i)2

4 ln q , where

2πkα is the integer between α and α + 2π.

(iii) fα(z , q) is the unique solution of (1) which admits
∞∑

n=0
q−n2

zn as q-Gevrey asymptotic expansion at z = 0 along the

direction (0, ∞eαi ).
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Part II. Summing
∞∑

n=0
q−n2

zn by means of the Heat Kernel

Let f−(z , q) be the function associated with fα(z , q) for

α ∈ (−2π, 0), then

f−(z , q) =
1√

4π ln 1/q

∫ ∞

−∞

e
(log z−ξ)2

4 ln q

1− eξ
dξ,

where the path of integration may be taken as either the real axis

of ξ intended by the lower half of a small circle described about

the origin as center, denoted by the path (−∞, 0, ∞), or as a

straight line parallel to the real axis of t and below it at a distance

less than 2π.

So the function f− is a variant of the function given by the

integral in Mordell’s Theorem.

21-25 septembre 2009 CIRM, Marseille-Luminy



Part II. Summing
∞∑

n=0
q−n2

zn by means of the Heat Kernel

Namely, if we set q = eπiω and z = e−2πix , then

− 1√
(−iω)

e−
πx2

iω

∫ ∞

−∞

e
πt2

iω
+ 2πtx

ω

e2πt − 1
dt = f−(z , q),

so that one can write

−
√

(−iω)e
πx2

iω

∫ ∞

−∞

eπiωt2−2πtx

e2πt − 1
dt = f−(z∗, q∗),

where q∗ = e−
πi
ω and z∗ = e2πi x

ω .
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Part II. Summing
∞∑

n=0
q−n2

zn by means of the Heat Kernel

Since

fα+2π(z , q) = fα(ze−2πi , q),

we get

f−(zq−2πi )− f−(z , q) = i

√
π

ln 1/q
e

(log z)2

4 ln q ,

where the function given in the right hand is infinitely small or said

flat as z → 0 and is the solution of the homogeneous q-difference

equation associated with (1):

z

q
y(

z

q2
)− y(z) = 0.

On the other hand, the above relation can be seen as a Stokes

phenomenon in the singular direction argument 0 ∈ 2πZ in the

Riemann surface of logarithm.
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Part II. Summing
∞∑

n=0
q−n2

zn by means of the Heat Kernel

Remarks. F The solution fα can be formulated in terms of

Fourier analysis. Namely, from the Gaussian integral, it follows that

q−n2
=

1√
4π ln 1/q

∫ ∞

−∞
e

t2

4 ln q
+ntdt.

So the power series
∞∑

n=0
q−n2

zn may be associated with the integral

of the type:

1√
4π ln 1/q

∫ ∞

−∞

e
t2

4 ln q

1− zet
dt,

which gives rise to the integral function fα.
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Part II. Summing
∞∑

n=0
q−n2

zn by means of the Heat Kernel

F Here is the so-called Gq-summation:

f̂ (z) :=
∑
n≥o

anz
n

⇒ ϕ(ξ) :=
∑
n≥o

anq
n2

ξn

⇒ f (ξ) :=
1√

4π ln 1/q

∫ ∞+αi

−∞+αi
e

(log z−ξ)2

4 ln q ϕ(ξ)dξ

where f is asymptotic to the starting power series f̂ . This

procedure can be applied to any power series solution when the

q-difference equation admits a unique slope for its Newton polygon.
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Part II. Summing
∞∑

n=0
q−n2

zn by means of the Heat Kernel

F If one repeats Heat Kernel integrals, one can obtain a

q-Gevrey asymptotic solution of each power series solutions of any

irregular singular linear q-difference equation: multisummability in

q-difference equation cases.

21-25 septembre 2009 CIRM, Marseille-Luminy



Part III. Summing
∞∑

n=0
q−n2

zn by means of Theta function

99KBased on an elliptic summation approach
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Part III. Summing
∞∑

n=0
q−n2

zn by means of Theta function

Suppose now 0 < q < 1. we will note Jacobi theta function

θ(z) = θ(z , q) =
∑
n∈Z

qn2
zn, z ∈ C∗.

From the functional equation

θ(z) = qzθ(q2z),

we deduce that

θ(q2nz) = q−n2
z−nθ(z),

so, provided that θ(λq2n) 6= 0 for all integers n,∑
n∈Z

1

θ(λq2n)
=

∑
n∈Z

qn2
λn

θ(λ)
= 1,

for any λ ∈ C∗.
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Part III. Summing
∞∑

n=0
q−n2

zn by means of Theta function

On the other hand, from Jacobi’s triple product formula

θ(z) =
∏
n≥0

(1− q2n+2)(1 + zq2n+1)(1 +
q2n+1

z
),

we deduce that θ(λq2n) 6= 0 holds for all λ ∈ C∗\(−q2Z+1).
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Part III. Summing
∞∑

n=0
q−n2

zn by means of Theta function

Because of the above deduction, we can get, for any integer

m ∈ Z and any λ ∈ C∗\(−q2Z+1),

∑
ξ∈λq2Z

ξm

θ(ξ)
= q−m2

∑
n∈Z

λm+nq(m+n)2

θ(λ)
= q−m2

.

Thus the divergent power series
∑
n≥0

q−n2
zn may be written as a

double series and by this way we are led to
∑

ξ∈λq2Z

1
1−ξz

1
θ(ξ) .
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Part III. Summing
∞∑

n=0
q−n2

zn by means of Theta function

So if λ ∈ C∗\q2Z, we can define

gλ(z , q) =
∑

ξ∈λq2Z

1

1− ξ

1

θ( ξ
z )

,

or equivalently,

gλ(z , q) =
1

θ(λ
z )

∑
n∈Z

qn2

1− λq2n
(
λ

z
)n,

for all z ∈ C∗\(−λq2Z+1).
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Part III. Summing
∞∑

n=0
q−n2

zn by means of Theta function

Theorem 2(Zhang, 2002). If λ ∈ C∗ \ q2Z, we define

gλ(z , q) =
1

θ(λ
z )

∑
n∈Z

qn2

1− λq2n
(
λ

z
)n,

for all z ∈ C∗ \ (−λq2Z+1). Then

(i) gλ is holomorphic over C∗ \ (−λq2Z+1) and admits

(−λq2Z+1) as a set of simples poles.

(ii) gλ(ze2πi , q) = gλ(z , q).

(iii) gλ(z , q) is the unique solution of (1) which admits the

power series
∞∑

n=0
q−n2

zn as asymptotic expansion for z → 0 in

C∗ \ (−λq2Z+1) in the following sense:
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Part III. Summing
∞∑

n=0
q−n2

zn by means of Theta function

there exist C > 0, A > 0 such that for all N ∈ N∗ and ε > 0 small

enough

| gλ(z , q)−
N−1∑
n=0

q−n2
zn |≤ C

ε
ANq−N2 | z |N ,

where z ∈ C∗ \
⋃

n∈Z
{q2n−1z : |z + λ| ≤ ε}.

This asymptotic relation is stronger than Poincaré’s asymptotic

manner, but little weaker than q-Gevrey asymptotics.
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Part III. Summing
∞∑

n=0
q−n2

zn by means of Theta function

Remark. F Since λ 7→ gλ(z , q) is left invariant by λ 7→ q2λ,

one can calculate the cocycle gλ − gµ as follows:

gλ(z , q)− gµ(z , q) =
K (λ, µ, z)

θ(z)
,

where λ, µ ∈ C∗\q2Z, z ∈ C∗\(−λq2Z+1)
⋂

C∗\(−µq2Z+1) and

K (λ, µ, z) =
(q2; q2)3∞θ(−λ

µq)θ(λµ
z )θ(1

z )

θ(−qλ)θ(−µ
q )θ(λ

z )θ(µ
z )

.
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Part III. Summing
∞∑

n=0
q−n2

zn by means of Theta function

Such elliptic cocycles play the role of Stokes multipliers and

allow to classify the corresponding q-difference equation.
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Part IV. Generalization of Mordell’s Theorem by comparing sums of
∞∑

n=0
q−n2

zn

99KBased on Stokes phenomenon analysis
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Part IV. Generalization of Mordell’s Theorem by comparing sums of
∞∑

n=0
q−n2

zn

The main idea is to use the simple fact that if y1 and y2 are

two solutions of (1), then y1 − y2 will be a solution of the

associated homogeneous equation and be flat or asymptotically

zero. Let us consider

hλ(z , q) :=
1

i

√
ln 1/q

π
e−

(log z)2

4 ln q (f−(z , q)− gλ(z , q)),

where λ ∈ C∗\q2Z and C∗\(−λq2Z+1).

Remember that f−(z , q) and gλ(z , q) are two solutions of (1)

and

f−(ze−2πi , q)− f−(z , q) = i

√
π

ln 1/q
e

(log z)2

4 ln q ,

gλ(ze−2πi , q) = gλ(z , q).
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Part IV. Generalization of Mordell’s Theorem by comparing sums of
∞∑

n=0
q−n2

zn

By considering the initial equation (1), we find the following

relations:

hλ(
z

q2
, q) = hλ(z , q),

e−
πi
ln q

log ze−
π2

ln q hλ(ze−2πi , q)− hλ(z , q) = 1.

If we set q∗ = e
π2

ln q and z∗ = e−πi log z
ln q , then

(
z

q2
)∗ = z∗e2πi , (ze−2πi )∗ =

z∗

q∗2
.

Consider h∗λ(z∗, q) = −hλ(z , q). It follows that

h∗λ(z∗e2πi , q) = h∗λ(z∗, q),

z∗

q∗
h∗λ(

z∗

q∗2
, q)− h∗λ(z∗, q) = −1.
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Part IV. Generalization of Mordell’s Theorem by comparing sums of
∞∑

n=0
q−n2

zn

By observing that h∗λ(z∗, q) is holomorphic over

C∗\(−λ∗q∗2Z+1) and admits simple poles in the q-spiral

(−λ∗q∗2Z+1), we conclude that

h∗λ(z∗, q) = gλ∗(z
∗, q∗),

and then get our main theorem:
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Part IV. Generalization of Mordell’s Theorem by comparing sums of
∞∑

n=0
q−n2

zn

Theorem. The following relation holds for every λ ∈ C∗ \ q2Z

f−(z , q) = gλ(z , q)− i

√
π

ln 1/q
e

(log z)2

4 ln q gλ∗(z
∗, q∗), (2)

where q∗ = eπ2/ ln q, z∗ = e−πi log z
ln q , and λ∗ = e−πi log λ

ln q , or

equivalently

1√
4π ln 1/q

∫ ∞

−∞

e
(log z−ξ)2

4 ln q

1− eξ
dξ =

1

θ(λ
z )

∑
n∈Z

qn2

1− λq2n
(
λ

z
)n

−i

√
π

ln 1/q
e

(log z)2

4 ln q
1

θ∗(λ∗

z∗ )

∑
n∈Z

q∗n
2

1− λ∗q∗2n
(
λ∗

z∗
)n.
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Part IV. Generalization of Mordell’s Theorem by comparing sums of
∞∑

n=0
q−n2

zn

On the other hand, we remember that

− 1√
(−iω)

e−
πx2

iω

∫ ∞

−∞

e
πt2

iω
+ 2πtx

ω

e2πt − 1
dt = f−(z , q),

so that we find the following generalization of Mordell’s Theorem:

for any λ ∈ C∗ \ q2Z and any z ∈ C∗ \ (−λq2Z+1),∫ ∞

−∞

e
πt2

iω
+ 2πtx

ω

e2πt − 1
dt = −

√
(−iω)e

πx2

iω

θ(λ
z )

∑
n∈Z

qn2

1− λq2n
(
λ

z
)n

+
1

θ∗(λ∗

z∗ )

∑
n∈Z

q∗n
2

1− λ∗q∗2n
(
λ∗

z∗
)n,

where, as before, the path of integration in the left hand is taken as the real

axis of t indented by the lower half of a small circle described about the origin

as center.
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Part IV. Generalization of Mordell’s Theorem by comparing sums of
∞∑

n=0
q−n2

zn

Remarks. F The Mordell’s Integral can be included as a

particular case:

λ =
1

q
eπi .

F In the above formulae, q is firstly assumed to be in (0,1). By

the standard argument of analytical continuation, the formulae

remain valid for all q = eπiω with =(ω) > 0.

21-25 septembre 2009 CIRM, Marseille-Luminy



Before Ending

Lately, we consider a more general integral of the type

I (ν, x) = I (ν, x ;ω) = − 1√
(−iω)

e−
πx2

iω

∫ ∞

−∞

e
πt2

iω
+ 2πxt

ω

e2πt − e2πν
dt,

where k is a positive integral and ν ∈ C with =ν ∈ (−1, 0] and

where the path of integration may be any straight line parallel to

the real axis of t and just below the point ν at a distance less then

unity, i.e., the line (−∞+ ν − iε,∞+ ν − iε) with ε ∈ (0, 1).

Some analogous results may be obtained on these integrals.
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END.

Thank you for your attention.
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