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an introduction
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Let S be a finite subset of Z9 (set of steps) and pg € Z9 (starting
point).

Example. S ={10,10,11,11}, pg = (0,0)
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Counting walks in a cone

Let S be a finite subset of Z9 (set of steps) and py € Z9 (starting
point).

A path (walk) of length n starting at pg is a sequence (pg, P1,---,Pn)
such that p; 1 —p; € S for all i.

Example. § = {10,10, 11, 11}, po = (0,0)



Counting walks in a cone

Let S be a finite subset of Z9 (set of steps) and py € Z9 (starting
point).

A path (walk) of length n starting at pg is a sequence (pg, P1,---,Pn)
such that p; 1 —p; € S for all i.

Let C be a cone of R9.

Example. § = {10,10, 11, il}, po = (0,0)and C = IRfL.
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What is the number a(n) of n-step walks starting at pg and
contained in C?

For i = (i1,...,iq) € C, what is the number a(i;n) of such walks
thatend at i?

Example. S ={10,10,11,11}, py = (0,0) and C = RZ.







@ Many discrete objects can be encoded in that way:
> in combinatorics, statistical physics...
» in (discrete) probability theory: random walks, queuing theory...



Why count walks in cones?

@ Many discrete objects can be encoded in that way:
> in combinatorics, statistical physics...
> in (discrete) probability theory: random walks, queuing theory...
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[Krattenthaler et al. 00]

+ Young tableaux of height 4 [Gouyou-Beauchamps 89]



Why count walks in cones?

@ Many discrete objects can be encoded in that way:
> in combinatorics, statistical physics...
> in (discrete) probability theory: random walks, queuing theory...

@ To reach a better understanding of functional equations with
divided differences/discrete derivatives:
Q(xy)-Q(0y) . Q(xy)-Q(x0)

Q(xy)=1+txyQ(xy)+t . +t 5




e Our original question:

a(n)=7 a(i;n)="7



e Our original question:
a(n)=7 a(i;n)="7
e Generating functions:
A(t):Za(n)t”, A(xl,...,xd;t):Za(i;n)xit”
n>0 i,n
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Generating functions

e Our original question:
a(n)=7 a(i;n)=7

e Generating functions:

A(t) = Za(n)t”, A(X1..., xg; t) = Za(i;n)xit”

n>0 i,n
= ) = ) g
w walk w walk

Remarks
e A(L,...,1;t)=A(t)
o if C cRY, then A(O,...,0;t) counts walks ending at (0,...,0)
@ A(0,x5,...,xq; t) counts walks ending on the hyperplane i; =0



Generating functions

e Our original question:
a(n)=7 a(i;n)=7

e Generating functions:

A(t) = Za(n)t”, A(Xpy..., Xgit) = Za(i;n)xit”

n>0 i,n
= ) = ) g
w walk w walk

Remarks
e A(L,...,1;t)=A(t)
o if C cRY, then A(O,...,0;t) counts walks ending at (0,...,0)
@ A(0,x5,...,xq; t) counts walks ending on the hyperplane i; =0

Can one express these series? What is their nature?



A hierarchy of formal power series

e Rational series

e Algebraic series

1-A(t)+tA(t)° =0
e Differentially finite series (D-finite)
t(1-16t)A”(t)+ (1 -32t)A’(t)-4A(t) =0

e D-algebraic series

(2t +5A(t) - 3tA’(t))A”(t) = 48t
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A hierarchy of formal power series

e Rational series

e Algebraic series
1-A(t)+tA(t)° =0
e Differentially finite series (D-finite)

t(1-16t)A”(t)+ (1 -32t)A’(t)-4A(t) =0

e D-algebraic series

(2t +5A(t) - 3tA’(t))A”(t) = 48t

Multi-variate series: one DE per variable







If S € Z9 is finite and C = IRY, then A(x;t) is rational:

a(n)=18|" <

More generally:




If S € Z9 is finite and C = IRY, then A(x;t) is rational:

a(n)=18|" <

More generally:

The step polynomial:




If S ¢ Z9 is finite and C is a rational half-space, then A(x; t) is
algebraic, given by an explicit system of polynomial equations.




Also well-known: a (rational) half-space

By projection: Equivalent to weighted walks in 1D confined to a
half-line

TEHTTETHTTIT projection

Notation: x:=1/x



e Grammars [Labelle-Yeh 90, Merlini et al. 99, Duchon 00...]



Walks on a half-line: main approaches

e Grammars [Labelle-Yeh 90, Merlini et al. 99, Duchon 00...]

Example: § = {-1,+1}

Ho=1+t?Hg
H(y) = Ho + tyHoH (y)




e Grammars [Labelle-Yeh 90, Merlini et al. 99, Duchon 00...]

e Gessel's factorization of general walks [Gessel 80]



e Grammars [Labelle-Yeh 90, Merlini et al. 99, Duchon 00...]

e Gessel's factorization of general walks [Gessel 80]

where H.(y) € 1+ yQ[y|[[t]] and H(y) € Q[y][[t]], with y = 1/y.



Walks on a half-line: main approaches

e Grammars [Labelle-Yeh 90, Merlini et al. 99, Duchon 00...]

e Gessel'’s factorization of general walks [Gessel 80

where H_(y) € 1+ yQ[y][[t]] and H(y) € Q[y][[t]], with ¥ = 1/y.
Factor 1 — tS(y) (as a polynomial in y)

1M
__?rll

where M = maxS and Yq,..., Yy are the roots of 1 — tS(y) that are
infinite at t = 0.



e Grammars [Labelle-Yeh 90, Merlini et al. 99, Duchon 00...]

e Gessel's factorization of general walks [Gessel 80]

e The kernel method [mbm-Petkovsek 00, Banderier-Flajolet 02]



Walks on a half-line: main approaches
e Grammars [Labelle-Yeh 90, Merlini et al. 99, Duchon 00...]
e Gessel'’s factorization of general walks [Gessel 80

e The kernel method [mbm-Petkovsek 00, Banderier-Flajolet 02]
Example: § = {-2,1}. An equation in one catalytic variable y

H(y) = 1+t(y +¥°)H(y) - ty°Ho — tyHy,




Walks on a half-line: main approaches

e Grammars [Labelle-Yeh 90, Merlini et al. 99, Duchon 00...]

e Gessel'’s factorization of general walks [Gessel 80

e The kernel method [mbm-Petkovsek 00, Banderier-Flajolet 02]

Example: § = {-2,1}. An equation in one catalytic variable y
H(y) =1+ t(y +5°)H(y) - ty°Ho — tyHy,

or
(1-t(y +y°)H(y) =1 - ty*Ho — tyH.




Walks on a half-line: main approaches

e Grammars [Labelle-Yeh 90, Merlini et al. 99, Duchon 00...]
e Gessel'’s factorization of general walks [Gessel 80
e The kernel method [mbm-Petkovsek 00, Banderier-Flajolet 02]
Example: § = {-2,1}. An equation in one catalytic variable y
H(y) =1+ t(y +y°)H(y) - t¥*Ho - tyHy,
or
(1-tly +7°)H(y) = 1~ ty*Ho ~ tyHh.
In general,
(1-1tS(y))H(y) = Pol(y),
where Pol is a polynomial of degree m = —minS.



Walks on a half-line: main approaches
e Grammars [Labelle-Yeh 90, Merlini et al. 99, Duchon 00...]
e Gessel'’s factorization of general walks [Gessel 80

e The kernel method [mbm-Petkovsek 00, Banderier-Flajolet 02]
Example: § = {-2,1}. An equation in one catalytic variable y

H(y) = 1+t(y +¥°)H(y) - ty°Ho — tyHy,

or
(1-t(y +7*)H(y) = 1 - ty*Ho — tyHy.
In general,
(1-tS(y))H(y) = Pol(y),
where Pol is a polynomial of degree m = —minS.

Factor 1 —tS(y) = Same expression as Gessel’s factorization:
d

HO =] | =

i=1



The “next” case: two bounding hyperplanes

e Convex cone: walks in a quadrant

'




The “next” case: two bounding hyperplanes

e Convex cone: walks in a quadrant

'

e Walks in the slit plane [mbm-Schaeffer 02, mbm 01, Rubey 04]



(i,j) = (4,3)




Quadrant walks: a small chronology

e Pre-2000: sporadic examples, with various motivations

[Kreweras 65, Gessel 86,
Kreweras (ALG) ‘( Niederhausen 83]




Quadrant walks: a small chronology

e Pre-2000: sporadic examples, with various motivations

Kreweras (ALG)

[Kreweras 65, Gessel 86,
Niederhausen 83]

Gouyou-Beauchamps (DF)

Simple walks (DF)

Tandem walks (DF)

The reflection principle (DF)

S =

A1 X
KX

[Gouyou-Beauchamps 86

[Guy, Krattenthaler
& Sagan 92]

[Regev 81]

[Gessel-Zeilberger 92]



Quadrant walks: a small chronology

Around 2000
o New ingredients

> Functional equations with two “catalytic” variables
» Functional equations in one catalytic variable have algebraic

solutions [mbm-Jehanne 05]

> Le petit livre jaune [Fayolle, lasnogorodski & Malyshev 99], and

the group of the walk

iy Fayolle
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Quadrant walks: a small chronology

Around 2000
@ New ingredients
> Functional equations with two “catalytic” variables
» Functional equations in one catalytic variable have algebraic
solutions [mbm-Jehanne 05]
> Le petit livre jaune [Fayolle, lasnogorodski & Malyshev 99], and
the group of the walk

e Asking systematic questions
> Why are some models (=Kreweras’) algebraic? [mbm 02, 04]
> Are all models D-finite? [mbm-Petkovsek 02]

DF

not DF




A step-by-step construction
Example: S ={01,10,11}, with x := 1/xand y :=1/y
Q(xy)=1+t(y+x+xy)Q(xy)-txQ(0,y) - txyQ(x,0)

Q(xy)=Qleyit)= ) qlijin)x'yt"

i,j,n>0



A step-by-step construction
Example: S ={01,10,11}, with x := 1/xand y :=1/y
Q(xy)=1+t(y+x+xy)Q(xy)-txQ(0,y) - txyQ(x,0)

(1-t(y +%+x7))Q(xy) = 1-txQ(0,y) - tx7Q(x,0),



Functional equations for quadrant walks T

A step-by-step construction
Example: S ={01,10,11}, with X :=1/xand y := 1/y
Q(xy)=1+t(y+x+xy¥)Q(xy)-txQ(0,y) - txyQ(x,0)

or
(1-t(y + X +x7))Q(xy) = 1 - txQ(0,y) - txy Q(x,0),
or

(1-tly + % +x7) )vQ(xy) = xy - tyQ(0,y) - tx*Q(x,0)

e The polynomial 1 — t(y + x + x¥) is the kernel of this equation

e The equation is linear, with two catalytic variables x and y
(tautological at x = 0 or y = 0) [Zeilberger 00]



Example. Take S = {10,01, 11}, with step polynomial

1 X
S(X:Y):;+)’+;:)_<+Y+X)7



Example. Take S = {10,01, 11}, with step polynomial
1 X _
Sxy)=—+y+-—=Xx+y+xy
X y

Observation: S(x,y) is left unchanged by the rational
transformations

D:(x,y)—(-,y) and V¥:(xy)—(x - )
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1 X _
Sxy)=—+y+-—=Xx+y+xy
X y

Observation: S(x,y) is left unchanged by the rational
transformations

D:(xy)— (Xy,y) and W:(xy)—(x )



Example. Take S = {10,01, 11}, with step polynomial
1 X _
Sxy)=—+y+-—=Xx+y+xy
X y

Observation: S(x,y) is left unchanged by the rational
transformations

D:(xy) (xy,y) and W:(xy)e (xx¥)



The group of the model -

Example. Take S = {10,01, 11}, with step polynomial

1 e
S(x,y)=;+y+;=>‘<+y+xy

Observation: S(x,y) is left unchanged by the rational
transformations

D:(xy) = (xy,y) and W:(xy) (xx¥)

They are involutions, and generate a finite dihedral group G:

W
P Gyy) (xy, %) —D

(xy) (¥,%)
v (oxy) @y 9




The group of the model -

Example. Take S = {10,01, 11}, with step polynomial

1 e
S(x,y)=;+y+)—/=>‘<+y+xy

Observation: S(x,y) is left unchanged by the rational
transformations

D:(xy) = (xy,y) and W:(xy) (xx¥)

They are involutions, and generate a finite dihedral group G:

Y
P Gyy) (xy, %) —D

(xy) (¥,%)
v (oxy) @y 9

Remark. G can be defined for any model with small steps



e IfS=1{01,11,10,11}, then S(x,y) =X(1 +¥) +y +xy and
Q:(xy)— (xy(1+y)y) and W:(xy)e (xxy(1+X))

generate an infinite group:

q)/()?)_/(l—l—)_/),y) e ..




Marni a Bordeaux (2003-2004)

e [Mishna 06a, Mishna-Rechnitzer 07a]
Allowing three small steps:
three more models solved

el G AN

alg  notDF notDF




Marni a Bordeaux (2003-2004)

e [Mishna 06a, Mishna-Rechnitzer 07a]
Allowing three small steps:
three more models solved

el G AN

alg  notDF notDF

e [mbm-Mishna 08a] “Walks with small steps in the quarter plane”

Small steps: S € {~1,0,1}2\ {(0,0)}. Only 28 models.

K

Some models are trivial, or equivalent to a half plane problem

= 79 really interesting and distinct models



Quadrant walks with small steps

Non-singular
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Quadrant walks with small steps

E g E E Non-singular

E E E R Singular



(small steps)

quadrant models: 79

|G| < o0: 23 |G| = c0: 56
\ \
D-finite? Not D-finite?

T ‘ T 1 T—‘%
1 3 19 2 54
| | \ | \

F? algebraic DF not DF ?

74 + A X

Gessel



quadrant models: 79
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|G| < 00: 23 |G| = c0: 56
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D-finite Not D-finite
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4 19 9 47
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algebraic DF transc. D-alg. not D-alg.



quadrant models: 79
\
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|G| < 00: 23 |G| = c0: 56

| |
D-finite Not D-finite
R L
4 19 9 47
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algebraic DF transc. D-alg. not D-alg.




I -

{
|G| < 00: 23 |G| = c0: 56
| | Salvy )
D-finite Not D-finite
A o 4y [Denoywach
4 19
\ | \

algebraic DF transc. D-alg. not D -alg.

quadrant models: 79
\




af X

The 5 singular models become trivial (rational GF) = 74 interesting
models



Around 2006 (?)




Motivation: a new approach to Gessel’s walks

Idea: count Gessel’s walks by the reflection principle

If ¢; j(n) counts walks starting at (-1,0) and avoiding the negative
quadrant, thenfor j >0 andi <j,

cij(n)=cji(n) =

A Gessel walk




A problem with nice numbers!



An a posteriori motivation

A problem with nice numbers!

Example: the number of walks of length 2n on the diagonal square
lattice starting and ending at (0,0) and avoiding the negative
quadrant is

£(0,0;2n) = 1& (3 (1/2)7 g (1/2)n(7/6)n _ (1/2)n(5/6)n

9\ (27 (2)n(4/3)n (2)n(5/3)n
with (a), =a(a+1)---(a+n-1).




An a posteriori motivation

A problem with nice numbers!

Example: the number of walks of length 2n on the diagonal square
lattice starting and ending at (0,0) and avoiding the negative
quadrant is
16" 3 (1/2)2 s (1/2)n(7/6)n - (1/2)n(5/6)n

9 (2) (2)n(4/3)n (2)n(5/3)n

n

c(0,0;2n) =

with (a), =a(a+1)---(a+n-1).

Two known components: Quadrant walks (left) and Gessel walks
(right). Conjectured before 2007...



An a posteriori motivation

A problem with nice numbers!

Example: the number of walks of length 2n on the diagonal square
lattice starting and ending at (0,0) and avoiding the negative
quadrant is
16" 3 (1/2)2 s (1/2)n(7/6)n - (1/2)n(5/6)n

9 (2) (2)n(4/3)n (2)n(5/3)n

n

c(0,0;2n) =

with (a), =a(a+1)---(a+n-1).

Two known components: Quadrant walks (left) and Gessel walks
(right). Conjectured before 2007...

[mbm 15] “Square lattice walks avoiding a quadrant”



A shorter history... but still a few papers

[BM15] MBM. Square lattice walks avoiding a quadrant

[S16]S. Mustapha. Non-D-finite walks in a three-quadrant cone

[B17] T. Budd. Winding of simple walks on the square lattice

[RT18] K. Raschel, A. Trotignon. On walks avoiding a quadrant

[T19] A. Trotignon. Discrete harmonic functions in the three-quarter plane

[DT20] T. Dreyfus, A. Trotignon. On the nature of four models of symmetric
walks avoiding a quadrant

[BKT20] M. Buchacher, M. Kauers, A. Trotignon. Quadrant walks starting
outside the quadrant

[EP20] A. Elvey Price. Counting lattice walks by winding angle

[BMW21] mbm, M. Wallner. Walks avoiding a quadrant and the reflection
principle

[BM21] MBM. Enumeration of three-quadrant walks via invariants: some
diagonally symmetric models

[EP22] A. Elvey Price. Enumeration of three-quadrant walks with small
steps and walks on other M-quadrant cones
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[BM21] MBM. Enumeration of three-quadrant walks via invariants: some
diagonally symmetric models

[EP22] A. Elvey Price. Enumeration of three-quadrant walks with small
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@ Asymptotics

e A functional equation for the series C(x,y;t) in Q[x,X,y, ¥][[t]]

@ Back to convex cones and series in Q[x, y][[t]]

e Cancel, or not cancel? (the kernel)

@ Algebraic vs. analytic approaches



Asymptotics for walks ending at (i, ) (excursions)

Fix a step set S C Z2, not contained in a half-plane, with step
polynomial S(x,y). Then for i,j >0,
q(i,j; n) ~ K”nn—l—n/e

andfori>Qorj>0,

_1__m/0
C(i,j;n) ~ K'y”n 1= mp-1

with
S{tz(xc’yc)

ST (e ve) S5 a(xen )

where S](x¢,Yc) = Si(xc,yc) = 0, with x., y. > 0.

u=S(xeye) 6 = arccos| —

[Denisov & Wachtel 15, Bostan, Raschel & Salvy 14, Mustapha 19]



Asymptotics for walks ending at (i, ) (excursions)

Fix a step set S C Z2, not contained in a half-plane, with step
polynomial S(x,y). Then for i,j >0,
q(i,j; n) ~ K#nn—l—n/e
andfori>0orj>0,
/0
C(’rJy n) ~ K,‘unn_l_hz/(?—l
Three steps:
@ change the weights of the steps so as to get a walk with no drift
@ decorrelate vertical and horizontal moves to find the “true
cone” where the walk leaves
@ compare with Brownian trajectories

X S




Asymptotics for walks ending at (i, ) (excursions)

Fix a step set S C Z2, not contained in a half-plane, with step
polynomial S(x,y). Then for i,j >0,
q(i,j; n) ~ K]lnn_l_n/e

andfori>Qorj>0,

_1__m/0
C(i,j;n) ~ K"unn =501

with
S{jz(xc’)/c)

ST () S5a(xerve)

where S;(x¢,Yc) = Si(xc,yc) = 0, with x.,y. > 0.

u=S(xeyc) 6 = arccos| —



Fix a stepset S C 72, not contained in a half-plane, with step
polynomial S(x,y). Then for i,j >0,
q(i,j; n) ~ Ky”n‘l_"/e
andfori>0orj>0,
c(i,j;n) =~ K'y”n_l_%
with
Si:z(xo)’c)

u=S(xcYe) 6 = arccos| —

S71(xerye) S35 (xerye)
where S]_, (XClyC) = Sé(xclyc) = O, with XerYe > 0.

If 6/7 is not a rational number, then the series Q; := ), q(i,j;n)t"

and Cj; := ), c(i,j;n)t" are not D-finite. Neither are Q(x,y) and
C(x,y).




three-quadrant models: 74
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three-quadrant models: 74

’—jﬁ
|G| <o00: 23 |G| < o0: 51

? Not D-finite

[Mustapha 19]
[Bostan, Raschel, Salvy 14]



Step by step construction:
Cxyit)=C(xy)=1+t(y+x+xy)C(x,y)—txCo_(y)— txyC_o(x)
with

Co-(7)= ) cOjin)yt",  Co(®)= ) c(i,0;n)x't".

j<0,n>0 i<0,n>0

Sk o b . i
1

o ~T

C(x,y;t)= Zc(i,j; n)x'y/t"

ij,n



Step by step construction:
Clxyit)=C(xy)=1+t(y +x+xy)C(x,y) - txCo(¥) ~ txyC_o(X)
with
Co-(7)= ) cOjin)yt",  Co(®)= ) c(i,0;n)x't".
j<0,n>0 i<0,n>0
or

(1-t(y+ X +x7))Clxy) = 1= txCo_(¥) — txy C_o(X),



Step by step construction:
Clxyit)=C(xy)=1+t(y +x+xy)C(x,y) - txCo(¥) ~ txyC_o(X)
with
Co-(7)= ) cOjin)yt",  Co(®)= ) c(i,0;n)x't".
j<0,n>0 i<0,n>0
or

(1-t(y+ X +x7))Clxy) = 1= txCo_(¥) — txy C_o(X),

(1 —t(y+x+ Xj/))xyC(x,y) = xy — tyCo,_(¥) — tx* C_o(X).




e First quadrant:

(1-t(y + %+ x7) )yQ(xy) = xy - tyQ(0,y) - tx* Q(x,0)
e three-quadrants:

(1=t +%+x7)C(xy) = xv — tyCo(7) — tx°C_o(%)
with

Co-(¥) = Z c(0,j;n)y’t", C_o(x)= Z c(i,0;n)x"t".

j<0,n>0 i<0,n>0

e A similar form... but C(x,y) involves negative powers of x and y
(Laurent polynomials)



Back to convex cones

e Split C(x,y) into two or three parts:
C(xy) =P(xy) +xM(x y) + yN(¥,x)

The series P(x,y), M(x,y) and N(x,y) have coefficients in Q[x, y].



e Split C(x,y) into two or three parts:
C(xy) =P(xy) +xM(x y) + yN(¥,x)
=xU(x,xy)+ D(xy)+yL(y,xy)
D(xy)

The series P(x,y), M(x,y) and N(x,y) have coefficients in Q[x,y]. The
same holds for U(x,y) and L(x,y).



e Split C(x,y) into two or three parts:
C(xy) =P(xy) +xM(x y) + yN(¥,x)
=xU(x,xy)+ D(xy)+yL(y,xy)
D(xy)

The series P(x,y), M(x,y) and N(x,y) have coefficients in Q[x,y]. The
same holds for U(x,y) and L(x,y).

e x/y-Symmetric models: M(x,y) = N(x,y) and U(x,y) = L(x,y) .



e Quadrant
XyK(XIY)Q(XJY) =Xy - R(X) _S(-y)

with K(x,y) =1-t(x+x+y+y) and R(x) = txQ(x,0) = S(x)



e Quadrant
xyK(X,y)Q(x,y) =Xy - R(X) _S(-y)

with K(x,y) =1-t(x+X+y+y) and R(x) = txQ(x,0) = S(x)
e Three-quadrants, split in two:
2xyF (%, y)U(xy) =y —R(x) = (1-2tx(1+y))S(y)

with Z (x,y) = 1 —t(x+ X+ xy + Xy), R(x) = 2tU(x,0) and
S(y) =yD(y)-



Convex cones give new types of equations |——

e Quadrant
xyK(x,y)Q(x,y) = xy =R(x) = S(y)
with K(x,y)=1-t(x+Xx+y+y)and R(x) = txQ(x,0) = S(x)

e Three-quadrants, split in two:
2xy Z (%, y)U(xy) =y —R(x) = (1-2tx(1+y))S(y)

with Z (x,y) =1—t(x+ X+ xy +Xy), R(x) = 2tU(x,0) and
S(y) =yD(y)-

e Three-quadrants, split in three:

yK(%,y)(2M(x,y) = M(0,y)) =
ty — 2tM(x,0) 4 t(x — x)yM(0,y) + tM(y,0)



The equation K(x,y) = 0 has two roots, Yy and Y7, with
Yo=aot +O(t?), Y= % +0O(1)



The equation K(x,y) = 0 has two roots, Yy and Y7, with
Yo=aot +O(t?), Y= % +0O(1)
e Quadrant

xyK(x,y)Q(x,y) = xy =R(x) = S(y)
If (...) both Y; can be substituted for y,

0=xy —R(x)=S(Yo) =xy—R(x)-S(Y1)

so that

S(Yo)=S(Y1) =x(Yo - Y1)




Cancel (the kernel), or not cancel?

The equation K(x,y) = 0 has two roots, Yg and Y7, with
Yo=agt+O(t2), Y= % +0(1)

e Quadrant
xyK(x,y)Q(x,y) = xy = R(x) = S(y)
If (...) both Y; can be substituted for y,

0= xy - R(x) = S(Yo) = xy = R(x) - S(¥1)

so that

[S(Yo)=S(Y1) =x(Yo-11)|

e Three-quadrants, split in two:

2xy Z (%, y)U(x,y) =y -R(x)—=(1-x7(y))S(y)

VA(Y0)S(Yo) = VA(Y1)S(Y1) =Yo- Y1

with A(y) rational.




using cancellation of the kernel

[Raschel-Trotignon 18, Dreyfus-Trotignon 20]
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Fix t smallin R, , and work in the domain of convergence (in x and y)
of the series.



Analytic approaches
Fix t smallin IR, and work in the domain of convergence (in x and y)
of the series.

e The above equations yield boundary values problems of the
Riemann-Carleman type. For instance, the quadrant equation

S(Yo)=S(Y1) =x(Yo-Y1)
implies that for y on a certain curve £ of the complex plane,
1S(y)-S7) =Xy -7)]

where y is now the complex conjugate of y, and X(y) = X(¥) is the
smallest root of K(X,y) =0.




Analytic approaches
Fix t smallin IR, and work in the domain of convergence (in x and y)
of the series.

e The above equations yield boundary values problems of the
Riemann-Carleman type. For instance, the quadrant equation

S(Yo)=S(Y1) =x(Yo-Y1)
implies that for y on a certain curve £ of the complex plane,
1S(y)-S7) =Xy -7)]

where y is now the complex conjugate of y, and X(y) = X(¥) is the
smallest root of K(X,y) =0.

e Similarly, in the three-quadrant case, for 8 diagonally symmetric
models,
VAW)S() - VAG)S() =y -5 |

« HtFr At




The equation

VAWY)S(y) - VAF)S (V) =y -

opens the way to
e uniform analytic solutions, in the form of contour integrals
involving an (explicit) function w(y) satisfying, on the curve L,

w(y) = w(y)-



The equation

VAWY)S(y) - VAF)S (V) =y -

opens the way to
e uniform analytic solutions, in the form of contour integrals
involving an (explicit) function w(y) satisfying, on the curve L,

w(y) = w(y).

Kyw zw’(2)

S(y) =yD(y) = :
=P y) wﬂf NTEETERT




Analytic approaches

The equation

AY)S(y)-VAF)S(Y) =y -y

opens the way to
@ uniform analytic solutions, in the form of contour integrals
involving an (explicit) function w(y) satisfying, on the curve L,

w(y) = w(y).
S(y)=yD(y) = Ky ) (Z) %
() =yD(y) T 0) = m)why) —wa) J\/W (w(z) - w(y))

cf. in the quadrant case,

=2 x| a zw'(z)(wly) = o) z
Q(0,y) =alg(y) + L l8(y) (w(z) —wp) (w(z) —w(y)) ¢

for explicit algebraic functions alg(y).

[Raschel-Trotignon 18, Trotignon|



Example: for J‘é , one can also write an integral-free expression

using invariants (talk 3):

1oy ) a(wiy)-a)
VAW) (yD(y“ i +y>) J0) = w(0) (wly) - w(-1)’

Ay) = (1-ty)?—4t?y(1+y)*

with

[mbm 21]



The equation

VAWY)S(y) - VAF)S (V) =y -

opens the way to
e uniform analytic solutions, in the form of contour integrals
involving an (explicit) function w(y) satisfying, on the curve L,

w(y) = w(y)-



Analytic vs. algebraic approaches

The equation

AY)S(y)-VAF)S(Y) =y -y

opens the way to
@ uniform analytic solutions, in the form of contour integrals
involving an (explicit) function w(y) satisfying, on the curve L,

w(y) = w(y).

@ application of Galois theory of difference equations



Analytic vs. algebraic approaches

The equation

AY)S(y)-VAF)S(Y) =y -y

opens the way to
@ uniform analytic solutions, in the form of contour integrals
involving an (explicit) function w(y) satisfying, on the curve L,

w(y) = w(y).

@ application of Galois theory of difference equations

Classification of some x/y symmetric three-quadrant models

< - A B|FE | A T

DF DF DF DF DA | not DA not DA not DA

[Raschel-Trotignon 18, Dreyfus-Trotignon 20]



Analytic vs. algebraic approaches

The equation

AY)S(y)-VAF)S(Y) =y -y

opens the way to
@ uniform analytic solutions, in the form of contour integrals
involving an (explicit) function w(y) satisfying, on the curve L,

w(y) = w(y).

@ application of Galois theory of difference equations

Classification of some x/y symmetric three-quadrant models

< - A B|FE | A T

DF DF DF DF DA | not DA not DA not DA

alg alg alg

[mbm, Raschel-Trotignon 18, Dreyfus-Trotignon 20]



Analytic vs. algebraic approaches

The equation

AY)S(y)-VAF)S(Y) =y -y

opens the way to
@ uniform analytic solutions, in the form of contour integrals
involving an (explicit) function w(y) satisfying, on the curve L,

w(y) = w(y).

@ application of Galois theory of difference equations

Two drawbacks
@ misses simpler cases
e the algebraic/differential nature in terms of the variable t is not
clear



An algebraic approach with no kernel cancellation, which
generalizes the reflection principle.

= A reflection principle for three-quadrant models?



e The equation reads (with K(x,y) =1-t(x+Xx+y+y)):
K(x,y)xyQ(x,y) = xy — txQ(x,0) — tyQ(0, y)

e The orbit of (x,y) under G is

(%Y ) (R, Y (%, 7)o (%, 7 ) s (5, ).




Some simple quadrant models —+

e The equation reads (with K(x,y) =1-t(x+Xx+y+¥)):
K(xy)xyQ(xy) = xy — txQ(x,0) - tyQ(0,y)

e The orbit of (x,y) under G is

(%Y ) (R, Y (%, 7)o (%, 7 ) s (5, ).

e All transformations of G leave K(x,y) invariant. Hence

K(x,y) xyQ(xy) = xy - txQ(x,0) - tyQ(0,y)
K(xy)xyQ(xy) = xy - txQ(x0) - tyQ(0,y)
K(xy)xyQ(xy) = Xy - txQ(x0) - tyQ(0,y)
K(xy)xyQ(xy) = xy - txQ(x,0) - tyQ(0,¥).



Some simple quadrant models —+

e All transformations of G leave K(x,y) invariant. Hence

K(x,y) xyQ(x,y) = xy -
Kxy) xyQ(xy) = xy -
K(xy)xyQ(xy) = xy -
K(x,y) xyQ(x,y) = xy -

txQ(x,0) - tyQ(0,y)
txQ(x,0) - tyQ(0,y)
txQ(x,0) - tyQ(0,y)
txQ(x,0) - tyQ(0,¥).

= Form the alternating sum of the equation over the orbit:

K(y) Q00 ) - 2yQ(%,y) +55Q(%.9) - x7Q(x.9) ) =

Xy =Xy + Xy —Xxy

(the orbit sum).



Xy =Xy +Xy—Xxy
1-t(x+x+y+y)

xyQ(x,y) = xyQ(X,y) +xyQ(X,¥) - xyQ(x,y) =

e Both sides are power series in t, with coefficients in Q[x, X, y, ¥].



Xy =Xy +Xy—Xxy
1-t(x+x+y+y)

xyQ(x,y) = xyQ(X,y) +xyQ(X,¥) - xyQ(x,y) =

e Both sides are power series in t, with coefficients in Q[x, )'(,y,j/].
e Extract the part with positive powers of x and y:

Xy =Xy + Xy — Xy

xyQ(xy) =[xy 1-t(x+Xx+y+y)

is a D-finite series.
[Lipshitz 88]



e For the 23 models with a finite group,

) sign(g)g(wQ(x,y)) = ﬁ g;sign(g)g(xy) =

geG
where g(A(x,y)) := A(g(xy)).

e The right-hand side is an explicit rational series.

oS
K(x,y)




The alternating orbit sum for finite groups

e For the 23 models with a finite group,

)_sien(8)g(vQ(xy)) = Y sian(g)g() =

geCG K(X’y) geG
where g(A(x,y)) := A(g(xy)).

e The right-hand side is an explicit rational series.

K(xy)'

e For the 19 models where the orbit sum is non-zero,
oS

xyQ(x,y) = [X>Oy>0]m

is a D-finite series. [mbm-Mishna 10]



The alternating orbit sum for finite groups

e For the 23 models with a finite group,

Zsign(g)g(X)/Q (xy)) =

gec K(Xl.y)

where g(A(x,y)) := A(g(xy)).

e The right-hand side is an explicit rational series.

e For the 19 models where the orbit sum is non-zero,

xyQ(x,y) =[xy K(Cisy)

is a D-finite series.

e In particular, for the 7 Weyl models, this is just the reflection

principle of [Gessel & Zeilberger 92]

H X X BRI




|ls,
Xy

1-t(x+x+y+y) ]




\
X+y

t(x+x+y+

1




Xy — Xy + Xy — Xy

1-t(x+x+y+y)



Trersectonprnepte [
i
Gl

;= xyQ(x,y) ~XyQ(X,y) + Xy Q(X,¥) - xy Q(x,7)

Xy =Xy + Xy —xy
I-t(x+Xx+y+y




=
1

= XyQ(X!y) _)_O/Q()_(;}’) +)_<.)_/Q()_<l.)_/) —X)_/Q(X,)_/)

Xy — Xy + Xy — Xy
1-t(x+x+y+y)




sign-reversing partial involution

Xy — Xy + Xy — Xy
1-t(x+x+y+y)

= XyQ(X!y) _)_O/Q()_(;}’) +)_<.)_/Q()_<l.)_/) —X)_/Q(X,)_/)



sign-reversing partial involution

Xy — Xy + Xy — Xy
1-t(x+x+y+y)

= XyQ(X!y) _)_O/Q()_(;}’) +)_<.)_/Q()_<l.)_/) —X)_/Q(X,)_/)



R -
| [ S

sign-reversing partial involution

Xy — Xy + Xy — Xy
1-t(x+x+y+y)

= XyQ(X!y) _)_O/Q()_(;}’) +)_<.)_/Q()_<l.)_/) —X)_/Q(X,)_/)



R -
| [ S

sign-reversing partial involution

Xy — Xy + Xy — Xy
1-t(x+x+y+y)

= XyQ(X!y) —)_O/Q()_(;}/) +)_(.)_/Q()_<l.)_/) —X)_/Q(X,)_/)

e Similar reflection argument for the 7 Weyl models.

H DK PR R s




sign-reversing partial involution

AlPs

Xy =Xy +Xy-xy _ xyQ(x,y) - xyQ(%,y) + Xy Q(%,7) - x7 Q(x,7)

1-t(x+x+y+y)

e The 12 non-Weyl models

R Y IR PXPRIA AP PRIAIR




The alternating orbit sum for finite groups

e For the 23 models with a finite group,

Zsign(g)g(X)/Q (xy)) =

geCG geG
where g(A(x,y)) := A(g(x,y)).
e The right-hand side is an explicit rational series.

e For the 19 models where the orbit sum is non-zero,

oS

xyQ(x,y) =[xy R(xy)

is a D-finite series.

e For the 4 models with vanishing orbit sum, Q(x,y) is algebraic.



quadrant models: 79
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D-finite Not D-finite
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e Equations for the quadrant and for three-quadrants:
(1 —t(x+x+y +y))ny(x,y) =xy —tyQ(0,y) — txQ(x,0)
(1 —t(x+Xx+y +)7))xyC(x,y) = xy —tyCo _(¥) — txC_p(X)

e The group: (x,y), (%,¥),(X,¥), (x,¥)



A reflection principle for three-quadrant walks? TL

e Equations for the quadrant and for three-quadrants:
(1-t(x+x+y+7))vQ(xy) = xy - tyQ(0,y) - txQ(x,0)
(1-t(x+X+y+7))xyC(xy) = xy —tyCo,(¥) - txC_o(X)

o The group: (x,), (%,y), (%.7), (x.7)

e The alternating sums of xyQ(x,y) and xyC(x,y) are the same:

(1-t(x+x+y+7)) (0C(xy) - xyC(%,y) + Xy C(%,7) - x¥ C(x, 7))
=(1-t(x+x+y+7))(xvQ(xy) - xyQ(%,y) + X7Q(%,7) - xyQ(x,7))
=Xy — Xy + Xy — xy.



e The alternating sums of xyQ(x,y) and xyC(x,y) are the same:
XyC(le) - )_(yC()?,y) + )_(_)_/C()_(,_)_/) - X_;/C(X,S/)
=xyQ(xy) -XyQ(X,y) +XyQ(%,¥) - xyQ(x,¥)
= (xy— %y + 37— xy)/(1 - t(x+ X +y +7))



A reflection principle for three-quadrant walks? TL

e The alternating sums of xyQ(x,y) and xyC(x,y) are the same:
XyC(le) - )_(yC()_(,y) + )?)_/C()?’)_/) - X)_/C(X’)_/)
= XyQ(Xr_y) _)_(yQ()?r.y) +)_<)_/Q()_<:)_/) _X_)_/Q(X,_)_/)
=(xy-xy +x7 - x7)(1-t(x+ X +y +7))
e The alternating sums of the following series are also the same:

—xyQ(%,y), xyQ(xX,y), —xyQ(x,y).



A reflection principle for three-quadrant walks? TL

e The alternating sums of xyQ(x,y) and xyC(x,y) are the same:
xyC(x,y) = xyC(X,y) + xyC(x,y) - xyC(x,¥)
=xyQ(xy) —xyQ(x,y) + Xy Q(x,y) - xyQ(x,¥)
— (xy—)_(y—i—)_()_/—x)_/)/(l - t(x+>‘<+y+)7))
e The alternating sums of the following series are also the same:
-XyQ(xy), XyQ(%¥), —xyQ(x,¥).
e Define A(x,y) by

WCloy) = xyA(y) + 2 (5Q(xy) Ty Q(%,y) - x7Q(x9)).



A reflection principle for three-quadrant walks? TL

e The alternating sums of xyQ(x,y) and xyC(x,y) are the same:
xyC(x,y) = xyC(X,y) + xyC(x,y) - xyC(x,¥)
=xyQ(xy) —xyQ(x,y) + Xy Q(x,y) - xyQ(x,¥)
— (xy—)_(y—i—)_()_/—x)_/)/(l - t(x+>‘<+y+)7))
e The alternating sums of the following series are also the same:
-XyQ(xy), XyQ(%¥), —xyQ(x,¥).
e Define A(x,y) by

WCloy) = xyA(y) + 2 (5Q(xy) Ty Q(%,y) - x7Q(x9)).

e Then A(x,y) has orbit sum zero and satisfies

_ 2xy +Xy +xy

(I-t(x +X+y+3)xyA(xy) = 3 —tyA_(y) - txA_(X)




Three-quadrant equations with vanishing orbit sum:
algebraicity?

e The series A(x,y) has orbit sum zero and satisfies

K(x,y)xyA(x,y) = (2xy + Xy + xy)/3 = tyA_(y) — txA_(X)

Thm. The series A(x,y) is algebraic for the three following models.

>< E \ [mbm 16, mbm & Wallner 21], talk 2




Three-quadrant equations with vanishing orbit sum:
algebraicity?

e The series A(x,y) has orbit sum zero and satisfies

K(x,y)xyA(x,y) = (2xy + Xy + x¥)/3 - tyA_(V) — txA_(X)

Thm. The series A(x,y) is algebraic for the three following models.

XK

Caveat: one can design slightly exotic quadrant-like equations with
vanishing orbit sum and transcendental solutions [Buchacher,
Kauers, Trotignon 20]

[mbm 16, mbm & Wallner 21], talk 2



Three-quadrant equations with vanishing orbit sum:
algebraicity?

e The series A(x,y) has orbit sum zero and satisfies

K(x,y)xyA(x,y) = (2xy + Xy + x¥)/3 - tyA_(V) — txA_(X)

Thm. The series A(x,y) is algebraic for the three following models.

+

X

E [mbm 16, mbm & Wallner 21], talk 2

Caveat: one can design slightly exotic quadrant-like equations with
vanishing orbit sum and transcendental solutions [Buchacher,
Kauers, Trotignon 20]

e The reflection principle also plays a role in the two papers on the
winding number of lattice walks, with applications to tree-quadrant
walks [Budd 17, Elvey Price 20]
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+ D-finiteness results for some excursions [Budd 17, Elvey Price 20]
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Le bouquet final: Andrew’s talk (talk 4)

The series C(x,y) and Q(x,y) are of the same algebraic/differential
nature, at leastin x and y.

three-quadrant models: 74
\
\ |
|G| < 00: 23 |G| = o0: 51

| |
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R L
4 19 9 42
\ | | \

algebraic DF transc. D-alg. not D-alg.




