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Counting walks in a cone

Let S be a finite subset of Zd (set of steps) and p0 ∈Zd (starting
point).

A path (walk) of length n starting at p0 is a sequence (p0,p1, . . . ,pn)
such that pi+1 − pi ∈ S for all i .

Let C be a cone of Rd .

Example. S = {10, 1̄0,11̄, 1̄1}, p0 = (0,0)

and C = R
2
+.
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A typical question

Questions
What is the number a(n) of n-step walks starting at p0 and
contained in C?

For i = (i1, . . . , id ) ∈ C , what is the number a(i ;n) of such walks
that end at i?

Example. S = {10, 1̄0,11̄, 1̄1}, p0 = (0,0) and C = R
2
+.
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(i , j) = (5,1)



Why count walks in cones?

Many discrete objects can be encoded in that way:
I in combinatorics, statistical physics...
I in (discrete) probability theory: random walks, queuing theory...
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Why count walks in cones?

Many discrete objects can be encoded in that way:
I in combinatorics, statistical physics...
I in (discrete) probability theory: random walks, queuing theory...

To reach a better understanding of functional equations with
divided differences/discrete derivatives:

Q(x ,y) = 1 + txyQ(x ,y) + t
Q(x ,y)−Q(0,y)

x
+ t

Q(x ,y)−Q(x ,0)

y



Generating functions

• Our original question:

a(n) = ? a(i ;n) = ?

• Generating functions:

A(t) =
∑
n≥0

a(n)tn , A(x1, . . . ,xd ; t) =
∑
i ,n

a(i ;n)x i tn

=
∑

w walk
t |w | =

∑
w walk

x
i(w)t |w |

Remarks
A(1, . . . ,1; t) = A(t)
if C ⊂R

d
+, then A(0, . . . ,0; t) counts walks ending at (0, . . . ,0)

A(0,x2, . . . ,xd ; t) counts walks ending on the hyperplane i1 = 0
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Generating functions

• Our original question:

a(n) = ? a(i ;n) = ?

• Generating functions:

A(t) =
∑
n≥0

a(n)tn , A(x1, . . . ,xd ; t) =
∑
i ,n

a(i ;n)x i tn

=
∑

w walk
t |w | =

∑
w walk

x
i(w)t |w |

Remarks
A(1, . . . ,1; t) = A(t)
if C ⊂R

d
+, then A(0, . . . ,0; t) counts walks ending at (0, . . . ,0)

A(0,x2, . . . ,xd ; t) counts walks ending on the hyperplane i1 = 0

Can one express these series? What is their nature?



A hierarchy of formal power series

• Rational series

A(t) =
1− t

1− t − t2

• Algebraic series

1−A(t) + tA(t)2 = 0

• Differentially finite series (D-finite)

t(1−16t)A ′′(t) + (1−32t)A ′(t)−4A(t) = 0

• D-algebraic series

(2t + 5A(t)−3tA ′(t))A ′′(t) = 48t

Multi-variate series: one DE per variable
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I. Two dimensional cones



A (very) basic cone: the full space

Rational series
If S ⊂Z

d is finite and C = R
d , then A(x; t) is rational:

a(n) = |S|n ⇔ A(t) =
∑
n≥0

|S|n tn =
1

1− |S| t

More generally:

A(x; t) =
1

1− t
∑

s∈S x
s
.



A (very) basic cone: the full space

Rational series
If S ⊂Z

d is finite and C = R
d , then A(x; t) is rational:

a(n) = |S|n ⇔ A(t) =
∑
n≥0

|S|n tn =
1

1− |S| t

More generally:

A(x; t) =
1

1− t
∑

s∈S x
s
.

The step polynomial:
S(x) =

∑
s∈S

x
s



Also well-known: a (rational) half-space

Algebraic series

If S ⊂Z
d is finite and C is a rational half-space, then A(x; t) is

algebraic, given by an explicit system of polynomial equations.



Also well-known: a (rational) half-space

By projection: Equivalent to weighted walks in 1D confined to a
half-line

projection

xx̄

xx

x̄ x̄ x̄
x

xx xx

x̄

Notation: x̄ := 1/x



Walks on a half-line: main approaches

• Grammars [Labelle-Yeh 90, Merlini et al. 99, Duchon 00...]

• Gessel’s factorization of general walks [Gessel 80]

• The kernel method [mbm-Petkovšek 00, Banderier-Flajolet 02]
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Example: S = {−1,+1}
H0 = 1 + t2H2

0

H(y) = H0 + tyH0H(y)

H0

H(y)

= +

= +

• Gessel’s factorization of general walks [Gessel 80]
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1−tS (y) = H<(ȳ)
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1−tS (y) = H<(ȳ)

where H<(ȳ) ∈ 1 + ȳQ[ȳ][[t ]] and H(y) ∈Q[y][[t ]], with ȳ = 1/y .
Factor 1− tS(y) (as a polynomial in y)

⇒ H(y) = −1
t

M∏
i=1

1
y −Yi

,

where M = maxS and Y1, . . . ,YM are the roots of 1− tS(y) that are
infinite at t = 0.

• The kernel method [mbm-Petkovšek 00, Banderier-Flajolet 02]
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• Grammars [Labelle-Yeh 90, Merlini et al. 99, Duchon 00...]

• Gessel’s factorization of general walks [Gessel 80]

• The kernel method [mbm-Petkovšek 00, Banderier-Flajolet 02]

Example: S = {−2,1}. An equation in one catalytic variable y

H(y) = 1 + t(y + ȳ2)H(y)− t ȳ2H0 − t ȳH1,

or
(1− t(y + ȳ2))H(y) = 1− t ȳ2H0 − t ȳH1.

In general,
(1− tS(y))H(y) = Pol(ȳ),

where Pol is a polynomial of degree m = −minS .

Factor 1− tS(y)⇒ Same expression as Gessel’s factorization:

H(y) = −1
t

d∏
i=1

1
y −Yi
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The “next” case: two bounding hyperplanes

• Convex cone: walks in a quadrant

• Non-convex cone: walks avoiding a quadrant

•Walks in the slit plane [mbm-Schaeffer 02, mbm 01, Rubey 04]
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• Convex cone: walks in a quadrant

• Non-convex cone: walks avoiding a quadrant

•Walks in the slit plane [mbm-Schaeffer 02, mbm 01, Rubey 04]



II. Quadrant walks

(i , j) = (4,3)



Quadrant walks: a small chronology

• Pre-2000: sporadic examples, with various motivations

Kreweras (ALG)
[Kreweras 65, Gessel 86,
Niederhausen 83]

Gouyou-Beauchamps (DF) [Gouyou-Beauchamps 86]

Simple walks (DF)
[Guy, Krattenthaler
& Sagan 92]

Tandem walks (DF) [Regev 81]

The reflection principle (DF) [Gessel-Zeilberger 92]
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Quadrant walks: a small chronology

Around 2000
New ingredients
I Functional equations with two “catalytic” variables
I Functional equations in one catalytic variable have algebraic

solutions [mbm-Jehanne 05]
I Le petit livre jaune [Fayolle, Iasnogorodski & Malyshev 99], and

the group of the walk

Asking systematic questions
I Why are some models (=Kreweras’) algebraic? [mbm 02, 04]
I Are all models D-finite? [mbm-Petkovšek 02]

DF

not DF
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Functional equations for quadrant walks

A step-by-step construction

Example: S = {01, 1̄0,11̄}, with x̄ := 1/x and ȳ := 1/y

Q(x ,y) = 1 + t(y + x̄ + xȳ)Q(x ,y)− t x̄Q(0,y)− txȳQ(x ,0)

Q(x ,y) ≡Q(x ,y; t) =
∑

i ,j ,n≥0

q(i , j ;n)x iy j tn

or(
1− t(y + x̄ + xȳ)

)
xyQ(x ,y) = xy − tyQ(0,y)− tx2Q(x ,0)

• The polynomial 1− t(y + x̄ + xȳ) is the kernel of this equation

• The equation is linear, with two catalytic variables x and y
(tautological at x = 0 or y = 0) [Zeilberger 00]
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The group of the model

Example. Take S = {1̄0,01,11̄}, with step polynomial

S(x ,y) =
1
x

+ y +
x
y

= x̄ + y + xȳ

Observation: S(x ,y) is left unchanged by the rational
transformations

Φ : (x ,y) 7→ (,y) and Ψ : (x ,y) 7→ (x ,)

They are involutions, and generate a finite dihedral group G :

(x̄y ,y)

(x ,xȳ)

(x̄y , x̄)

(ȳ ,xȳ)

Ψ

Φ
Ψ

Φ

(x ,y)

Ψ

Φ

(ȳ , x̄)

Remark. G can be defined for any model with small steps
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(x̄y , x̄)
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The group is not always finite

• If S = {01̄, 1̄1̄, 1̄0,11}, then S(x ,y) = x̄(1 + ȳ) + ȳ + xy and

Φ : (x ,y) 7→ (x̄ ȳ(1 + ȳ),y) and Ψ : (x ,y) 7→ (x , x̄ ȳ(1 + x̄))

generate an infinite group:

Ψ

Φ

(x ,y)

· · ·

· · ·(x , x̄ ȳ(1 + x̄))

(x̄ ȳ(1 + ȳ),y)
Ψ

Φ

· · ·

· · ·

· · ·

· · ·

Φ

Ψ

Ψ

Φ



Marni à Bordeaux (2003-2004)

• [Mishna 06a, Mishna-Rechnitzer 07a]
Allowing three small steps:
three more models solved

alg not DF not DF

• [mbm-Mishna 08a] “Walks with small steps in the quarter plane”



Marni à Bordeaux (2003-2004)

• [Mishna 06a, Mishna-Rechnitzer 07a]
Allowing three small steps:
three more models solved

alg not DF not DF

• [mbm-Mishna 08a] “Walks with small steps in the quarter plane”

Small steps: S ⊂ {−1,0,1}2 \ {(0,0)}. Only 28 models.

Some models are trivial, or equivalent to a half plane problem

⇒ 79 really interesting and distinct models
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Classification of quadrant walks: the early days

(small steps)

quadrant models: 79

|G | <∞: 23

D-finite?

1

DF?

3

algebraic

19

DF

|G |=∞: 56

Not D-finite?

2

not DF

54

?

Gessel



2000-2020: more authors, techniques, and results
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III. Three-quadrant problems with

small steps

The 5 singular models become trivial (rational GF)⇒ 74 interesting
models



A shorter history

Around 2006 (?)



Motivation: a new approach to Gessel’s walks

Idea: count Gessel’s walks by the reflection principle

If ci ,j (n) counts walks starting at (−1,0) and avoiding the negative
quadrant, then for j ≥ 0 and i < j ,

ci ,j (n)− cj ,i (n) = gi+1,j (n).

(i , j)

A Gessel walk

(i , j)

(j , i)



An a posteriori motivation

A problem with nice numbers!

Example: the number of walks of length 2n on the diagonal square
lattice starting and ending at (0,0) and avoiding the negative
quadrant is

c(0,0;2n) =
16n

9

(
3

(1/2)2
n

(2)2
n

+ 8
(1/2)n(7/6)n

(2)n(4/3)n
−2

(1/2)n(5/6)n
(2)n(5/3)n

)
with (a)n = a(a + 1) · · ·(a +n −1).
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An a posteriori motivation

A problem with nice numbers!

Example: the number of walks of length 2n on the diagonal square
lattice starting and ending at (0,0) and avoiding the negative
quadrant is

c(0,0;2n) =
16n

9

(
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(2)n(4/3)n
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(2)n(5/3)n

)
with (a)n = a(a + 1) · · ·(a +n −1).

Two known components: Quadrant walks (left) and Gessel walks
(right). Conjectured before 2007...

[mbm 15] “Square lattice walks avoiding a quadrant”



A shorter history... but still a few papers

[BM15] MBM. Square lattice walks avoiding a quadrant

[S16] S. Mustapha. Non-D-finite walks in a three-quadrant cone

[B17] T. Budd. Winding of simple walks on the square lattice

[RT18] K. Raschel, A. Trotignon. On walks avoiding a quadrant

[T19] A. Trotignon. Discrete harmonic functions in the three-quarter plane

[DT20] T. Dreyfus, A. Trotignon. On the nature of four models of symmetric
walks avoiding a quadrant

[BKT20] M. Buchacher, M. Kauers, A. Trotignon. Quadrant walks starting
outside the quadrant

[EP20] A. Elvey Price. Counting lattice walks by winding angle

[BMW21] mbm, M. Wallner. Walks avoiding a quadrant and the reflection
principle

[BM21] MBM. Enumeration of three-quadrant walks via invariants: some
diagonally symmetric models

[EP22] A. Elvey Price. Enumeration of three-quadrant walks with small
steps and walks on other M-quadrant cones



A shorter history... but still a few papers

[BM15] MBM. Square lattice walks avoiding a quadrant

[S16] S. Mustapha. Non-D-finite walks in a three-quadrant cone

[B17] T. Budd. Winding of simple walks on the square lattice

[RT18] K. Raschel, A. Trotignon. On walks avoiding a quadrant

[T19] A. Trotignon. Discrete harmonic functions in the three-quarter plane

[DT20] T. Dreyfus, A. Trotignon. On the nature of four models of symmetric
walks avoiding a quadrant

[BKT20] M. Buchacher, M. Kauers, A. Trotignon. Quadrant walks starting
outside the quadrant

[EP20] A. Elvey Price. Counting lattice walks by winding angle

[BMW21] mbm, M. Wallner. Walks avoiding a quadrant and the reflection
principle

[BM21] MBM. Enumeration of three-quadrant walks via invariants: some
diagonally symmetric models

[EP22] A. Elvey Price. Enumeration of three-quadrant walks with small
steps and walks on other M-quadrant cones



A shorter history... but still a few papers

[BM15] MBM. Square lattice walks avoiding a quadrant

[S16] S. Mustapha. Non-D-finite walks in a three-quadrant cone

[B17] T. Budd. Winding of simple walks on the square lattice

[RT18] K. Raschel, A. Trotignon. On walks avoiding a quadrant

[T19] A. Trotignon. Discrete harmonic functions in the three-quarter plane

[DT20] T. Dreyfus, A. Trotignon. On the nature of four models of symmetric
walks avoiding a quadrant

[BKT20] M. Buchacher, M. Kauers, A. Trotignon. Quadrant walks starting
outside the quadrant

[EP20] A. Elvey Price. Counting lattice walks by winding angle

[BMW21] mbm, M. Wallner. Walks avoiding a quadrant and the reflection
principle

[BM21] MBM. Enumeration of three-quadrant walks via invariants: some
diagonally symmetric models

[EP22] A. Elvey Price. Enumeration of three-quadrant walks with small
steps and walks on other M-quadrant cones



A shorter history... but still a few papers

[BM15] MBM. Square lattice walks avoiding a quadrant

[S16] S. Mustapha. Non-D-finite walks in a three-quadrant cone

[B17] T. Budd. Winding of simple walks on the square lattice

[RT18] K. Raschel, A. Trotignon. On walks avoiding a quadrant

[T19] A. Trotignon. Discrete harmonic functions in the three-quarter plane

[DT20] T. Dreyfus, A. Trotignon. On the nature of four models of symmetric
walks avoiding a quadrant

[BKT20] M. Buchacher, M. Kauers, A. Trotignon. Quadrant walks starting
outside the quadrant

[EP20] A. Elvey Price. Counting lattice walks by winding angle

[BMW21] mbm, M. Wallner. Walks avoiding a quadrant and the reflection
principle

[BM21] MBM. Enumeration of three-quadrant walks via invariants: some
diagonally symmetric models

[EP22] A. Elvey Price. Enumeration of three-quadrant walks with small
steps and walks on other M-quadrant cones



A shorter history... but still a few papers

[BM15] MBM. Square lattice walks avoiding a quadrant

[S16] S. Mustapha. Non-D-finite walks in a three-quadrant cone

[B17] T. Budd. Winding of simple walks on the square lattice

[RT18] K. Raschel, A. Trotignon. On walks avoiding a quadrant

[T19] A. Trotignon. Discrete harmonic functions in the three-quarter plane

[DT20] T. Dreyfus, A. Trotignon. On the nature of four models of symmetric
walks avoiding a quadrant

[BKT20] M. Buchacher, M. Kauers, A. Trotignon. Quadrant walks starting
outside the quadrant

[EP20] A. Elvey Price. Counting lattice walks by winding angle

[BMW21] mbm, M. Wallner. Walks avoiding a quadrant and the reflection
principle

[BM21] MBM. Enumeration of three-quadrant walks via invariants: some
diagonally symmetric models

[EP22] A. Elvey Price. Enumeration of three-quadrant walks with small
steps and walks on other M-quadrant cones



A shorter history... but still a few papers

[BM15] MBM. Square lattice walks avoiding a quadrant

[S16] S. Mustapha. Non-D-finite walks in a three-quadrant cone

[B17] T. Budd. Winding of simple walks on the square lattice

[RT18] K. Raschel, A. Trotignon. On walks avoiding a quadrant

[T19] A. Trotignon. Discrete harmonic functions in the three-quarter plane

[DT20] T. Dreyfus, A. Trotignon. On the nature of four models of symmetric
walks avoiding a quadrant

[BKT20] M. Buchacher, M. Kauers, A. Trotignon. Quadrant walks starting
outside the quadrant

[EP20] A. Elvey Price. Counting lattice walks by winding angle

[BMW21] mbm, M. Wallner. Walks avoiding a quadrant and the reflection
principle

[BM21] MBM. Enumeration of three-quadrant walks via invariants: some
diagonally symmetric models

[EP22] A. Elvey Price. Enumeration of three-quadrant walks with small
steps and walks on other M-quadrant cones



A shorter history... but still a few papers

[BM15] MBM. Square lattice walks avoiding a quadrant

[S16] S. Mustapha. Non-D-finite walks in a three-quadrant cone

[B17] T. Budd. Winding of simple walks on the square lattice

[RT18] K. Raschel, A. Trotignon. On walks avoiding a quadrant

[T19] A. Trotignon. Discrete harmonic functions in the three-quarter plane

[DT20] T. Dreyfus, A. Trotignon. On the nature of four models of symmetric
walks avoiding a quadrant

[BKT20] M. Buchacher, M. Kauers, A. Trotignon. Quadrant walks starting
outside the quadrant

[EP20] A. Elvey Price. Counting lattice walks by winding angle

[BMW21] mbm, M. Wallner. Walks avoiding a quadrant and the reflection
principle

[BM21] MBM. Enumeration of three-quadrant walks via invariants: some
diagonally symmetric models

[EP22] A. Elvey Price. Enumeration of three-quadrant walks with small
steps and walks on other M-quadrant cones



IV. Some ideas and guiding lines

Asymptotics

A functional equation for the series C(x ,y; t) in Q[x , x̄ ,y , ȳ][[t ]]

Back to convex cones and series in Q[x ,y][[t ]]

Cancel, or not cancel? (the kernel)

Algebraic vs. analytic approaches



Asymptotics for walks ending at (i , j) (excursions)

Fix a step set S ⊂Z
2, not contained in a half-plane, with step

polynomial S(x ,y). Then for i , j ≥ 0,

q(i , j ;n) ' κµnn−1−π/θ

and for i ≥ 0 or j ≥ 0,

c(i , j ;n) ' κ′µnn−1− π/θ
2π/θ−1

with

µ= S(xc ,yc), θ = arccos

− S ′′1,2(xc ,yc)√
S ′′1,1(xc ,yc)S ′′2,2(xc ,yc)


where S ′1(xc ,yc) = S ′2(xc ,yc) = 0, with xc ,yc > 0.

[Denisov & Wachtel 15, Bostan, Raschel & Salvy 14, Mustapha 19]



Asymptotics for walks ending at (i , j) (excursions)

Fix a step set S ⊂Z
2, not contained in a half-plane, with step

polynomial S(x ,y). Then for i , j ≥ 0,

q(i , j ;n) ' κµnn−1−π/θ

and for i ≥ 0 or j ≥ 0,

c(i , j ;n) ' κ′µnn−1− π/θ
2π/θ−1

Three steps:
change the weights of the steps so as to get a walk with no drift
decorrelate vertical and horizontal moves to find the “true
cone” where the walk leaves
compare with Brownian trajectories
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Asymptotics for walks ending at (i , j) (excursions)

Fix a step set S ⊂Z
2, not contained in a half-plane, with step

polynomial S(x ,y). Then for i , j ≥ 0,

q(i , j ;n) ' κµnn−1−π/θ

and for i ≥ 0 or j ≥ 0,

c(i , j ;n) ' κ′µnn−1− π/θ
2π/θ−1

with

µ= S(xc ,yc), θ = arccos

− S ′′1,2(xc ,yc)√
S ′′1,1(xc ,yc)S ′′2,2(xc ,yc)


where S ′1(xc ,yc) = S ′2(xc ,yc) = 0, with xc ,yc > 0.

Proposition [Bostan, Raschel & Salvy 14]

If θ/π is not a rational number, then the series Qij :=
∑

n q(i , j ;n)tn

and Cij :=
∑

n c(i , j ;n)tn are not D-finite. Neither are Q(x ,y) and
C(x ,y).



Application: non-D-finite three-quadrant models

three-quadrant models: 74

|G | <∞: 23

?

|G | <∞: 51

?

[Mustapha 19]
[Bostan, Raschel, Salvy 14]



Application: non-D-finite three-quadrant models

three-quadrant models: 74

|G | <∞: 23

?

|G | <∞: 51

Not D-finite

[Mustapha 19]
[Bostan, Raschel, Salvy 14]



A functional equation

Step by step construction:

C(x ,y; t) ≡ C(x ,y) = 1 + t(y + x̄ + xȳ)C(x ,y)− t x̄C0,−(ȳ)− txȳC−,0(x̄)

with

C0,−(ȳ) =
∑

j<0,n≥0

c(0, j ;n)y j tn , C−,0(x̄) =
∑

i<0,n≥0

c(i ,0;n)x i tn .

C(x ,y; t) =
∑
i ,j ,n

c(i , j ;n)x iy j tn

or(
1− t(y + x̄ + xȳ)

)
xyC(x ,y) = xy − tyC0,−(ȳ)− tx2C−,0(x̄).
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A comparison

• First quadrant:(
1− t(y + x̄ + xȳ)

)
xyQ(x ,y) = xy − tyQ(0,y)− tx2Q(x ,0)

• three-quadrants:(
1− t(y + x̄ + xȳ)

)
xyC(x ,y) = xy − tyC0,−(ȳ)− tx2C−,0(x̄)

with

C0,−(ȳ) =
∑

j<0,n≥0

c(0, j ;n)y j tn , C−,0(x̄) =
∑

i<0,n≥0

c(i ,0;n)x i tn .

• A similar form... but C(x ,y) involves negative powers of x and y
(Laurent polynomials)



Back to convex cones

• Split C(x ,y) into two or three parts:

C(x ,y) = P(x ,y) + x̄M(x̄ ,y) + ȳN(ȳ ,x)

= x̄U(x̄ ,xy) +D(xy) + ȳL(ȳ ,xy)

x̄M(x̄ ,y)

ȳN(ȳ ,x)

P(x ,y)

ȳL(ȳ ,xy)

D(xy)

x̄U(x̄ ,xy)

The series P(x ,y),M(x ,y) and N(x ,y) have coefficients in Q[x ,y].

The
same holds for U(x ,y) and L(x ,y).

• x/y-Symmetric models: M(x ,y) = N(x ,y) and U(x ,y) = L(x ,y) .
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ȳN(ȳ ,x)

P(x ,y)
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Convex cones give new types of equations

• Quadrant
xyK(x ,y)Q(x ,y) = xy −R(x)−S(y)

with K(x ,y) = 1− t(x + x̄ + y + ȳ) and R(x) = txQ(x ,0) = S(x)

• Three-quadrants, split in two:

2xyK (x ,y)U(x ,y) = y −R(x)− (1−2tx(1 + y))S(y)

withK (x ,y) = 1− t(x + x̄ + xy + x̄ ȳ), R(x) = 2tU(x ,0) and
S(y) = yD(y).

• Three-quadrants, split in three:

yK(x ,y)(2M(x ,y)−M(0,y)) =

ty −2tM(x ,0) + t(x − x̄)yM(0,y) + tM(y ,0)
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Cancel (the kernel), or not cancel?

The equation K(x ,y) = 0 has two roots, Y0 and Y1, with

Y0 = a0t +O(t2), Y1 =
a1

t
+O(1)

• Quadrant
xyK(x ,y)Q(x ,y) = xy −R(x)−S(y)

If (...) both Yi can be substituted for y ,

0 = xy −R(x)−S(Y0) = xy −R(x)−S(Y1)

so that
S(Y0)−S(Y1) = x(Y0 −Y1)

• Three-quadrants, split in two:

2xyK (x ,y)U(x ,y) = y −R(x)− (1− xV (y))S(y)√
∆(Y0)S(Y0)−

√
∆(Y1)S(Y1) = Y0 −Y1

with ∆(y) rational.
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V. On analytic approaches

using cancellation of the kernel

[Raschel-Trotignon 18, Dreyfus-Trotignon 20]



Analytic approaches

Fix t small in R+, and work in the domain of convergence (in x and y)
of the series.

• The above equations yield boundary values problems of the
Riemann-Carleman type. For instance, the quadrant equation

S(Y0)−S(Y1) = x(Y0 −Y1)

implies that for y on a certain curve L of the complex plane,

S(y)−S(ȳ) = X(y)(y − ȳ)

where ȳ is now the complex conjugate of y , and X(y) = X(ȳ) is the
smallest root of K(X ,y) = 0.

• Similarly, in the three-quadrant case, for 8 diagonally symmetric
models, √
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Analytic approaches

The equation √
∆(y)S(y)−

√
∆(ȳ)S(ȳ) = y − ȳ

opens the way to
uniform analytic solutions, in the form of contour integrals
involving an (explicit) function w(y) satisfying, on the curve L,

w(y) = w(ȳ).
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Analytic approaches

The equation √
∆(y)S(y)−

√
∆(ȳ)S(ȳ) = y − ȳ

opens the way to
uniform analytic solutions, in the form of contour integrals
involving an (explicit) function w(y) satisfying, on the curve L,

w(y) = w(ȳ).

S(y) = yD(y) =
κyw ′(y)√

(w(y)−w1)(w(y)−w2)

∫
L

zw ′(z)√
w(z)−w0 (w(z)−w(y))

dz

cf. in the quadrant case,

Q(0,y) = alg(y) +κ

∫
L

alg(y)
zw ′(z)(w(y)−w0)

(w(z)−w0)(w(z)−w(y))
dz

for explicit algebraic functions alg(y).

[Raschel-Trotignon 18, Trotignon]



Square roots in three-quadrant models

Example: for , one can also write an integral-free expression

using invariants (talk 3):√
∆(y)

(
yD(y) +

1− y
t(1 + y)

)
=

α(w(y)−a)√
w(y)−w(0)(w(y)−w(−1))

,

with
∆(y) := (1− ty)2 −4t2ȳ(1 + y)2.

[mbm 21]
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∆(ȳ)S(ȳ) = y − ȳ
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Analytic vs. algebraic approaches

The equation √
∆(y)S(y)−

√
∆(ȳ)S(ȳ) = y − ȳ

opens the way to
uniform analytic solutions, in the form of contour integrals
involving an (explicit) function w(y) satisfying, on the curve L,

w(y) = w(ȳ).

application of Galois theory of difference equations

Classification of some x/y symmetric three-quadrant models

DF DF DF DF DA not DA not DA not DA

alg alg alg

[mbm, Raschel-Trotignon 18, Dreyfus-Trotignon 20]



Analytic vs. algebraic approaches

The equation √
∆(y)S(y)−

√
∆(ȳ)S(ȳ) = y − ȳ

opens the way to
uniform analytic solutions, in the form of contour integrals
involving an (explicit) function w(y) satisfying, on the curve L,

w(y) = w(ȳ).

application of Galois theory of difference equations

Two drawbacks
misses simpler cases
the algebraic/differential nature in terms of the variable t is not
clear



VI. An elementary algebraic

approach...

for some quadrant models

An algebraic approach with no kernel cancellation, which
generalizes the reflection principle.

⇒ A reflection principle for three-quadrant models?



Some simple quadrant models

• The equation reads (with K(x ,y) = 1− t(x + x̄ + y + ȳ)):

K(x ,y)xyQ(x ,y) = xy − txQ(x ,0)− tyQ(0,y)

• The orbit of (x ,y) under G is

(x ,y)
Φ←→(x̄ ,y)

Ψ←→(x̄ , ȳ)
Φ←→(x , ȳ)

Ψ←→(x ,y).

• All transformations of G leave K(x ,y) invariant. Hence

K(x ,y) xyQ(x ,y) = xy − txQ(x ,0) − tyQ(0,y)

K(x ,y) x̄yQ(x̄ ,y) = x̄y − t x̄Q(x̄ ,0) − tyQ(0,y)

K(x ,y) x̄ ȳQ(x̄ , ȳ) = x̄ ȳ − t x̄Q(x̄ ,0) − t ȳQ(0, ȳ)

K(x ,y) xȳQ(x , ȳ) = xȳ − txQ(x ,0) − t ȳQ(0, ȳ).
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Some simple quadrant models

• All transformations of G leave K(x ,y) invariant. Hence

K(x ,y) xyQ(x ,y) = xy − txQ(x ,0) − tyQ(0,y)

K(x ,y) x̄yQ(x̄ ,y) = x̄y − t x̄Q(x̄ ,0) − tyQ(0,y)

K(x ,y) x̄ ȳQ(x̄ , ȳ) = x̄ ȳ − t x̄Q(x̄ ,0) − t ȳQ(0, ȳ)

K(x ,y) xȳQ(x , ȳ) = xȳ − txQ(x ,0) − t ȳQ(0, ȳ).

⇒ Form the alternating sum of the equation over the orbit:

K(x ,y)
(
xyQ(x ,y)− x̄yQ(x̄ ,y) + x̄ ȳQ(x̄ , ȳ)− xȳQ(x , ȳ)

)
=

xy − x̄y + x̄ ȳ − xȳ

(the orbit sum).



Why is this interesting?

xyQ(x ,y)− x̄yQ(x̄ ,y) + x̄ ȳQ(x̄ , ȳ)− xȳQ(x , ȳ) =
xy − x̄y + x̄ ȳ − xȳ

1− t(x + x̄ + y + ȳ)

• Both sides are power series in t , with coefficients in Q[x , x̄ ,y , ȳ].

• Extract the part with positive powers of x and y :

xyQ(x ,y) = [x>0y>0]
xy − x̄y + x̄ ȳ − xȳ

1− t(x + x̄ + y + ȳ)

is a D-finite series.
[Lipshitz 88]
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• Both sides are power series in t , with coefficients in Q[x , x̄ ,y , ȳ].
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xy − x̄y + x̄ ȳ − xȳ

1− t(x + x̄ + y + ȳ)

is a D-finite series.
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The alternating orbit sum for finite groups

• For the 23 models with a finite group,∑
g∈G

sign(g)g(xyQ(x ,y)) =
1

K(x ,y)

∑
g∈G

sign(g)g(xy) =
OS

K(x ,y)
,

where g(A(x ,y)) := A(g(x ,y)).

• The right-hand side is an explicit rational series.

• For the 19 models where the orbit sum is non-zero,

xyQ(x ,y) = [x>0y>0]
OS

K(x ,y)

is a D-finite series.

• In particular, for the 7 Weyl models, this is just the reflection
principle of [Gessel & Zeilberger 92]
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xy
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=
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sign-reversing partial involution

xy − x̄y + x̄ ȳ − xȳ
1− t(x + x̄ + y + ȳ)

= xyQ(x ,y)− x̄yQ(x̄ ,y) + x̄ ȳQ(x̄ , ȳ)− xȳQ(x , ȳ)

• Similar reflection argument for the 7 Weyl models.

• The 12 non-Weyl models



The reflection principle

sign-reversing partial involution

xy − x̄y + x̄ ȳ − xȳ
1− t(x + x̄ + y + ȳ)

= xyQ(x ,y)− x̄yQ(x̄ ,y) + x̄ ȳQ(x̄ , ȳ)− xȳQ(x , ȳ)

• The 12 non-Weyl models



The alternating orbit sum for finite groups

• For the 23 models with a finite group,∑
g∈G

sign(g)g(xyQ(x ,y)) =
1

K(x ,y)

∑
g∈G

sign(g)g(xy) =
OS

K(x ,y)
,

where g(A(x ,y)) := A(g(x ,y)).

• The right-hand side is an explicit rational series.

• For the 19 models where the orbit sum is non-zero,

xyQ(x ,y) = [x>0y>0]
OS

K(x ,y)

is a D-finite series.

• For the 4 models with vanishing orbit sum, Q(x ,y) is algebraic.



Classification of quadrant walks with small steps

quadrant models: 79

|G |<∞: 23

D-finite

OS=0: 4

algebraic

OS,0: 19

DF transc.

|G |=∞: 56

Not D-finite

decoupled: 9

D-alg.

not decoupled: 47

not D-alg.



A reflection principle for three-quadrant walks?

• Equations for the quadrant and for three-quadrants:(
1− t(x + x̄ + y + ȳ)

)
xyQ(x ,y) = xy − tyQ(0,y)− txQ(x ,0)(

1− t(x + x̄ + y + ȳ)
)
xyC(x ,y) = xy − tyC0,−(ȳ)− txC−,0(x̄)

• The group: (x ,y),(x̄ ,y),(x̄ , ȳ),(x , ȳ)

• The alternating sums of xyQ(x ,y) and xyC(x ,y) are the same:

xyC(x ,y)− x̄yC(x̄ ,y) + x̄ ȳC(x̄ , ȳ)− xȳC(x , ȳ)

= xyQ(x ,y)− x̄yQ(x̄ ,y) + x̄ ȳQ(x̄ , ȳ)− xȳQ(x , ȳ)

=
(
xy − x̄y + x̄ ȳ − xȳ

)
/
(
1− t(x + x̄ + y + ȳ)

)

• The alternating sums of the following series are also the same:

−x̄yQ(x̄ ,y), x̄ ȳQ(x̄ , ȳ), −xȳQ(x , ȳ)

.

• Define A(x ,y) by

xyC(x ,y) := xyA(x ,y) +
1
3

(xyQ(x ,y)−x̄yQ(x̄ ,y)− xȳQ(x , ȳ)) .

• Then A(x ,y) has orbit sum zero and satisfies

(1− t(x + x̄ + y + ȳ))xyA(x ,y) =
2xy + x̄y + xȳ

3
− tyA−(ȳ)− txA−(x̄)
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)
/
(
1− t(x + x̄ + y + ȳ)
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• Define A(x ,y) by

xyC(x ,y) := xyA(x ,y) +
1
3

(xyQ(x ,y)−x̄yQ(x̄ ,y)− xȳQ(x , ȳ)) .
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= xyQ(x ,y)− x̄yQ(x̄ ,y) + x̄ ȳQ(x̄ , ȳ)− xȳQ(x , ȳ)
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winding number of lattice walks, with applications to tree-quadrant
walks [Budd 17, Elvey Price 20]
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Thm. The series A(x ,y) is algebraic for the three following models.

[mbm 16, mbm & Wallner 21], talk 2

Caveat: one can design slightly exotic quadrant-like equations with
vanishing orbit sum and transcendental solutions [Buchacher,
Kauers, Trotignon 20]

• The reflection principle also plays a role in the two papers on the
winding number of lattice walks, with applications to tree-quadrant
walks [Budd 17, Elvey Price 20]



Three-quadrant equations with vanishing orbit sum:
algebraicity?

• The series A(x ,y) has orbit sum zero and satisfies

K(x ,y)xyA(x ,y) = (2xy + x̄y + xȳ)/3− tyA−(ȳ)− txA−(x̄)
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VII. The current state of affairs
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Le bouquet final: Andrew’s talk (talk 4)

The series C(x ,y) and Q(x ,y) are of the same algebraic/differential
nature, at least in x and y .

three-quadrant models: 74

|G | <∞: 23

D-finite

4

algebraic

19

DF transc.

|G |=∞: 51

Not D-finite

9

D-alg.

42

not D-alg.


