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Equations Equations Equations

• Quadrant walks

(1− t(x + x̄ + y + ȳ))xyQ(x ,y) = xy − txQ(x ,0)− tyQ(0,y)

• Three quadrants

(1− t(x + x̄ + y + ȳ))xyC(x ,y) = xy − txC−,0(x̄)− tyC0,−(ȳ)

• Three quadrants, split in two:

2(1− t(x + x̄ + xy + x̄ ȳ))xyU(x ,y) = y−2tU(x ,0)+y (2tx(1 + y)−1)D(y)

/ C � B .

Notation: x̄ := 1/x , ȳ := 1/y .

Rings of polynomials and series:

A [t ] A(t) A [[t ]] A((t))

polynomials rat. functions formal power series Laurent series

For instance, C(x ,y) ≡ C(x ,y; t) ∈Q[x , x̄ ,y , ȳ][[t ]].

D(xy)

x̄U(x̄ ,xy)

ȳU(ȳ ,xy)
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Outline

I. Tutte’s invariants

II. Invariants for small step walks

III. Invariants for quadrant walks

IV. Invariants for (some) three-quadrant walks



I. Tutte’s invariants

William Tutte (1917-2002)

Properly q-coloured planar triangulations
(1973-1984)



An equation in two catalytic variables [Tutte 1973]

For q-coloured planar triangulations, series
T(x ,y; t) ≡ T(x ,y) ∈Q[q ,x ,y][[t ]]:

T(x ,y) = x(q −1) + xytT(1,y)T(x ,y)

+ xt
T(x ,y)−T(x ,0)

y
− x2yt

T(x ,y)−T(1,y)

x −1
.

(
1− xt

y
+

x2yt
x −1

− xytT(1,y)

)
T(x ,y) = x(q −1)− xt

y
T(x ,0) + x2yt

T(1,y)

x −1

K(x ,y)T(x ,y) = RHS(x ,y)

• The kernel K(x ,y) has two roots X0 and X1 in Q(q ,y)((t)).

• If (...) both X0 and X1 can be substituted for x in the equation⇒
four polynomial eqs. between X0, X1, T(X0,0), T(X1,0), y and T(1,y):

K(X0,y) = K(X1,y) = 0, RHS(X0,y) = RHS(X1,y) = 0.

• Eliminate y and T(1,y): two equations between X0, X1, T(X0,0),
and T(X1,0) (with coeffs. in Q(q , t)).
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An equation in two catalytic variables [Tutte 1973]

K(x ,y)T(x ,y) = · · ·+ · · ·T(x ,0) + · · ·T(1,y)

• Two equations between X0, X1, T(X0,0), and T(X1,0).

Definition
An invariant is a series I(x) ∈Q(q ,x)((t)) such that I(X0) = I(X1).

The invariant lemma
An invariant I(x) =

∑
n In(x)tn that has no pole at x = 1 in its

coefficients In(x) is independent of x (that is, lies in Q(q)((t))).

• Tutte’s strategy: construct an invariant I(x) with no pole at x = 1
(involving t , x and the series T(x ,0)): it must be independent of x ,
and this gives an equation I(x) = I(1) in only one catalytic
variable, x .
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An equation in two catalytic variables [Tutte 1973]

• From the two equations between X0, X1, T(X0,0), and T(X1,0),
Tutte derives in fact two invariants:

I0(x) =
xt2

x −1
+ 1− x̄ + x̄2 + t2T(x ,0)

and (when q = 3)

I1(x) = x̄6 −2x̄4I0(x) + x̄2I0(x)2.

• He then eliminates the pole at x = 1 by considering the
combination

I(x) := I1(x)− I0(x)2 + 2(1 + t2)I0(x),

which has no pole at x = 1.

It is thus trivial, equal to its value at x = 1:

I(x) = 1 + 6t2 + t4 −2t4T(1,0).

�� ��Invariants provide equations in one catalytic variable only.

(⇒ algebraicity [mbm-Jehanne 06])
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A computer algebra problem: separation of variables

• Given an ideal I of polynomials in X0, X1, T0, T1, with coefficients in
some field K, describe/construct some/all rational functions
R(X ,T) ∈K(X ,T) such that

R(X0,T0) = R(X1,T1) mod I .

• The question can be generalized to more variables X0,T0,U0,V0 . . .
and X1,T1,U1,V1 . . .

• For polynomials R (and, mostly, only two variables X0 and X1), see
[Buchacher, Kauers, Pogudin 20(a)]
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• Quadrant walks

(1− t(x + x̄ + y + ȳ))xyQ(x ,y) = xy +R(x) +S(y)

• Three quadrants

(1− t(x + x̄ + y + ȳ))xyC(x ,y) = xy +R(x̄) +S(ȳ)

• Three quadrants, split in two:

2(1− t(x + x̄ + xy + x̄ ȳ))xyU(x ,y) = y+R(x)+(a(y)x + b(y))S(y)



II. Invariants constructed from the

kernel

The kernel is:

K(x ,y) = 1− tS(x ,y), with S(x ,y) =
∑

(i ,j)∈S
x iy j .

When solved for x , it has two roots:

X0 = a0t +O(t2), X1 =
a1

t
+O(1)

Can we derive from

K(X0,y) = K(X1,y) = 0

an equation of the form

I(X0) = I(X1),

where I(x) ∈Q(x)((t)) ?



Invariants from the kernel

The kernel K(·,y) has two roots:

X0 = a0t +O(t2), X1 =
a1

t
+O(1)

Tutte would call invariant any series I(x) ∈Q(x)((t)) such that
I(X0) = I(X1). Define the series J(y) ∈Q(y)((t)) by

J(y) := I(X0) = I(X1) =
1
2

(I(X0) + I(X1)) .

Roughly speaking: I(x)− J(y) is a ”multiple” of K(x ,y). We also
expect that

J(Y0) = J(Y1) = I(x)

for Y0 and Y1 the two roots (in y) of K(x , ·).�� ��Invariants go by pairs (I(x),J(y)).
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Divisibility by K(x ,y)

The series 1/K(x ,y) is well-defined in Q[x , x̄ ,y , ȳ][[t ]]:

1
K(x ,y)

=
1

1− tS(x ,y)
=

∑
n≥0

tnS(x ,y)n .

A series of Q(x ,y)((t)) of the form

A(x ,y) :=
∑
n

pn(x ,y)

dn(x)d ′n(y)
tn

is divisible by K(x ,y) if the coefficients (of tn , n ∈Z) in the series
A(x ,y)/K(x ,y) have poles of bounded order at x = 0 and y = 0. That
is, there exists i , j such that the coefficients of x iy jA(x ,y)/K(x ,y)
have no pole at x = 0 nor y = 0.
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is, there exists i , j such that the coefficients of x iy jA(x ,y)/K(x ,y)
have no pole at x = 0 nor y = 0.

Equivalently, A(x ,y) has poles of bounded order at 0,

A(X0,y) = 0, and A(x ,Y0) = 0,

where X0 is the root of K(·,y) that is O(t), and analogously for Y0.



Today’s notion of invariants

A congruence
A(x ,y) ≡ B(x ,y) mod K(x ,y) if A(x ,y)−B(x ,y) is divisible by K(x ,y).

Definition
A pair of series (I(x),J(y)) in t with coefficients in Q(x) and Q(y)
(respectively) is a pair of invariants if I(x) ≡ J(y) mod K(x ,y).



Today’s notion of invariants

A congruence
A(x ,y) ≡ B(x ,y) mod K(x ,y) if A(x ,y)−B(x ,y) is divisible by K(x ,y).

Definition
A pair of series (I(x),J(y)) in t with coefficients in Q(x) and Q(y)
(respectively) is a pair of invariants if I(x) ≡ J(y) mod K(x ,y).

That is to say: the coefficients (of tn , n ≥ 0) in the ratio

H(x ,y) =
I(x)− J(y)

K(x ,y)
,

which are rational functions of the form p(x ,y)/(d(x)d ′(y)), have
poles of bounded order at x = 0 and y = 0.



Example

• Simple walk

K(x ,y) = 1− t(x + x̄ + y + ȳ) =
(1

2
− t(x + x̄)

)
−
(
−1

2
+ t(y + ȳ)

)
Hence

I(x) :=
1
2
− t(x + x̄) and J(y) := −I(y) = −1

2
+ t(y + ȳ)

form a pair of invariants, since

I(x)− J(y)

K(x ,y)
= 1.



An invariant lemma

Lemma [mbm 21(a)]

Let (I(x),J(y)) be a pair of invariants, and let

H(x ,y) =
I(x)− J(y)

K(x ,y)
.

If the coefficients of H(x ,y) (in t) vanish at x = 0 and at y = 0, then
I(x) and J(y) are trivial:

I(x) = J(y) ∈Q((t)) and H(x ,y) = 0.

Proof: expansion of all coefficients as series in x and y , plus ordering
of the monomials.



Rational invariants

Existence of rational invariants [Bernardi, mbm, Raschel 17(a)]

The small step models that admit rational invariants are exactly
those with a finite group (23 models).
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Rational invariants

Existence of rational invariants [Bernardi, mbm, Raschel 17(a)]

The small step models that admit rational invariants are exactly
those with a finite group (23 models).

• Kreweras walk

K(x ,y) = 1− t(xy + x̄ + ȳ)

Then
I0(x) := x̄2 − x̄/t − x and J0(y) = I0(y)

form a pair of invariants, since

I0(x)− J0(y)

K(x ,y)
=

x − y
x2y2

· 1
t
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Existence of rational invariants [Bernardi, mbm, Raschel 17(a)]

The small step models that admit rational invariants are exactly
those with a finite group (23 models).

quadrant models: 79
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Rational invariants

Existence of rational invariants [Bernardi, mbm, Raschel 17(a)]

The small step models that admit rational invariants are exactly
those with a finite group (23 models).

quadrant models: 79

∃ rat. invariant: 23

D-finite

OS=0: 4

algebraic

OS,0: 19

DF transc.

no rat. invariant: 56

Not D-finite

9

D-algebraic

47
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Weak invariants: an analytic notion

Let X0 and X1 be the roots of K(·,y) (for t a small real), of the form

X0,1(y) =
−b(y)±

√
∆(y)

2a(y)
.

The discriminant ∆(y) is negative on two real intervals (y1,y2) and
(y3,y4), with |y1,2| < 1 and |y3,4| > 1.

Weak invariants
The function I(x) is a weak invariant if for y ∈ [y1,y2],

I(X0(y)) = I(X1(y))

(with I(x) meromorphic in a certain domain).

Existence of a weak invariant [Raschel 12, Bernardi, MBM & Raschel
17(a)]

For the 74 non-singular models with small steps, there exists an
explicit weak invariant, which is D-algebraic in t , x and y .
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III. Invariants for quadrant walks

Denote K(x ,y) := xyK(x ,y) (a polynomial).
The quadrant functional equation reads

K(x ,y)Q(x ,y) = xy +K(x ,0)Q(x ,0) +K(0,y)Q(0,y)−K(0,0)Q(0,0)

= xy +R(x) +S(y).

In particular,

xy +R(x) +S(y) ≡ 0 mod K(x ,y).



Invariants from quadrant equations

Generic form of a quadrant equation:

xy +R(x) +S(y) ≡ 0 mod K(x ,y),

where R(x) ∼Q(x ,0) and S(y) ∼Q(0,y).

Receipe: decoupling of xy
If there exist rational functions f(x) and g(y) such that

xy ≡ f(x) +g(y) mod K(x ,y),

then
f(x) +R(x) +g(y) +S(y) ≡ 0 mod K(x ,y)

so that

I1(x) = f(x) +R(x) and J1(y) = −g(y)−S(y)

form a pair of invariants – involving Q(x ,0) and Q(0,y).
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Decoupling of xy modulo K(x ,y)

Lemma [Bernardi, mbm & Raschel 17(a)]

The monomial xy decouples as f(x) +g(y) modulo K(x ,y) for exactly
13 = 4 + 9 of the 79 interesting quadrant models.

• Kreweras walk

K(x ,y) = 1− t(xy + x̄ + ȳ)

Then

xy =
1
t
− x̄ − ȳ − K(x ,y)

t
≡ f(x) +g(y) mod K(x ,y),

with

f(x) =
1
2t
− x̄ , g(y) = f(y) =

1
2t
− ȳ .

This gives a new pair of invariants:

I1(x) =
1
2t
− x̄ − txQ(x ,0), J1(y) = −I1(y).

Combine the invariant and the Q -invariant to form trivial invariants:
uniform proofs of .

[Bernardi, mbm & Raschel 17(a)]
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invariants: uniform proofs of algebraicity.
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Decoupling of xy modulo K(x ,y)

Lemma [Bernardi, mbm & Raschel 17(a)]

The monomial xy decouples as f(x) +g(y) modulo K(x ,y) for exactly
13 = 4 + 9 of the 79 interesting quadrant models.

quadrant models: 79

∃ rat. invariant: 23

D-finite

∃ Q -inv. 4

algebraic

no Q -inv.: 19

DF transc.

no rat. invariant: 56

Not D-finite

∃ Q -inv. 9

D-algebraic

no Q -inv. 47

not D-alg.

Combine the weak invariant and the Q -invariant to form trivial
invariants: uniform proofs of D-algebraicity.

[Bernardi, mbm & Raschel 17(a)]



IV.1. Invariants for three-quadrant

walks: first attempt

Denote K(x ,y) := xyK(x ,y) (a polynomial).

The three-quadrant functional equation reads

K(x ,y)C(x ,y) = xy +K(x ,0)C−,0(x̄) +K(0,y)C0,−(ȳ) +K(0,0)C0,0

= xy +R(x̄) +S(ȳ).

But C(x ,y) ∈Q[x , x̄ ,y , ȳ][[t ]] has poles of unbounded order at 0, and
we cannot say that

xy +R(x̄) +S(ȳ) ≡ 0 mod K(x ,y).
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IV.2. Invariants for three-quadrant

walks: second attempt

Let S be a small step model that is x/y-symmetric and does not
contain↖ (nor↘), and write

C(x ,y) = x̄U(x̄ ,xy) +D(xy) + ȳU(ȳ ,xy)

where U(x ,y) ∈Q[x ,y][[t ]], D(y) ∈Q[y][[t ]].

D(xy)

x̄U(x̄ ,xy)

ȳU(ȳ ,xy)



The “split in two parts” equation

• Define the companion model of S :

S := {(j − i , j) : (i , j) ∈ S},

with associated kernelK (x ,y) = 1− tS (x ,y) = 1− tS(x̄ ,xy). Write

S (x ,y) = x̄V−(y) +V0(y) + xV+(y).

• Then

2K (x ,y)xyU(x ,y) = y + 2K (x ,0)U(x ,0) +K(0,0)D(0)

+(tV0(y) + 2txV+(y)−1)yD(y)

so that
y +R(x) +N (x ,y)S(y) ≡ 0 modK (x ,y)

whereN (x ,y) = tV0(y) + 2txV+(y)−1, with R(x) ∼ U(x ,0) and
S(y) ∼ D(y).
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A new type of decoupling

y +R(x) +N (x ,y)S(y) ≡ 0 modK (x ,y)

Good news: the square of the “nasty” factorN (x ,y) is “nice”:

N (x ,y)2 ≡ ∆(y) modK (x ,y)

where ∆(y) is the discriminant (in x) of xK (x ,y).

∆(y) = (1− tV0(y))2 −4t2V−(y)V+(y).

Receipe: a new type of decoupling for y
If there exist rational functions F(x) and G(y) such that

y ≡ F(x) +N (x ,y)G(y) modK (x ,y),

then

We have a new pair of S -invariants – involving U(x ,0) and D(y):

I2(x) = (F(x) +R(x))2 and J2(y) = ∆(y)(G(y) +S(y))2.
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Decoupling of y moduloK (x ,y), new style

Lemma [mbm 21 (a)]

The monomial y decouples as F(x) +N (x ,y)G(y) moduloK (x ,y)
for exactly 4 of the 8 symmetric models S under consideration.

These 4 models are also those such that xy decouples as f(x) +g(y)
mod K(x ,y). In fact, one can take g(y) = f(y) and F(x) = 2f(x̄).

X X X X

By combining the new S -invariants (I2(x),J2(y)) with known
S -invariants (rational, or weak, or involving the S -quadrant series
Q (x ,0) and Q (0,y)), one can prove (D-)algebraicity of U(x ,0), D(y)
and C(x ,y).
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alg alg alg D-alg

By combining the new S -invariants (I2(x),J2(y)) with known
S -invariants (rational, or weak, or involving the S -quadrant series
Q (x ,0) and Q (0,y)), one can prove (D-)algebraicity of U(x ,0), D(y)
and C(x ,y).



Example: Kreweras’ walks

Take S = {↗,←,↓}, so that S = {↑,→,↘}. Start from

y +R(x) +N (x ,y)S(y) ≡ 0

withN (x ,y) = ty + 2tx −1, R(x) = −2tU(x ,0), S(y) = yD(y).

• The good news: N (x ,y)2 ≡ ∆(y) = (1− ty)2 −4t2ȳ .

• Decoupling, new style: since

y = −2x + 1/t +N (x ,y)/t = F(x) +N (x ,y)G(y),

we have new S -invariants:

I2(x) =
(
2tU(x ,0) + 2x − 1

t

)2
, J2(y) = ∆(y)

(
yD(y) +

1
t

)2
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Construction of trivial invariants

• Two known pairs of S -invariants:

I0(x) = x̄ + x/t − x2, J0(x)=I0(y),

I1(x) = tQ (x ,0)− x/t + x2, J1(y) = −ȳ − tQ (0,y) + tQ (0,0).

•We have just found another pair:

I2(x) =
(
2tU(x ,0) + 2x − 1

t

)2
=

J2(y)= ∆(y)
(
yD(y) +

1
t

)2
=

• Define

I (x) =I2(x)−4I1(x), J (y) = J2(y)−4J1(y).

Then (I (x),J (y)) is a pair of S -invariants with no pole at 0.

Moreover,
K (x ,y)H (x ,y) =I (x)−J (y)

where H (x ,y) vanishes at x = 0 and y = 0

⇒ I2(x) and J2(y) are
trivial.
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⇒ I2(x) and J2(y) are
trivial.
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Trivial invariants for reverse Kreweras’ steps

Conclusion:

I2(x) =
(
2tU(x ,0) + 2x − 1

t

)2
= 4

(
tQ (x ,0)− x/t + x2

)
+ cst ,

J2(y) = ∆(y)
(
yD(y) +

1
t

)2
= 4(−ȳ − tQ (0,y) + tQ (0,0)) + cst ,

with ∆(y) = (1− ty)2 −4t ȳ .

The constant can be determined in terms of Q by specializing y to
the unique root of ∆(y) that is a power series in t .

But Q (x ,0) and Q (0,y) are well known, and algebraic...



The GF of Kreweras walks in three quadrants [mbm 21(a)]

•Walks ending on the negative x-axis: series U(x ,0), with

1
2

(
2tU(x ,0) + 2x − 1

t

)2
=

(1− Z3)3/2

Z2
+ (1− xZ)2

( 1
Z2
− 1
x

)
+

(
x̄ + Z − 2x

Z

)√
1− Z 4 + Z3

4
x +

Z2

4
x2.

•Walks ending on the diagonal: series D(x), with

∆(x)

2

(
xD(x) +

1
t

)2
=

(1− Z3)3/2

Z2
+ (1− xZ)2

( 1
Z2
− 1
x

)
−
(
x̄ + Z − 2x

Z

)√
1− Z 4 + Z3

4
x +

Z2

4
x2.

where ∆(x) = (1− tx)2 −4t x̄ and Z = t(2 + Z3).

• All walks in three quadrants:

xy(1− t(x̄ + ȳ + xy))C(x ,y) = xy − tU(x̄ ,0)− tU(ȳ ,0).

(Algebraicity of excursions proved by [Elvey Price, FPSAC 20])
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Asymptotics and harmonic function [mbm 21(a)]

• Number of n-step walks ending at (i , j) in the three quadrant plane:

ci ,j (n) ∼ −
Hi ,j

Γ (−3/4)
3nn−7/4 (for n + i + j ≡ 0 mod 3)

• Equivalently, the generating function

H(x ,y) :=
∑

j≥0,i≤j
Hi ,jx

j−iy j ,

satisfies(
1 + xy2 + x2y −3xy

)
H(x ,y) =H−(x) +

1
2

(
2 + xy2 −3xy

)
Hd (y)

where

H−(x) :=
∑
i>0

H−i ,0x
i

=
9x
2

√
1 + 2x
1− x

√
4− x
1− x

+ 2,

Hd (y) :=
∑
i≥0

Hi ,iy
i

=
9

(1− y)
√
y(4− y)

√
1 + 2y
1− y

√
4− y
1− y

−2.

[Trotignon 19(a)]
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From counting series to discrete harmonic functions

To prove:

ci ,i (n) ∼ −
Hi ,i

Γ (−3/4)
3nn−7/4 (for n + 2i ≡ 0 mod 3)

Let
D(y) =

∑
i≥0

ci ,i (n)y i tn =
∑
i≥0

Di (t)y i ,

where Di (t) counts walks ending at (i , i). We have

∆(y)

2

(
yD(y) +

1
t

)2
=

(1− Z3)3/2

Z2
+ (1− yZ)2

( 1
Z2
− 1
y

)
−
(
ȳ + Z − 2y

Z

)√
1− Z 4 + Z3

4
y +

Z2

4
y2.

A singularity analysis around t = 1/3 (i.e. Z = 1) of D(y) (performed
with care), gives the result.
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The simple walk

Recall from Michael’s lecture: it is a good idea to consider A(x ,y)
given by

xyA(x ,y) := xyC(x ,y)− 1
3

(xyQ(x ,y)−x̄yQ(x̄ ,y)− xȳQ(x , ȳ)) ,

which satisfies

(1− t(x + x̄ + y + ȳ))xyA(x ,y) =
2xy + x̄y + xȳ

3
− txA−(x̄)− tyA−(ȳ).

Split A(x ,y) in two parts, etc. The equation

y +R(x) +N (x ,y)S(y) ≡ 0 modK (x ,y)

becomes

2y(1 + x2)/3 +R(x) +N (x ,y)S(y) ≡ 0 modK (x ,y)

and the initial term 2y(1 + x2)/3 decouples (new style).
⇒ Algebraicity of A(x ,y)
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which satisfies

(1− t(x + x̄ + y + ȳ))xyA(x ,y) =
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Split A(x ,y) in two parts, etc. The equation

y +R(x) +N (x ,y)S(y) ≡ 0 modK (x ,y)

becomes

2y(1 + x2)/3 +R(x) +N (x ,y)S(y) ≡ 0 modK (x ,y)

and the initial term 2y(1 + x2)/3 decouples (new style).
⇒ Algebraicity of A(x ,y)



Ten solved symmetric models

S Inv. Refl. Analysis S Inv. Refl.
Analysis
+ Galois

alg D-alg

alg

alg

DF

DF



Ten solved symmetric models

S Inv. Refl. Analysis S Inv. Refl.
Analysis
+ Galois

alg D-alg

alg

alg

DF

DF



Ten solved symmetric models

S Inv. Refl. Analysis S Inv. Refl.
Analysis
+ Galois

alg D-alg

alg

alg

DF

DF



What the invariant approach gives: general picture

• Explicit rational expression of

I2(x) = (f(x̄) +R(x))2 ,
where

R(x̄) = K(x ,0)C−(x̄) +
1
2
K(0,0)C0,0

in terms of the quadrant generating function Q (x ,0) for the
companion model S . Same for D(y) and Q (0,y).

• Harmonic functions: explicit and algebraic in the 5 DF cases; in the
DA case, a conjectured relation between the three-quadrant
S-harmonic function and the quadrant S -harmonic function.

S

S

deg. H (x ,0) 2 2 2 3 3

deg. H−(x) 4 4 4 3 3
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Ten solved symmetric models

10 models

rat. invariants: 6

D-finite

decoupling: 3

algebraic

no decoupling: 3

DF transc.

no rat. inv.: 4

Not D-finite

decoupling: 1

D-alg.

no decoupling: 3

not D-alg.

[mbm, Wallner, Raschel, Trotignon, Mustapha, Dreyfus]

Andrew Elvey Price: same nature as the quadrant series, at least in x
and y (next talk)
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