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e Quadrant walks
(1-t(x+X+y+y))xyQ(x,y) = xy - txQ(x,0) - tyQ(0, y)
e Three quadrants
(1-t(x+X+y+3))xyC(xy) =xy - txC_o(X) — tyCo,(¥)
e Three quadrants, split in two:
2(1-t(x+Xx+xy +xy))xyU(x,y) = y=2tU(x,0)+y (2tx(1 +y) - 1) D(y)
a4 oD

Notation: X :=1/x,y :=1/y.




Equations Equations Equations +

e Quadrant walks

(I-t(x+Xx+y+¥))xyQ(x,y) = xy — txQ(x,0) - tyQ(0, y)

e Three quadrants
(1-t(x+Xx+y+7)xyC(xy) = xy — txC_o(X) - tyCo,(¥)
e Three quadrants, split in two:
2(1-t(x +x+xy +xy))xyU(x,y) = y=2tU(x,0)+y (2tx(1+y) - 1) D(y)
«doD>>
Notation: X := 1/x, ¥ := 1/y. Rings of polynomials and series:
Alt] A(t) Allt]] A((t))

polynomials | rat. functions | formal power series | Laurent series

Forinstance, C(x,y) = C(x,y;t) € Q[x, %, y, ¥][[t]]-



I. Tutte’s invariants
IIl. Invariants for small step walks
Ill. Invariants for quadrant walks

IV. Invariants for (some) three-quadrant walks



Properly g-coloured planar triangulations
(1973-1984)

William Tutte (1917-2002)



For g-coloured planar triangulations, series
T(xyit) = T(xy) € Qg x yl[[t]]:

T(x,y)=x(q-1)+xytT(1,y)T(xy)
T(xy)-T(x0) Pyt Toy)-T(Ly)

t
+ X Y 1




For g-coloured planar triangulations, series
T(xyit) = T(xy) € Qg x yl[[t]]:

2
xt  x“yt xt > T(Ly)

1- =+ 2L oyt T(Ly) | T(xy) = x(qg-1) - =T(x, 7

( PRI ( y)) (xy)=x(qg-1) 5 (%, 0) +x“yt——

K(XIY)T(X:.V) = RHS(XIY)



An equation in two catalytic variables [Tutte 1973]

For g-coloured planar triangulations, series
T(xyit) =T(x,y) € Q[q,x y][[t]]:

2
xt  x“yt xt > T(l,y)

1—-— — tT(1, | ) — —1)——T ’O t——= 72
Y er—l xytT(Ly)|T(x,y)=x(qg-1) y (x,0)+x“y 1

K(x,y)T(xy) = RHS(x,y)

e The kernel K(x,y) has two roots Xy and X1 in Q(q,y)((t)).



An equation in two catalytic variables [Tutte 1973]

For g-coloured planar triangulations, series
T(xyit) =T(x,y) € Q[q,x y][[t]]:

2
xt  x“yt xt > T(l,y)

1—-— — tT(1, | ) — —1)——T ’O t——= 72
Y er—l xytT(Ly)|T(x,y)=x(qg-1) y (x,0)+x“y 1

K(x,y)T(xy) = RHS(x,y)

e The kernel K(x,y) has two roots Xy and X1 in Q(q,y)((t)).

e If (...) both X5 and X; can be substituted for x in the equation =
four polynomial egs. between Xg, X1, T(Xp,0), T(X1,0),y and T(1,y):

K(Xo,y) =K(X1,y)=0, RHS(Xo,y) = RHS(Xy,y) =0.



An equation in two catalytic variables [Tutte 1973]

For g-coloured planar triangulations, series
T(xyit) =T(x,y) € Q[q,x y][[t]]:

2
xt  x“yt xt > T(l,y)

1—-— — tT(1, | ) — —1)——T ’O t——= 72
Y er—l xytT(Ly)|T(x,y)=x(qg-1) y (x,0)+x“y 1

K(x,y)T(xy) = RHS(x,y)

e The kernel K(x,y) has two roots Xy and X1 in Q(q,y)((t)).

e If (...) both X5 and X; can be substituted for x in the equation =
four polynomial egs. between Xg, X1, T(Xp,0), T(X1,0),y and T(1,y):

K(Xo,y) =K(X1,y)=0, RHS(Xo,y) = RHS(Xy,y) =0.

e Eliminate y and T(1,y): two equations between Xg, Xy, T(Xp,0),
and T(Xy,0) (with coeffs. in Q(g, t)).



K(x,y)T(x,y)=+-+4-T(x,0)+---T(1,y)
e Two equations between Xg, X1, T(Xp,0), and T(X1,0).



K(x,y)T(x,y)=+-+4-T(x,0)+---T(1,y)
e Two equations between Xg, X1, T(Xp,0), and T(X1,0).

An invariant is a series I(x) € Q(q, x)((t)) such that I(Xy) = I(X7).




K(x,y)T(x,y)=+-+4-T(x,0)+---T(1,y)
e Two equations between Xg, X1, T(Xp,0), and T(X1,0).

An invariant is a series I(x) € Q(q, x)((t)) such that I(Xy) = I(X7).

An invariant I(x) = )_, I,(x)t" that has no pole at x = 1 in its
coefficients I,(x) is independent of x (that is, lies in Q(q)((t))).




K(x,y)T(x,y)=+-+4-T(x,0)+---T(1,y)
e Two equations between Xg, X1, T(Xp,0), and T(X1,0).

An invariant is a series I(x) € Q(q, x)((t)) such that I(Xy) = I(X7).

An invariant I(x) = )_, I,(x)t" that has no pole at x = 1 in its
coefficients I,(x) is independent of x (that is, lies in Q(q)((t))).

e Tutte’s strategy: construct an invariant /(x) with no pole at x = 1
(involving t, x and the series T(x,0)): it must be independent of x,
and this gives an equation /(x) = /(1) in only one catalytic
variable, x.



e From the two equations between Xy, X1, T(Xo,0), and T(X;,0),
Tutte derives in fact two invariants:

xt? S22 .2
Io(x):X 1-|—1—x—i—x +t°T(x,0)

and (when g = 3)
I (x) = X8 = 2x*Ip(x) + X2 Ip(x)>.



An equation in two catalytic variables [Tutte 1973]

e From the two equations between Xy, X;, T(Xp,0), and T(X;,0),
Tutte derives in fact two invariants:

Xt2 _ _2 2
lo(x) = 1+1—x+x +t°T(x,0)
X_

and (when g = 3)
h(x) = %% = 2x%1(x) + X%Io(x)?.

e He then eliminates the pole at x = 1 by considering the
combination

1(x) = h(x) = lo(x)? + 2(1 + t*)lo(x),

which has no pole at x = 1.



An equation in two catalytic variables [Tutte 1973]

e From the two equations between Xy, X;, T(Xp,0), and T(X;,0),
Tutte derives in fact two invariants:

Xt2 _ _2 2
lo(x) = 1+1—x+x +t°T(x,0)
X_

and (when g = 3)
h(x) = %% = 2x%1(x) + X%Io(x)?.

e He then eliminates the pole at x = 1 by considering the
combination

1(x) ==l (x) = lo(x)? +2(1 + t2)lp(x),
which has no pole at x = 1. It is thus trivial, equal to its value at x = 1:

I(x)=1+6t>+t-2t*T(1,0).



An equation in two catalytic variables [Tutte 1973]

e From the two equations between Xy, X;, T(Xp,0), and T(X;,0),
Tutte derives in fact two invariants:

Xt2 _ _2 2
lo(x) = 1+1—x+x +t°T(x,0)
X_

and (when g = 3)
h(x) = %% = 2x%1(x) + X%Io(x)?.

e He then eliminates the pole at x = 1 by considering the
combination

1(x) ==l (x) = lo(x)? +2(1 + t2)lp(x),
which has no pole at x = 1. It is thus trivial, equal to its value at x = 1:

I(x)=1+6t>+t-2t*T(1,0).

[Invariants provide equations in one catalytic variable only. }

(= algebraicity [mbm-Jehanne 06])



A computer algebra problem: separation of variables

e Given an ideal Z of polynomials in Xy, X1, Tg, T1, with coefficients in
some field K, describe/construct some/all rational functions
R(X,T) e K(X, T) such that

R(Xo, To) = R(X1,T;) mod Z.



A computer algebra problem: separation of variables

e Given an ideal Z of polynomials in Xy, X1, Tg, T1, with coefficients in
some field K, describe/construct some/all rational functions
R(X,T) e K(X, T) such that

R(Xo, To) = R(X1, T1) modZ.
e The question can be generalized to more variables Xy, Tg, Ug, Vg .. ..
and Xll T]_, U]_, V]_

e For polynomials R (and, mostly, only two variables Xy and X;), see
[Buchacher, Kauers, Pogudin 20(a)]



e Quadrant walks

(I-t(x+Xx+y+y))xyQ(x,y) = xy — txQ(x,0) - tyQ(0, y)
e Three quadrants

(I-t(x+Xx+y+7)xyC(xy) = xy - txC_o(x) - tyCo,(¥)
e Three quadrants, split in two:

2(1-t(x+x+xy+xy))xyU(x,y) = y-2tU(x,0)+y (2tx(1 +y) - 1) D(y)



e Quadrant walks

(I-t(x+x+y+7)xyQ(xy) = xy+R(x) +S(y)
e Three quadrants

(I-t(x+Xx+y+7)xyC(xy) = xy - txC_g(x) - tyCo,(¥)
e Three quadrants, split in two:

2(1-t(x+x+xy+Xxy))xyU(x,y) = y—-2tU(x,0)+y (2tx(1 +y) - 1) D(y)



e Quadrant walks

(I-t(x+x+y+7)xyQ(xy) = xy+R(x) +S(y)
e Three quadrants

(I-t(x+x+y+7))xyC(xy) = xy +R(X) + S(¥)
e Three quadrants, split in two:

2(1-t(x+x+xy+xy))xyU(x,y) = y—2tU(x,0)+y (2tx(1+y) - 1) D(y)



e Quadrant walks

(I-t(x+x+y+7)xyQ(xy) = xy+R(x) +S(y)
e Three quadrants

(I-t(x+x+y+7))xyC(xy) = xy +R(X) + S(¥)
e Three quadrants, split in two:

2(1-t(x+Xx+xy +x¥))xyU(x,y) = y+R(x)+(a(y)x + b(y))S(y)



The kernel is:

K(x,y)=1-tS(x,y), with  S(x,y) = Z x'yl.
(i,j)es
When solved for x, it has two roots:

X0:a0t+(’)(t2), X1:—+O(1)
Can we derive from
K(Xo,y) =K(X1,y)=0

an equation of the form

1(Xo) = 1(X1),

where I(x) € Q(x)((t)) ?



The kernel K(-,¥) has two roots:
Xo=aot +O(t?), X, = a—tl +0O(1)

Tutte would call invariant any series /(x) € Q(x)((t)) such that
I(Xg) = I(X1). Define the series J(y) € Q(y)((t)) by

J0) = 10X0) = 10X0) = 3 (1(X0) +1(X0).



Invariants from the kernel

The kernel K(+,y) has two roots:

Xo=aot+0(t?),  X; = % +0(1)

Tutte would call invariant any series /(x) € Q(x)((t)) such that
I(Xg) = I(X1). Define the series J(y) € Q(y)((t)) by
1

J():=1(Xo) = 1(X1) = 5 (I(X0) +1(X1)).
Roughly speaking: I(x) —J(y) is a “multiple” of K(x,y). We also
expect that

J(Yo) = (1) = I(x)

for Yo and Y; the two roots (in y) of K(x,-).



Invariants from the kernel

The kernel K(+,y) has two roots:

Xo=aot+0(t?),  X; = % +0(1)

Tutte would call invariant any series /(x) € Q(x)((t)) such that
I(Xg) = I(X1). Define the series J(y) € Q(y)((t)) by
1

J():=1(Xo) = 1(X1) = 5 (I(X0) +1(X1)).
Roughly speaking: I(x) —J(y) is a “multiple” of K(x,y). We also
expect that

J(Yo) = (1) = I(x)

for Yo and Y; the two roots (in y) of K(x,-).

[Invariants go by pairs (I(x),J(y)).}




The series 1/K(x,y) is well-defined in Q[x, X, y, y][[t]]:

1
K(x,y) -1 —tS (x,y Zt S(oy)™
A series of Q(x,y)((t)) of the form

x,y den Xy £

is divisible by K(x, y) if the coefficients (of t”, n € Z) in the series
A(x,y)/K(x,y) have poles of bounded order at x =0 and y = 0. That
is, there exists i,j such that the coefficients of x'y/A(x,y)/K(x,y)
have no pole at x =0 nor y = 0.




The series 1/K(x,y) is well-defined in Q[x, X, y, y][[t]]:

1
—_— t"S(x,
K(x,y) 1-tS(x,y) tS (x,y Z (ox)"

A series of Q(x,y)((t)) of the form

anxy £
d,

is divisible by K(x, y) if the coefficients (of t”, n € Z) in the series
A(x,y)/K(x,y) have poles of bounded order at x =0 and y = 0. That
is, there exists i,j such that the coefficients of x'y/A(x,y)/K(x,y)
have no pole at x =0 nor y = 0.

Equivalently, A(x,y) has poles of bounded order at O,
A(Xo,y)=0, and A(x,Ypy)=0,

where Xj is the root of K(-,y) that is O(t), and analogously for Yj.



A(x,y)=B(x,y) modK(x,y)if A(x,y)—B(x,y) is divisible by K(x,y).

A pair of series (I(x),J(y)) in t with coefficients in Q(x) and Q(y)
(respectively) is a pair of invariants if I(x) = J(y) mod K(x,y).




A(x,y)=B(x,y) modK(x,y)if A(x,y)—B(x,y) is divisible by K(x,y).

A pair of series (I(x),J(y)) in t with coefficients in Q(x) and Q(y)
(respectively) is a pair of invariants if I(x) = J(y) mod K(x,y).

That is to say: the coefficients (of t”, n > 0) in the ratio

H(xy) = —I(T()(;j/()y),

which are rational functions of the form p(x,y)/(d(x)d’(y)), have
poles of bounded order at x =0 and y = 0.



e Simple walk

K(x,y)=1-t(x+Xx+y+y)= (%—t(x+>'<))—(—%+t()/+)_’))
Hence

I(x):= %— t(x+x) and J(y):=-I(y)= —% +t(y+y)

form a pair of invariants, since

169-90) _,

K(xy)



Let (I(x),J(y)) be a pair of invariants, and let

QRN

H(x,y) K(oy)

If the coefficients of H(x,y) (in t) vanish at x =0 and at y = 0, then
I(x) and J(y) are trivial:

I(x)=J(y)€Q((t)) and  H(xy)=0.

Proof: expansion of all coefficients as series in x and y, plus ordering
of the monomials.




e Simple walk +

K(x,y)=1-t(x+X+y+y)= (%—t(x+i))—(—%+t(y+a7))

Hence

I(x):= %— t(x+x) and J(y):=-I(y)= —% +ty+y)

form a pair of invariants, since

09-90) _

K(xy)



The small step models that admit rational invariants are exactly
those with a finite group (23 models).

e Simple walk +

K(x,y)=1-t(x+X+y+y)= (% - t(x+i))—(—% + t(y+5/))
Hence

I(x) := %— t(x+x) and J(y):=-I(y)= —% +ty+y)

form a pair of invariants, since
1) -J) _
K(xy)



The small step models that admit rational invariants are exactly
those with a finite group (23 models).

e Kreweras walk «(

Kxy)=1-tlxy +x+Y)
Then
lo(x) =%X*-%/t-x and Jo(y)=lo(y)
form a pair of invariants, since
(x)=Jholy) _x-y 1
K(x,y) x2y2 t




The small step models that admit rational invariants are exactly
those with a finite group (23 models).

quadrant models: 79
x

I I
|G|<oo: 23 |G|=00: 56

| |
D-finite Not D-finite
—— E—
0S=0:4 0OS=0: 19 9 47

| | | N

algebraic DF transc. D-algebraic not D-alg.



The small step models that admit rational invariants are exactly
those with a finite group (23 models).

quadrant models: 79

|
I [

d rat. invariant: 23 no rat. invariant: 56
| |
D-finite Not D-finite
—— Lt
0S=0:4 0S=#0: 19 9 47

| | | |

algebraic DF transc. D-algebraic not D-alg.



Let Xy and X; be the roots of K(-, y) (for t a small real), of the form
—b(y) £ VAlY)

2a(y)
The discriminant A(y) is negative on two real intervals (y;,y>) and

(y3,ya), with |y1 2| <1 and |ys 4| > 1.

Xo1(y) =

The function I(x) is a weak invariant if for y € [y1,y5],

I(Xo(y)) = 1(X1(y))

(with I(x) meromorphic in a certain domain).




Let Xp and X; be the roots of K(+,y) (for t a small real), of the form

—b(y)+ A(y).

XO,l(.y): Za(y)

The discriminant A(y) is negative on two real intervals (y;,y>) and
(¥3,ya), with |y1,5[ <1 and |y 4| > 1.

The function I(x) is a weak invariant if for y € [y1,y5],

I(Xo(y)) = 1(X1(y))

(with I(x) meromorphic in a certain domain).

For the 74 non-singular models with small steps, there exists an
explicit weak invariant, which is D-algebraicin t, x and y.




Denote K(x,y) := xyK(x,y) (a polynomial).
The quadrant functional equation reads

K(xy)Q(xy) = xy + K(x,0)Q(x,0) +K(0,y)Q(0,y) -K(0,0)Q(0,0)
=xy+R(x)+S(y).

In particular,

xy +R(x)+S(y)=0 mod K(x,y).




Generic form of a quadrant equation:
xy+R(x)+S(y)=0 mod K(x,y),
where R(x) ~ Q(x,0) and S(y) ~ Q(0,y).



Generic form of a quadrant equation:
xy+R(x)+S(y)=0 mod K(x,y),
where R(x) ~ Q(x,0) and S(y) ~ Q(0,y).

If there exist rational functions f(x) and g(y) such that

xy = f(x)+g(y) modK(x,y),




Generic form of a quadrant equation:
xy+R(x)+S(y)=0 mod K(x,y),
where R(x) ~ Q(x,0) and S(y) ~ Q(0,y).

If there exist rational functions f(x) and g(y) such that

xy = f(x)+g(y) modK(x,y),

then
f(x)+R(x)+&(ly)+S(y) =0 modK(x,y)
so that

h(x)=f(x)+R(x) and  Ji(y)=-g(y)-S()

form a pair of invariants — involving Q(x,0) and Q(0, y).




e Kreweras walk «(

Kxy)=1-t(xy +x+¥)

Then

1 _ _ Kxy

=155~ = ) 1 g(y) mod K(xy)

with

) =5 () =) =5

X)) = — —X’ = = —_——
>t gV y >t y
This gives a new pair of invariants:
1 _
h(x) = =——-x—-txQ(x,0), J1i(y) =-h(y).

2t



The monomial xy decouples as f(x) + g(y) modulo K(x, y) for exactly
13 =44 9 of the 79 interesting quadrant models.

e Kreweras walk «(

Kxy)=1-t(xy +x+¥)

Then

1 _ _ Kxy

=155~ 0 = ) 1 g(y) mod K(xy)

with

) =5 () =) =5

X)) = — —X’ = = —_——
>t gy y >t y
This gives a new pair of invariants:
1 _
h(x) = =——-x—-txQ(x,0), Ji(y) =-h(y).

2t



The monomial xy decouples as f(x) + g(y) modulo K(x, y) for exactly
13 =44 9 of the 79 interesting quadrant models.

quadrant models: 79

|
I [

d rat. invariant: 23 no rat. invariant: 56
| |
D-finite Not D-finite
EE— —
1 Q-inv. 4 no Q-inv.: 19 1 Q-inv. 9 no Q-inv. 47

| | | |

algebraic DF transc. D-algebraic not D-alg.



The monomial xy decouples as f(x) + g(y) modulo K(x, y) for exactly
13 =44 9 of the 79 interesting quadrant models.

quadrant models: 79

|
I [

d rat. invariant: 23 no rat. invariant: 56
D-ﬁLite Not D‘-ﬁnite
EE— —
1 Q-inv. 4 no Q-inv.: 19 d Q-inv. 9 no Q-inv. 47
algelbraic DF trL.nsc. D-algebraic not D-alg.

Combine the rational invariant and the Q-invariant to form trivial
invariants: uniform proofs of algebraicity.

[Bernardi, mbm & Raschel 17(a)]



The monomial xy decouples as f(x) + g(y) modulo K(x, y) for exactly
13 =44 9 of the 79 interesting quadrant models.

quadrant models: 79

|
I [

d rat. invariant: 23 no rat. invariant: 56
D-ﬁLite Not D‘-ﬁnite
EE— —
1 Q-inv. 4 no Q-inv.: 19 d Q-inv. 9 no Q-inv. 47
algelbraic DF trL.nsc. D-algebraic not D-alg.

Combine the weak invariant and the Q-invariant to form trivial
invariants: uniform proofs of D-algebraicity.

[Bernardi, mbm & Raschel 17(a)]



Denote K(x,y) := xyK(x,y) (a polynomial).

The three-quadrant functional equation reads
K(xy)C(xy) = xy +K(x,0)C_o(%) +K(0,y)Co,(7) +K(0,0)Co
=xy +R(X) +S(¥).

But C(x,y) € Q[x, X,y,¥][[t]] has poles of unbounded order at 0, and
we cannot say that

xy+R(X)+S(¥)=0 mod K(x,y).



Denote K(x,y) := xyK(x,y) (a polynomial).

The three-quadrant functional equation reads
K(xy)C(xy) = xy +K(x,0)C_o(%) +K(0,y)Co,(7) +K(0,0)Co
=xy +R(X) +S(¥).

But C(x,y) € Q[x, X,y,¥][[t]] has poles of unbounded order at 0, and
we cannot say that

xy + R(X) + S(=06"mod K(x,y).



< - HIFEE A F

Let S be a small step model that is x/y-symmetric and does not
contain N\ (nor ), and write

Clxy) =xU(x,xy) + D(xy) + yU(¥,xy)
where U(x,y) € Q[x,y][[t]], D(y) € Q[y][[t]]-




e Define the companion model of §:
F = {(-00): (1)) €5),
with associated kernel #Z (x,y) =1 -t (x,y) = 1 —tS(X, xy). Write
F(xy) =XV (y)+Zo(y) +x7, ().



The “split in two parts” equation
e Define the companion model of S:
F={(i—-ij):(i,j) €S},
with associated kernel #Z'(x,y) =1 -t (x,y) =1 - tS(x, xy). Write
F(xy) =XV (y)+Zo(y) +x7, ().
e Then
2K (x,y)xyU(x,y) =y + 25 (x,0)U(x,0) + K(0,0)D(0)
+(tZ(y) + 2txZ, (y) - 1) yD(y)

so that

Y +R(X)+/ (xy)S(y)=0 mod Z(x.y)|

where /' (x,y) = tZo(y) + 2tx7 (y) — 1, with R(x) ~ U(x,0) and
S(y) ~D(y).



y+R(x)+ 4 (xy)S(y)=0 mod Z(x,y)

Good news: the square of the “nasty” factor ./ (x,y) is “nice”:
N (xy)?=Ay) mod Z(x,y)
where A(y) is the discriminant (in x) of xZ (x,y).
Aly) = (1-tZ%(y))? - 4t°Z- (V)7 (v).



y+R(x)+ 4 (xy)S(y)=0 mod Z(x,y)
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/V(x,y)2 =A(y) mod #(x,y)

If there exist rational functions F(x) and G(y) such that
y=F(x)+4(,y)G(y) mod Z(xy),




y+R(x)+ 4 (xy)S(y)=0 mod Z(x,y)

Good news: the square of the “nasty” factor //(x,y) is “nice”:

/V(x,y)2 =A(y) mod #(x,y)

If there exist rational functions F(x) and G(y) such that

y=F(x)+4( ,y)G(y) mod Z(x,y),
then

F(x)+R(x)+4( ,y)(G(y)+S(y))=0 mod Z(x,y)




y+R(x)+ 4 (xy)S(y)=0 mod Z(x,y)

Good news: the square of the “nasty” factor //(x,y) is “nice”:

/V(x,y)2 =A(y) mod #(x,y)

If there exist rational functions F(x) and G(y) such that

y=F(x)+4( ,y)G(y) mod Z(x,y),
then

-/ (,y)(G(y)+S(y)) mod Z(xy)




y+R(x)+ 4 (xy)S(y)=0 mod Z(x,y)

Good news: the square of the “nasty” factor //(x,y) is “nice”:

/V(x,y)2 =A(y) mod #(x,y)

If there exist rational functions F(x) and G(y) such that

y=F(x)+4( ,y)G(y) mod Z(x,y),
then

(FO)+R(x) =4 ( ,¥)?(G(y)+S(¥))* mod Z(xy)
= A(y)(G(y) +S(y))%.



y+R(x)+ 4 (xy)S(y)=0 mod Z(x,y)

Good news: the square of the “nasty” factor //(x,y) is “nice”:

/V(x,y)2 =A(y) mod #(x,y)

If there exist rational functions F(x) and G(y) such that

y=F(x)+4( ,y)G(y) mod Z(x,y),
then

(F()+R()) = # () (GU) +S()* mod Z(x,y)
= A()(G(y)+S(»)*.
We have a new pair of & -invariants — involving U(x,0) and D(y):

H(x)=(F(x)+R(x))> and  BH(y)=Ay)(Gy)+S())"



The monomial y decouples as F(x) + 4 ( ,y)G(y) modulo Z (x,y)
for exactly 4 of the 8 symmetric models S under consideration.




The monomial y decouples as F(x) + 4 ( ,y)G(y) modulo Z (x,y)
for exactly 4 of the 8 symmetric models S under consideration.

These 4 models are also those such that xy decouples as f(x) + g(y)
mod K(x,y). In fact, one can take g(y) = f(y) and F(x) = 2f(x).
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mod K(x,y). In fact, one can take g(y) = f(y) and F(x) = 2f(x).

NFFEHERT HAEFE

v v v v

By combining the new #-invariants (%(x), %(y)) with known
F-invariants (rational, or weak, or involving the % -quadrant series
@(x,0) and @(0,y)), one can prove (D-)algebraicity of U(x,0), D(y)
and C(x,y).



The monomial y decouples as F(x) + 4 ( ,y)G(y) modulo Z (x,y)
for exactly 4 of the 8 symmetric models S under consideration.

These 4 models are also those such that xy decouples as f(x) + g(y)
mod K(x,y). In fact, one can take g(y) = f(y) and F(x) = 2f(x).

~ HAFE|F A F

v v v v
alg alg alg D-alg

By combining the new #-invariants (%(x), %(y)) with known
F-invariants (rational, or weak, or involving the % -quadrant series
@(x,0) and @(0,y)), one can prove (D-)algebraicity of U(x,0), D(y)
and C(x,y).



Take S ={ 7, «, |}, sothat & ={1,—,\}. Start from
y+R(x)+ 4 (xy)S(y)=0
with / (x,y) =ty + 2tx—1, R(x) = -2tU(x,0), S(y) = yD(y).



Take S ={ 7, «, |}, sothat & ={1,—,\}. Start from
y+R(x)+ 4 (xy)S(y)=0
with / (x,y) =ty + 2tx—1, R(x) = -2tU(x,0), S(y) = yD(y).

e The good news: / (x,y)? = A(y) = (1 - ty)? - 4t%y.



Take S ={ 7, «, |}, sothat & ={1,—,\}. Start from
Y+R()+ 4 (xy)S(y)=0

with / (x,y) =ty + 2tx—1, R(x) = -2tU(x,0), S(y) = yD(y).

e The good news: / (x,y)? = A(y) = (1 - ty)? - 4t%y.

e Decoupling, new style: since

y==2x+1/t+ W (xy)/t=F(x)+(xy)G(y),

we have new F-invariants:

2

H(x) = (ZtU(x,O) +2x— %)

2
AW =)o)+ 7)




e Two known pairs of S -invariants:
So(x) =x+x/t=x%, Ho(x)=H(y),
Fi(x) = t@(x,0)~x/t + 2, Aly)=-y-t@(0,y)+t@(0,0).



e Two known pairs of S -invariants:
So(x) =x+x/t=x%, Ho(x)=H(y),
Fi(x) = t@(x,0)~x/t + 2, Aly)=-y-t@(0,y)+t@(0,0).

e We have just found another pair:

2
B(x) = (ZtU(x, 0) + 2x %) — 0(x9),

2
HN=00)(p0)+7)  =-a+00°)



e Two known pairs of S -invariants:
So(x) =x+x/t=x%, Ho(x)=H(y),
Fi(x) = t@(x,0)~x/t + 2, Aly) =y~ t@(0,y)+t@(0,0).

e We have just found another pair:

F(x) = (ZtU(x,O) 4 ox— %)2 —0(x9),

2
HN=80) 00 +7)  =-47+00°)



Construction of trivial invariants

e Two known pairs of & -invariants:
So(x) =X+ x/t=x°, Ho(x)=H(y),
F(x)=t@(x,0)-x/t+x%,  F(y)=-y-t@(0,y)+t@(0,0).

e We have just found another pair:

F(x) = (ZtU(X,O) +2x— %)2 —0(x%),

2
HO=A) (00 +1)  =-47+00°)
e Define
F(x) =LK -44(),  F)=.L0)-4A0)
Then (#(x), £ (v)) is a pair of S -invariants with no pole at 0.
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Then (#(x), £ (v)) is a pair of S -invariants with no pole at 0.
Moreover,

T (xy)=F(x)=F(¥)
where #(x,y) vanishes at x=0andy =0



Construction of trivial invariants

e Two known pairs of & -invariants:
So(x) =X+ x/t=x°, Ho(x)=H(y),
F(x)=t@(x,0)-x/t+x%,  F(y)=-y-t@(0,y)+t@(0,0).

e We have just found another pair:

F(x) = (ZtU(X,O) +2x— %)2 —0(x%),

2
HO=A) (00 +1)  =-47+00°)
e Define
S =B -4AK),  FO)=H0)-4A)

Then (#(x), £ (v)) is a pair of S -invariants with no pole at 0.
Moreover,

T (xy)=F(x)=F(¥)
where 7 (x,y) vanishesat x=0andy =0 = %(x) and %(y) are
trivial.



Trivial invariants for reverse Kreweras’ steps

Conclusion:

F(x) = (ZtU(X,O) 4 2x— %)Z = 4(t@(x,0) - x/t + x°) + cst,

2

Hy)=Aly) (yD(y) + %) 4(-y -t@(0,y) + t@(0,0)) + cst,

with A(y) = (1 - ty)? — 4ty.

The constant can be determined in terms of @ by specializing y to
the unique root of A(y) that is a power series in t.

But @(x,0) and @ (0, y) are well known, and algebraic...



The GF of Kreweras walks in three quadrants [mbm 21(a)]

e Walks ending on the negative x-axis: series U(x,0), with

%(2tU(x,O)+2x— %)Z _ -z +(1—x2)2(zi —3)

Z2 2 X
+(>‘<+Z— %)\/1—24223x+ ZTZXZ.
e Walks ending on the diagonal: series D(x), with
R
—(>'<+Z— %)\/1—24—223x+ ZTZXZ.

where A(x) = (1 -tx)° —4txand Z = t(2 + Z3).



The GF of Kreweras walks in three quadrants [mbm 21(a)]

e Walks ending on the negative x-axis: series U(x,0), with

%(2tU(x,0)+2x— %)Z _(1-2pF +(1—x2)2(zi —3)

Z2 2 X
+(>‘<+Z— %)\/1—24223x+ ZTZXZ.
e Walks ending on the diagonal: series D(x), with
R
—(>'<+Z— %)\/1—24—223x+ ZTZXZ.

where A(x) = (1 -tx)° —4txand Z = t(2 + Z3).

e All walks in three quadrants:
xy(l-t(x+y+xy))C(x,y)=xy—tU(x,0) - tU(y,0).

(Algebraicity of excursions proved by [Elvey Price, FPSAC 20])



e Number of n-step walks ending at (i,j) in the three quadrant plane:

Hij
Ci,j("')~—r(_—?;]/4)3”n_7/4 (forn+i+j=0 mod 3)



Asymptotics and harmonic function nil [mbm 21(a)]

e Number of n-step walks ending at (i, j) in the three quadrant plane:

H. .
Ci,j(”)N—r(_—;ﬂ‘)3”!‘1_7/4 (forn+i+j=0 mod3)

e The function H is %¥-harmonic, that is,

1
=3 (Hi—l,j—l +Hiy1; +Hijn ),

where by convention H; ; = 0'if (i,j) € C. By symmetry, H; ; = H; ;.

H



Asymptotics and harmonic function

{

[mbm 21(a)]

e Number of n-step walks ending at (i, j) in the three quadrant plane:

H. .
C;,j(n)~—r(_—3/4)

e Equivalently, the generating function

H(X’y) = Z Hi,ij_iyj;

j=0,i<j

satisfies

W 3np=7/4 (forn+i+j=0 mod3)

1
(143077 + 5%y = 3xy ) H(xy) = H_(x) + 5 (2 + 077 = 3xy) Ha(y)

where
H_(x) := ZH—i,OXi
i>0
Hd()’) = ZHi,iyi

i>0



Asymptotics and harmonic function nil [mbm 21(a)]

e Number of n-step walks ending at (i, j) in the three quadrant plane:
H; ;

(")~ ~37m)

e Equivalently, the generating function

Z Hi,ij_iyj,

j=0,i<j

37p /4 (forn+i+j=0 mod3)

satisfies

1
(143077 + 5%y = 3xy ) H(xy) = H_(x) + 5 (2 + 077 = 3xy) Ha(y)

where
; 1+2 4
ZH_’ ox! = + x| X + 2,

i>0

; 1 + 2y 4 — y
= ZHi,iy 1
>0 1 y \/ 4 y -y




Asymptotics and harmonic function nil [mbm 21(a)]

e Number of n-step walks ending at (i, j) in the three quadrant plane:
H; ;

(")~ ~37m)

e Equivalently, the generating function

Z Hi,ij_iyj,

j=0,i<j

37p /4 (forn+i+j=0 mod3)

satisfies

1
(143077 + 5%y = 3xy ) H(xy) = H_(x) + 5 (2 + 077 = 3xy) Ha(y)

where
; 1+2 4 —
ZH—,OX'* + x| X+2
1-x

i>0 [Trotignon 19(a)]

; 1 + 2y 4 — y
= ZHi,iy 1
>0 1 y \/ 4 y -y




From counting series to discrete harmonic functions

To prove:
Hiji  on 74 _
Ci'i(n)w_m3 n (forn+2i=0 mod 3)
Let ) ‘
D(y)=) cii(n)y't"=) Di(t)y’,
i>0 i>0

where D;(t) counts walks ending at (i,i). We have

A(y)( 1\ (1-23)%2 »(1 1
> yD(yH?) =7z -2 (22__)
_ 2y \/ 44+73 72
(y+z-Z)\/1-2 = y2,
(y+ z) a Yy

A singularity analysis around t = 1/3 (i.e. Z = 1) of D(y) (performed
with care), gives the result.



From counting series to discrete harmonic functions

To prove:

ci(n)~ m 37p7/4 (forn+2i=0 mod 3)

D(y)=) cii(n)y't"=) Di(t)y’

i~0 i~0

Let
where D;(t) counts walks ending at (i,i). We have

=ZH~y"— \/1+2y 4 — -y
. " (1- y\/ (4-y) V1-y

i>0

A singularity analysis around t = 1/3 (i.e. Z=1) of D(y) (performed
with care), gives the result.



Recall from Michael’s lecture: it is a good idea to consider A(x,y)
given by

XAGy) =0 Cly) = 5 (0 Q(0y)%yQ(%Y) 37 Q(x, 7)),

which satisfies

2xy + Xy + xy

(I-t(x+x+y+y)xvA(xy) = 3

—txA_(X) — tyA_(¥).



The simple walk |

Recall from Michael'’s lecture: it is a good idea to consider A(x, y)
given by

WAGY) = xyCxy) 3 (9Q(0 Y)Y Q(%,y) X7 Q7).

which satisfies
B _ 2xy + Xy + xy _ _
(1-t(x+X+y+7)vA(xy) = % ~ txA_(R) - tyA_(¥).

Split A(x,y) in two parts, etc. The equation

YR+ (x)S(y) =0 mod F(x.y)]

becomes

2y(1 +x2)/3+R(X)+/V(X,y)S(y) =0 mod Z(x,y)




The simple walk |

Recall from Michael'’s lecture: it is a good idea to consider A(x, y)
given by

WAGY) = xyCxy) 3 (9Q(0 Y)Y Q(%,y) X7 Q7).

which satisfies
B _ 2xy + Xy + xy _ _
(1-t(x+X+y+7)vA(xy) = % ~ txA_(R) - tyA_(¥).

Split A(x,y) in two parts, etc. The equation

YR+ (x)S(y) =0 mod F(x.y)]

becomes

2y(1 +x2)/3+R(X)+/V(X,y)S(y) =0 mod Z(x,y)

and the initial term 2y(1 + x?)/3 decouples (new style).
= Algebraicity of A(x,y)
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e Explicit rational expression of
= 2
F2(x) = (f(x) +R(x))",
where 1
R(X) = K(x,0)C_(x) + EE(o, 0)Co,0
in terms of the quadrant generating function @(x,0) for the
companion model &. Same for D(y) and @(0, y).



What the invariant approach gives: general picture

e Explicit rational expression of

S(x) = (f(%) +R(x))?,

where

R(X) = K(x,0)C_(x) + %?(O,O)COIO

in terms of the quadrant generating function @(x,0) for the
companion model . Same for D(y) and @(0,y).

S(x) = (2t>‘<C_(x) + 2x — %)2 = 4(t@’(x,0) - x/t+ XZ) + cst,

2

Hy)= A(y)(yD(y) + %) 4(-y -t@(0,y) + t@(0,0)) + cst,



What the invariant approach gives: general picture

e Explicit rational expression of

S(x) = (f(%) +R(x))?,

where

R(X) = K(x,0)C_(x) + %?(O,O)COIO

in terms of the quadrant generating function @(x,0) for the
companion model . Same for D(y) and @(0,y).

s [ FEHAEKXP

B e R = =

deg. @(x,0) 6 6 8 24 24 00
deg. C_(x)or A_(x) | 24 24 64 24 24 o0




What the invariant approach gives: general picture

e Explicit rational expression of

S(x) = (f(%) +R(x))?,

where 1
mm:E@ﬁw4m+zﬂam%p

in terms of the quadrant generating function @(x,0) for the
companion model . Same for D(y) and @(0,y).

e Harmonic functions: explicit and algebraic in the 5 DF cases; in the
DA case, a conjectured relation between the three-quadrant
S-harmonic function and the quadrant %-harmonic function.



What the invariant approach gives: general picture

e Explicit rational expression of

S(x) = (f(%) +R(x))?,

where 1
mﬂ:E@ﬁn4m+zﬂQm%p

in terms of the quadrant generating function @(x,0) for the
companion model . Same for D(y) and @(0,y).

e Harmonic functions: explicit and algebraic in the 5 DF cases; in the
DA case, a conjectured relation between the three-quadrant
S-harmonic function and the quadrant %-harmonic function.

s | H B FE X|F
v | H I F B2 |~

deg. #'(x,0)
deg. H_(x)
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10 models

|
I 1

rat. invariants: 6 no rat. inv.: 4

| |
D-finite Not D-finite

| |
I I

\ \
decoupling: 3 no decoupling: 3 decoupling: 1 no decoupling: 3

| | | |

algebraic DF transc. D-alg. not D-alg.

A TXK A

[mbm, Wallner, Raschel, Trotignon, Mustapha, Dreyfus]|




Ten solved symmetric models

10 deels
rat. inva‘riants: 6 no rat.‘ inv.: 4
D-finite Not D-finite
decou|‘aling: 3 no decour‘)ling: 3 decoup‘)ling: 1 no decon‘Jpling: 3
algel‘)raic DF tra‘msc. D-alg. not D-alg.

A TXK A

[mbm, Wallner, Raschel, Trotignon, Mustapha, Dreyfus]

Andrew Elvey Price: same nature as the quadrant series, at least in x
and y (next talk)



