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ROOTED PLANAR MAPS

Planar map: Drawing of (planar) graph on the sphere with a marked,
directed root edge (up to orientation preserving homeomorphisms).
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A CHRONOLOGY OF PLANAR MAPS

1960 1978 1981 1995 2000

e Recursive approach: Tutte, Brown, Bender, Canfield, Richmond,
Goulden, Jackson, Wormald, Walsh, Lehman, Gao, Wanless...

e Matrix integrals: Brézin, Itzykson, Parisi, Zuber, Bessis, Ginsparg,
Kostov, Zinn-Justin, Boulatov, Kazakov, Mehta, Bouttier, Di Francesco,
Guitter, Eynard...

e Bijections: Cori & Vauquelin, Schaeffer, Bouttier, Di Francesco &
Guitter (BDG), Bernardi, Fusy, Poulalhon, Bousquet-Mélou, Chapuy...

e Geometric properties of random maps: Chassaing & Schaeffer,
BDG, Marckert & Mokkadem, Jean-Frangois Le Gall, Miermont, Curien,
Albenque, Bettinelli, Ménard, Angel, Sheffield, Miller, Gwynne...
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TALK OUTLINE

o Introduction: recursive method for (cubic) maps

@ Part 1: Eulerian orientations - story time + bijections
o Part 2: Solving six vertex model
o Part 2a: Functional equations
o Part 2b: Solving functional equations (guess and check)
o Part 2c: deriving the guesses
@ Part 3: Modular properties and algebraicity for the 6-vertex
model
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MAP COUNTING

Introduction: Counting cubic maps

(Tutte, 1962)
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QUASI-CUBIC MAPS

Definition: Quasi-cubic map: non-root vertices have degree 3
Definition: ¢, ,, is the number of quasi-cubic maps with n edges

where the root vertex has degree m and C(t,x) = >, <o "X Cpm.
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QUASI-CUBIC MAPS

Definition: Quasi-cubic map: non-root vertices have degree 3
Definition: ¢, ,, is the number of quasi-cubic maps with n edges

where the root vertex has degree m and C(t,x) = >, <o "X Cpm.
Contract the root edge
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QUASI-CUBIC MAPS

Definition: Quasi-cubic map: non-root vertices have degree 3
Definition: ¢, ,, is the number of quasi-cubic maps with n edges
where the root vertex has degree m and C(t,x) = >, 50 1"X" Cm.
Contract the root edge — still quasi-cubic! B
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QUASI-CUBIC MAPS

Definition: Quasi-cubic map: non-root vertices have degree 3
Definition: ¢, ,, is the number of quasi-cubic maps with n edges
where the root vertex has degree m and C(t,x) = >, 50 1"X" Cm.
Contract the root edge — still quasi-cubic! Two cases:
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C
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QUASI-CUBIC MAPS

Definition: Quasi-cubic map: non-root vertices have degree 3
Definition: ¢, ,, is the number of quasi-cubic maps with n edges
where the root vertex has degree m and C(t,x) = >, 50 1"X" Cm.
Contract the root edge — still quasi-cubic! Two cases:

C(t,x)

C(t,x)
tx?C(t, z)?
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QUASI-CUBIC MAPS

Definition: Quasi-cubic map: non-root vertices have degree 3
Definition: ¢, ,, is the number of quasi-cubic maps with n edges
where the root vertex has degree m and C(t,x) = >, 50 1"X" Cm.
Contract the root edge — still quasi-cubic! Two cases:

C(t,x)
tx?C(t, z)?

Clt,x) =1+ ;[C[XZZ]C(I,)C) + 1 C(t, x)°
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EULERIAN ORIENTATIONS

Part 1:
Eulerian orientations
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STORY TIME: BACK IN 2017...

This problem seems
hard. Can you com-

pute anything? Ooh, looks fun!
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STORY TIME: BACK IN 2017...

Hey, this problem looks
fun. wanna try it?
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ON THE NUMBER OF PLANAR EULERIAN ORIENTATIONS

NICOLAS BONICHON, MIREILLE BOUSQUET-MELOU, PAUL DORBEC, AND CLAIRE PENNARUN

ABsTRACT. The number of planar Eulerian maps with n edges is well-known to have a simple
expression. But what is the number of planar Eulerian orientations with n edges? This
problem appears to be difficult. To approach it, we define and count families of subsets
and supersets of planar Eulerian orientations, indexed by an integer k, that converge to
the set of all planar Eulerian orientations as k increases. The generating functions of our
subsets can be characterized by systems of polynomial equations, and are thus algebraic.
The generating functions of our supersets are characterized by polynomial systems involving
divided differences, as often occurs in map enumeration. We prove that these series are
algebraic as well. We obtain in this way lower and upper bounds on the growth rate of planar
Eulerian orientations, which appears to be around 12.5.

1. INTRODUCTION

The enumeration of planar maps (graphs embedded on the sphere) has received a lot of
attention since the sixties. Many remarkable counting results have been discovered, which were
often illuminated later by beautiful bijective constructions. For instance, it has been knowrﬂ
since 1963 that the number of rooted planar Eulerian maps (i.e., planar maps in which every
vertex has even degree) with n edges is [24]:

3.on-t 2n
fn = (n+l)(n+2)<n)' @
A bijective explanation involving plane trees can be found in [I3]. The associated generating
function M(t) = 3, ., mnt™ is known to be algebraic, that is, to satisfy a polynomial equation.
More precisely:
124 10— 1 — (82 4 12t — D)M(t) + 162 M (1)* = 0.

¥ > ¥
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ROOTED PLANAR EULERIAN ORIENTATIONS

Each vertex has equally many incoming as outgoing edges.
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EULERIAN ORIENTATIONS

Aim: Determine the number g, of (rooted planar) Eulerian
orientations with n edges

T|=3 &

o0
The generating function G(f) = Z gat" =t +5% + ...

=1
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EULERIAN ORIENTATIONS

Aim: Determine the number g, of (rooted planar) Eulerian
orientations with n edges

T|=3 &

o0
The generating function G(f) = Z gat" =t +5% + ...
t=1
In 2017, E.P. and Guttmann:
@ Computed the number g, of Eulerian orientations for n < 100.
@ Predicted that
(4m)"

g
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EULERIAN ORIENTATIONS

Aim: Determine the number g, of (rooted planar) Eulerian
orientations with n edges

T|=3 &

o0
The generating function G(f) = Z gat" =t +5% + ...

=1

In 2017, E.P. and Guttmann:
@ Computed the number g, of Eulerian orientations for n < 100.

@ Predicted that
(4m)"

Bn ™ fig n*(logn)?
— By correspondence, E.P. and Bousquet-Mélou conjectured the
exact form of G(7)...
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EULERIAN ORIENTATIONS

Aim: Determine the number g, of (rooted planar) Eulerian
orientations with n edges

T|=3 &

o0
The generating function G(f) = Z gat" =t +5% + ...

=1

In 2017, E.P. and Guttmann:
@ Computed the number g, of Eulerian orientations for n < 100.

@ Predicted that
(4m)"

En ™ B n*(logn)?
— By correspondence, E.P. and Bousquet-Mélou conjectured the
exact form of G(7)... which we then proved together in Bordeaux
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EULERIAN ORIENTATIONS EXACT SOLUTION

Let Ro(#) be the unique power series with constant term 0 satisfying

oo

2
(=3 — (*") Rotey.
L +1\n

o0
The generating function G(z) = Z gnt" of rooted planar Eulerian

n=0
orientations counted by edges is given by

G(r) = %(r — 2% — Ro(1)).
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EULERIAN ORIENTATIONS EXACT SOLUTION

Let Ro(#) be the unique power series with constant term 0 satisfying

oo

2
(=3 — (*") Rotey.
L +1\n

o0
The generating function G(z) = Z gnt" of rooted planar Eulerian

n=0
orientations counted by edges is given by

G(r) = %(r — 2% — Ro(1)).

As predicted,
(4m)"

&n ™ Fig n*(logn)?’
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EULERIAN ORIENTATIONS — SIX VERTEX MODEL

Eulerian orientations
[E.P. and Guttmann]

Height-labelled maps

[Miermont]/
[Ambjorn and Budd]

Height-labelled
quadrangulations
[E.P. and Guttmann]

Six-vertex model
configurations
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EULERIAN ORIENTATIONS — SIX VERTEX MODEL

Eulerian orientations

[E.P. and Guttmann]

Height-labelled maps

[Miermont]/

[Ambjorn and Budd]
Height-labelled Solution of E.P. and
quadrangulations Bousquet-Mélou

[E.P. and Guttmann]
Six-vertex model
configurations
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BIJECTION

Part 1a:
Eulerian orientations — Six vertex
model
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“SIX” VERTEX MODEL

Each vertex has 2 incoming and 2 outgoing edges.

Wi RE

Non-alternating Alternating
(weight t) (weight t)
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“SIX” VERTEX MODEL

Each vertex has 2 incoming and 2 outgoing edges.

Wi

Non-alternating Alternating
(weight t) (weight t)

Definition: g, ; = number of maps with n vertices, k alternating and
n — k non-alternating.
Definition: weight of a map = product of weights of its vertices.
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“SIX” VERTEX MODEL

Each vertex has 2 incoming and 2 outgoing edges.

=T T

Non-alternating Alternating
(weight t) (weight t)

Definition: g, ; = number of maps with n vertices, k alternating and
n — k non-alternating.

Definition: weight of a map = product of weights of its vertices.
Definition: Q(7,v) = >, , gnit"Y* = sum of weights of all maps.
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“SIX” VERTEX MODEL

Each vertex has 2 incoming and 2 outgoing edges.

=T T

Non-alternating Alternating
(weight t) (weight t)

Definition: g, ; = number of maps with n vertices, k alternating and
n — k non-alternating.

Definition: weight of a map = product of weights of its vertices.
Definition: Q(7,v) = Y, ; guxt"y* = sum of weights of all maps.
Aim: Determine Q(t,7).
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BIJECTION TO HEIGHT-LABELLED MAPS

Eulerian orientations — height-labelled maps
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BIJECTION TO HEIGHT-LABELLED MAPS

Eulerian orientations — height-labelled maps

Labelled map:
@ Adjacent labels differ by 1

@ root edge from 0 to 1
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LABELLED QUADRANGULATIONS

@ adjacent labels differ by 1.
@ By our bijection, Q(¢, ) counts labelled quadrangulations by

faces () and alternating faces (7).
Non-alternating Alternating
(weight t) (weight ~t)
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LABELLED QUADRANGULATIONS

@ adjacent labels differ by 1.
@ By our bijection, Q(¢, ) counts labelled quadrangulations by

faces () and alternating faces (7).
Non-alternating Alternating
(weight t) (weight ~t)

Next step: Bijection between labelled quadrangulations with no
alternating faces and labelled maps (Miermont / Ambjgrn and Budd).
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LABELLED QUADRANGULATIONS TO LABELLED MAPS

Start with a quadrangulation with no alternating faces.
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LABELLED QUADRANGULATIONS TO LABELLED MAPS

Start with a quadrangulation with no alternating faces.
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LABELLED QUADRANGULATIONS TO LABELLED MAPS

Draw a red edge in each face according to the rule.
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LABELLED QUADRANGULATIONS TO LABELLED MAPS

Remove all of the original edges.
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LABELLED QUADRANGULATIONS TO LABELLED MAPS

Remove any isolated vertices.
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LABELLED QUADRANGULATIONS TO LABELLED MAPS

Remove any isolated vertices.
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LABELLED QUADRANGULATIONS TO LABELLED MAPS

This is now a labelled map!
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LABELLED QUADRANGULATIONS TO LABELLED MAPS

This is now a labelled map! (after changing labels £ to 2 — /).
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EULERIAN ORIENTATIONS — SIX VERTEX MODEL

This bijection shows that Q(z,0) = G(¢), the generating function for
rooted Eulerian orientations where ¢ counts edges.

Eulerian orientations
[E.P. and Guttmann]

Height-labelled maps

[Miermont]/
[Ambjorn and Budd]

Height-labelled
quadrangulations
[E.P. and Guttmann]

Six-vertex model
configurations
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S1X VERTEX MODEL

Part 2:
Solving the six vertex model

(on planar maps)
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“SIX” VERTEX MODEL

Each vertex has 2 incoming and 2 outgoing edges.

Non-alternating Alternating
(weight t) (weight t)

Definition: g, ; = number of maps with n vertices, k alternating and
n — k non-alternating.

Definition: weight of a map = product of weights of its vertices.
Definition: Q(7,7) = 3, ; guxt"y* = sum of weights of all maps.
Aim: Determine Q(z,7).

The six vertex model on random lattices using Jacobi theta functions Andrew Elvey Price




BACKGROUND ON THE SIX VERTEX MODEL

@ “Solved” by Kostov in 2000 using matrix integral techniques.
@ Solution was not rigorous.

@ We made this argument rigorous and simplified the form of the
solutions.

Six vertex model on maps

[Ginsparg, 91]
[E.P., Zinn-Juyhtin]

Matrix integral formulation

Formal functional equations [Kostov, 00] and [Zinn-Justin, 00]
(Non-rigorous)

One cut asswmption

Guess and check (Non-rigorous) “&apalytic functional equations

[E.P., Zinn-Just.
Kostov, 00]

Solution
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SOLUTIONS AT v =0, 1 [E.P. AND BOUSQUET-MELOU]

The generating function Q(z, 0) is given by
o

2
f= Z 1 2n Ro(t)”+1
—n+ 1\ n ’

Q(t,0) = %(x — 2% — Ro(1)).

The generating function Q(z, 1) is given by
oo

= () (e

Q(t,1) = %(t — 32 — Ry(1)).
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PREVIEW: SOLUTION FOR Q(z, )

Define

[e.9]

Hz,q) = 3 (—1)H(e@rtDie — o=(rtDin)gn+12/8,
n=0

Let ¢ = ¢q(t, ) be the unique series satisfying

= +
64 sin® a

_cosa [ Ya,q)V"(a,q)  V'(a,q)
’ ( 7(a,q)? ﬁf(a,c»)'

Define R(z,y) by

R(1, 2 cos(20)) = 5@ 19(04761)2( 9" (e, q) +z9"'(0,q)>_

96 sin* a V' (v, ¢)2 B V' (a, q) 9'(0,q)
Then {
Q(t,v) = CEE (t— (v +2) —R(t,7)).
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S1X VERTEX MODEL

Part 2a:
Deriving functional equations
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CUBIC EULERIAN PARTIAL ORIENTATIONS (CEPOS)

Recall: Q(z,) counts six-vertex model configurations with a weight
t per vertex and ~y per alternating vertex.
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CUBIC EULERIAN PARTIAL ORIENTATIONS (CEPOS)

Recall: Q(z,) counts six-vertex model configurations with a weight
t per vertex and ~y per alternating vertex.
Definition: CEPO: a map using vertices of the types below

Vertex types:
Left turn Right turn
(weight w) (weight w™1)
Weight ¢ per undirected edge
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CUBIC EULERIAN PARTIAL ORIENTATIONS (CEPOS)

Recall: Q(z,) counts six-vertex model configurations with a weight
t per vertex and ~y per alternating vertex.

Definition: CEPO: a map using vertices of the types below

Vertex types:

Left turn Right turn
(weight w) (weight w™1)

Weight ¢ per undirected edge

C(t,w) = Z cn,ktnwk counts CEPOs (using weights above).
n.k
cn,2k: number of CEPOs with n + k left turns and n — k right turns

The six vertex model on random lattices using Jacobi theta functions Andrew Elvey Price




CUBIC EULERIAN PARTIAL ORIENTATIONS (CEPOS)

Recall: Q(z,) counts six-vertex model configurations with a weight
t per vertex and ~y per alternating vertex.

Definition: CEPO: a map using vertices of the types below

Vertex types:

Left turn Right turn
(weight w) (weight w™1)

Weight ¢ per undirected edge

C(t,w) = Z cn,ktnwk counts CEPOs (using weights above).
n.k
cn,2k: number of CEPOs with n + k left turns and n — k right turns

Theorem: Q(t,w? + w=?) = C(t,w).
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S1X VERTEX MODEL — CEPOS

Theorem: Q(t,w? + w™2) = C(t,w)

B

(weight 7) (weight t)

eyt

(weight ~t) (weight w (weight w?t

The six vertex model on random lattices using Jacobi theta functions Andrew Elvey Price




S1X VERTEX MODEL — CEPOS

Theorem: Q(t,w? + w™2) = C(t,w)

B

(weight 7) (weight t)

eyt

(weight ~t) (weight w (weight w?t

Reverse direction: contract undirected edges.
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FUNCTIONAL EQUATIONS FOR QUASI-CEPOS

Definition: quasi-CEPO: non-root vertices are left turns or right turns.
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FUNCTIONAL EQUATIONS FOR QUASI-CEPOS

Definition: quasi-CEPO: non-root vertices are left turns or right turns.

r edges on right
£ edges on left

W root vertex H root vertex
(weight xdegree) (weight x‘y")

W(x) = W(r,w, x): root vertex is a W root vertex
H(x,y) = H(r,w,x,y): root vertex is a H root vertex
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FUNCTIONAL EQUATIONS FOR QUASI-CEPOS

Definition: quasi-CEPO: non-root vertices are left turns or right turns.

r edges on right
£ edges on left

W root vertex H root vertex
(weight xdegree) (weight x‘y")

W(x) = W(r,w, x): root vertex is a W root vertex
H(x,y) = H(r,w,x,y): root vertex is a H root vertex

C(t,w) = H(t,w,0,0)

For functional equations: Contract the root edge.
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CUBIC EULERIAN PARTIAL ORIENTATIONS

T

217 (2 | L
wartH (0, z) ot H(2,0) te* W (z)

W(x) = wxrH(0, x) 4+ w™larH(x, 0) + x> W(x)? + 1
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CUBIC EULERIAN PARTIAL ORIENTATIONS

» (= -

wrtH (0, ) tr*W(:

e
> A %

H(0,x)

(

H(z,0)

W(x) = wxrH(0, x) 4+ w™larH(x, 0) + x> W(x)? + 1
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CUBIC EULERIAN PARTIAL ORIENTATIONS

(Hx,y) - H(0,y)) LB z,y) - H(z,0)) W@We)

—1

Hxy) = = (Hxy) - H(o,y>>+°"7 (H(x,y) — H(x, 0)+W(x)W(y).
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CUBIC EULERIAN PARTIAL ORIENTATIONS
r @
H(0,y)) ,Y)
> > w(

(z,y) = H(0,y) H(z,y)— H(z,0)

—

—1

Hxy) = = (Hxy) - H(o,y>>+°"7 (H(x,y) — H(x, 0)+W(x)W(y).
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S1X VERTEX MODEL

Part 2b:
Solving functional equations
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FUNCTIONAL EQUATIONS FOR THE SIX VERTEX MODEL

Recall: C(t,w) = Q(t,w? + w™2) = H(t,w,0,0) = H(0,0) is
characterised by:
W(x) = x*W(x)? + wxrH(0,x) + w ™ 'xtH(x,0) + 1

w w‘l
H(x,y) = W)WE) + = (Hxy) = Hx 0)) + == (Hxy) —H(0,y)).
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FUNCTIONAL EQUATIONS FOR THE SIX VERTEX MODEL

Recall: C(t,w) = Q(t,w? + w™2) = H(t,w,0,0) = H(0,0) is
characterised by:

W(x) = x*W(x)? + wxrH(0,x) + w ™ 'xtH(x,0) + 1

w w‘l
H(x,y) = W)WE) + = (Hxy) = Hx 0)) + == (Hxy) —H(0,y)).

So, we just need to guess and check
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EXPRESSIONS FOR W(x) AND H(x, y)

S iZ - izy (n 2ipr
9@) = Z(il>n(e(2n+l)l~ 4 o~ CrtDEY(+1/2)

n=0

cos

19//(&)

b S cos(a) V(a)?
16t sin3 (o) ¥/ (a)?’

V) = b (19'(:)2 RO
) HOLR6)

W) = - —

t =
64 sin3 o

V(- I (2 - %)

B ()0 ()
19/(04)2
_ cosa 97 (0)
" 2sina 9 ()’

Yz + a
>, ) = % (0(;),

¥ (a)

) | _

c=—w—w |,

19/// (0)
397 (0)

—1

1 /ﬂ'
27 Jo (y 4+ = iwx(z —

dz,
=) (- %)

- %) w© (—4:71 —iw ™!

1 1 w
oy =
y y 27

/-,.- V(i — &)Y (z
0

(v + et —iwx(z — BF))x (zf s

=
~—

B

|

lH (1’0) o w V(z— EL)Y (z - %) w(© (7071 — iw’x (17 ‘"TT)) .
y y 2w Jo 4= —iwx(z — "—;))x (z— LZT)
Wi = W0 (1), iy = M) b0 W HO.)

Expressions are formal series in ¢, w, and (in some cases) x, y and e
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SOLUTION FOR Q(,7)

Define

[e.9]

Hz,q) = 3 (—1)H(e@rtDie — o=(rtDin)gn+12/8,
n=0

Let ¢ = ¢q(t, ) be the unique series satisfying

= +
64 sin® a

_cosa [ Ya,q)V"(a,q)  V'(a,q)
’ ( 7(a,q)? ﬁf(a,c»)'

Define R(z, ) by

R(1, 2 cos(20)) = 5@ 19(04761)2( 9" (e, q) +z9"'(0,q)>_

96 sin* a V' (v, ¢)2 B V' (a, q) 9'(0,q)
Then {
Q(t,v) = CEE (t— (v +2) —R(t,7)).
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S1X VERTEX MODEL

Part 2c:
Non-rigorously deriving expressions

for W(x) and H(x, y)
(by copying Kostov)
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“SOLVING” FUNCTIONAL EQUATIONS

Recall: Equations to solve:

W(x) = ¥*tW(x)* + wxrH(0,x) + w ™ xrH(x, 0) + 1
w w™!
H(x,y) = Wx)W(y) + 3 (R, y) = H(x, 0)) + —— (H(x,y) = H(0,)).
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“SOLVING” FUNCTIONAL EQUATIONS

Recall: Equations to solve:

W(x) = ¥*tW(x)* + wxrH(0,x) + w ™ xrH(x, 0) + 1
w w™!
H(x,y) = Wx)W(y) + 3 (R, y) = H(x, 0)) + —— (H(x,y) = H(0,)).

Step 1: Write w = ¢ for & € R and choose ¢ € R small
— series converge for |x|, [y| < 1

The six vertex model on random lattices using Jacobi theta functions Andrew Elvey Price
S




“SOLVING” FUNCTIONAL EQUATIONS

Recall: Equations to solve:

W(x) = ¥*tW(x)* + wxrH(0,x) + w ™ xrH(x, 0) + 1
w w™!
H(x,y) = Wx)W(y) + 3 (R, y) = H(x, 0)) + —— (H(x,y) = H(0,)).

Step 1: Write w = ¢ for & € R and choose ¢ € R small
— series converge for |x|, [y| < 1

Step 2: (One cut assumption) Assume W(x) and H(x, 0) have
extensions that are analytic on C \ [r, ], for some r,r, € R
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“SOLVING” FUNCTIONAL EQUATIONS

Recall: Equations to solve:

W(x) = ¥*tW(x)* + wxrH(0,x) + w ™ xrH(x, 0) + 1
w w™!
H(x,y) = Wx)W(y) + 3 (R, y) = H(x, 0)) + —— (H(x,y) = H(0,)).

Step 1: Write w = ¢ for & € R and choose ¢ € R small
— series converge for |x|, [y| < 1

Step 2: (One cut assumption) Assume W(x) and H(x, 0) have
extensions that are analytic on C \ [r, ], for some r,r, € R

Step 3: (Kernel method) write X(v) = —wtw_and

1—iv(w?+1)
-1 X 21
Y(v) = % to parameterise (1 — % — WT) =0.

The second equation becomes:
Wl

0 = WX(»)W(Y()) = 7= HX(),0) = 2 H(0,¥(1)
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“SOLVING” FUNCTIONAL EQUATIONS

New equations:

W(x) = x*W(x)* 4 wxtH(0,x) + w ™ xrH(x,0) + 1

w w!
WH(X(V),O) — 3 HO.Y(v))

0=W(X)W( () — X(v)
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“SOLVING” FUNCTIONAL EQUATIONS

New equations:

W(x) = x*W(x)* 4 wxtH(0,x) + w ™ xrH(x,0) + 1

w w!

OZWGﬁWWW@D—ﬁEH@@MD—ﬂEH&Y@)

By analysing the cuts, we find that

U®v) == vwX(n)W (X(v)) + v 'Y(»)W (Y(v))
iv? v
Jrt(u)z —w2)  t(wtwl)?

is analytic except on 2 cuts iw[x}, x5] and —iw~![x}, x}] and satisfies
U(iw(x + i0)) = U(—iw™ " (x — i0)),
Uliw(x — i0)) = U(—iw™ ! (x +i0)),

for x € [x],x5].
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UNDERSTANDING U(v)

A

v

U(v) analytic except on slits .

U(iw(x £ i0)) = U(—iw™! (x F i0)), for x € [x], ).
ie.,asv—slit, U(v) — U(v) — 0.
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UNDERSTANDING U(v)

A
wah
. / 2
1wr °
v
0 -
1 o~V
w1
1.
iw X2

U(v) analytic except on slits .

U(iw(x £ i0)) = U(—iw™! (x F i0)), for x € [x], ).
ie.,asv—slit, U(v) — U(v) — 0.
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UNDERSTANDING U(v)

A

U(v) analytic except on slits .

U(iw(x £ i0)) = U(—iw™! (x F i0)), for x € [x], ).
ie.,asv—slit, U(v) — U(v) — 0.
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SOLVING FOR U(v)

A

Left: U(v) is analytic on yellow region.
There is a unique 7 € iR~( and conformal map V(z) from the flat
cylinder of height 77 onto this region (V(z) = V(z + m)).
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SOLVING FOR U(v)

|

@
gy

|

Andrew Elvey Price
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SOLVING FOR U(v)
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SOLVING FOR U(v)

.

|

Andrew Elvey Price

The six vertex model on random lattices using Jacobi theta functions
S
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SOLVING FOR U(v)
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SOLVING FOR U(v)
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SOLVING FOR U(v)
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SOLVING FOR U(v)
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SOLVING FOR U(v)
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SOLVING FOR U(v)
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SOLVING FOR U(v)
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SOLVING FOR U(v)

A

Left: U(v) is analytic on yellow region.

The six vertex model on random lattices using Jacobi theta functions

1 IT 1 2
1 2 1
1 1
L4 or
1 1
1 1
&> —9
T __ 7T
2 T3
Andrew Elvey Price




SOLVING FOR U(v)

A

- /
1WIo T
. 7 -5
gl A vyt 3F o
/ Iz+a,q) | .
> ® o
0 AN 10 )
i\. ] ]
w1 —— o
Rpw; T __ T
iwx2 9 ™ 2

Left: U(v) is analytic on yellow region.

J(z,9)

V() = 619(2 +a,q)’

27iT

where w = ie'* and g = ¢
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SOLVING FOR U(v)

A
.ol
ZWJ?Q [ ——— ) T
T T
il Vo) et "2
/ Iz+a,q) | .
> ® o
0 AN 10 )
i\. 1 1
w1 *—0
Rpw; T __ T
wT2 7 ™=

U(iw(x £ i0)) = U(—iw ™! (x F i0))

= U+ 5) = UV - )
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SOLVING FOR U(v)

A

i L, e——
! Iz, q 1 IT
wWT = ’
V<Z)/C79(Z+qu) 3 2
> [ J
0 \ ' 0
1 \. ]
—T7
iw T 0
= T
w2 2
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SOLVING FOR U(v)

A

S
1WIo T
T T
gl A vyt 3F A
/ Iz+a,q) | .
> ® o
0 AN 10 .
i.\. 1 1
w1 o
Rpw; T __ T
wT2 7 ™=

U(iw(x £ i0)) = U(—iw ™! (x F i0))
= U(V(z+77))=U(V(2))
= UV(z)) =A+Bp(z+ a,T)
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SOLVING FOR U(v)

A

S
1WIo T
T T
gl A vyt 3F A
/ Iz+a,q) | .
> ® o
0 AN 10 .
i.\. 1 1
w1 o
Rpw; T __ T
wT2 7 ™=

U(iw(x £ i0)) = U(—iw ™! (x F i0))
= U(V(z+77))=U(V(2))
= UV(z)) =A+Bp(z+ a,T)

Hooray, it’s solved!
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SOLVING FOR U(v)

A

T
' e T o+
e V<Z))Cﬂ(z+a q | 2 3
> [ J
0 AN 10 '.W
lh 1 1
wl @ &———eo .
iwr2 2 Ty

U(iw(x £ i0)) = U(—iw ™! (x F i0))
= UWV(z+n7)) =U(V(2))
= U(V(z)) =A+Bp(z+a,7)
— integral expression for W(x) and H(x,y) — Q(z, 7).
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SOLUTION FOR Q(,7)

Define

[e.9]

Hz,q) = 3 (—1)H(e@rtDie — o=(rtDin)gn+12/8,
n=0

Let ¢ = ¢q(t, ) be the unique series satisfying

= +
64 sin® a

_cosa [ Ya,q)V"(a,q)  V'(a,q)
’ ( 7(a,q)? ﬁf(a,c»)'

Define R(z, ) by

R(1, 2 cos(20)) = 5@ 19(04761)2( 9" (e, q) +z9"'(0,q)>_

96 sin* a V' (v, ¢)2 B V' (a, q) 9'(0,q)
Then {
Q(t,v) = CEE (t— (v +2) —R(t,7)).
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MODULAR PROPERTIES

Part 3:
Modular properties in special cases

Nice reference for modular properties of theta functions:
Elliptic Modular Forms and Their Applications, Zagier, 2008.
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VARYING 7T

Recall: 19(Z|T) — 19(% eiﬂ'T) _ Z(_l)n(6(2n+l)iz + e—(2n+l)iz)e(n+l/2)2i7r7—
n=0
Aim: relate 9(z|7) to other 7 values
Natural transformations: = — 7+ 1 and 7 — —%
Equations:
o I(z|T + 1) = ™*I(z,7)
9 (2] = 1) = —i(—ir)z i.2) g
o ¥ (| = 1) =—i(=ir)2exp (52%) V(zlT)
These transformations generate the group of transformations
ar +b
ct+d’
satisfying ad — bc = 1.
This is isomorphic to the group SL;(Z) of matrices

el
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ORBIT OF SLy(Z)

Andrew Elvey Price
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MODULAR FUNCTIONS

Definition: SL,(Z) is the group of matrices [ ECI 2 ] with
determinant 1.
Action on upper half plane H = {z € C|im(z) > 0}:

a b _ar+b
c d| T T orxd
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MODULAR FUNCTIONS

Definition: SL,(Z) is the group of matrices [ ECI 2 ] with
determinant 1.
Action on upper half plane H = {z € C|im(z) > 0}:

a b _ar+b
c d er+d

Definition: Let I" be a finite index subgroup of SL,(Z). A modular
function is a meromorphic function f : H — C satisfying the
following for all p € I":

Flom)=1 (50) = s
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MODULAR FUNCTIONS

Definition: SL,(Z) is the group of matrices [ 2 2 ] with
determinant 1.
Action on upper half plane H = {z € C|im(z) > 0}:

a b _ar+b
c d er+d

Definition: Let I" be a finite index subgroup of SL,(Z). A modular
function is a meromorphic function f : H — C satisfying the
following for all p € I":

floer)i=1 (ﬁﬁ) — /(7).

Theorem: (classical) All modular functions are algebraically related
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ALGEBRAICITY FOR Q(z,7)??

Recall:

_ cosa Ha, )" (o, 7) ¥ (a,7)

 64sin’ o <_ V(a, 7)? 0’((1,7)) '
cos’a V(a,T)? (e, 1) 9"(0,7)

96 sin* o V' (e, 7)? <_ ¥ (a, T) + 9(0,7) > '

R(z, =2 cos(2a)) =

1
Qt.7)= —— (t— (v +2)2 —R(t.v)).
(1,7) (7+2)t2( (v+2) (7))
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ALGEBRAICITY FOR Q(z,7)??

Recall:

_ cosa Ha, )" (o, 7) ¥ (a,7)

 64sin’ o <_ V(a, 7)? 0’(@,7)) '
cos’a V(a,T)? (e, 1) 9"(0,7)

96 sin* o V' (e, 7)? <_ ¥ (a, T) + 9(0,7) > '

(7—1—12)t2 (t— (v +2)7 — R(1,7)).

Theorem [E.P. and Zinn-Justin]: if « € 7Q, then R and

R(#, =2 cos(2a)) =

Q(r,7) =

1dk
~ tdR?
are both modular functions (when written as functions of 7), so they

are algebraically related.
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Q(1.7) = 5 (= (14 22 = R(1.7)

Specific cases:

o o0 1dt 4
7= T4R® T R(1-16R)
o1 1dr 6
7= tdR? _ R(1-27R)’
. 1 d’t 2 _
e v=-—1: [aR T R0 +4h)<1_gh),whereth(lJrZh).
° 7:”7‘6: RandS—fd— are related by

dR2

R:h(l H’f)/( +(2+f)h)

2
S=(5+V5) (l+(2+\/§)h)6/ (h (17 1 725\/§h) <17 11+25\/§h> (17 V5 - 1h>>
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THE CASES v =0, 1

f 0: the equation 4" Y impli
or = VUl € equation — = mplies
7 a tdR2 T R(1—16R) P

f I: the equation » " O impl
or = 1 € equation — = mplies
7 q tdR? _ R(1_27R) P

=2 () (R

n=0

Recall: in each case

Q(t,y) = t—(y+2) —R(1,7)).

(v +2) (
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QUESTIONS

e Are W(x) and H(x, y) D-algebraic?

@ If not, the full generating functions that are used in the solution
are non-D-algebraic, but the single parameter generating
function is D-algebraic. How common is this? Are there cases
where we can be confident it doesn’t happen (e.g., quarter plane
walks/excursions)?
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Thank you!
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