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ROOTED PLANAR MAPS

Planar map: Drawing of (planar) graph on the sphere with a marked,
directed root edge (up to orientation preserving homeomorphisms).

= 6=
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SMALL PLANAR MAPS
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A CHRONOLOGY OF PLANAR MAPS

1960 1978 1981 1995 2000

Random maps

Recursive approach (enumeration)

Matrix integrals (enumeration)

Bijections (enumeration)

• Recursive approach: Tutte, Brown, Bender, Canfield, Richmond,
Goulden, Jackson, Wormald, Walsh, Lehman, Gao, Wanless...

•Matrix integrals: Brézin, Itzykson, Parisi, Zuber, Bessis, Ginsparg,
Kostov, Zinn-Justin, Boulatov, Kazakov, Mehta, Bouttier, Di Francesco,
Guitter, Eynard...

• Bijections: Cori & Vauquelin, Schaeffer, Bouttier, Di Francesco &
Guitter (BDG), Bernardi, Fusy, Poulalhon, Bousquet-Mélou, Chapuy...

• Geometric properties of random maps: Chassaing & Schaeffer,
BDG, Marckert & Mokkadem, Jean-François Le Gall, Miermont, Curien,
Albenque, Bettinelli, Ménard, Angel, Sheffield, Miller, Gwynne...
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TALK OUTLINE

Introduction: recursive method for (cubic) maps

Part 1: Eulerian orientations - story time + bijections
Part 2: Solving six vertex model

Part 2a: Functional equations
Part 2b: Solving functional equations (guess and check)
Part 2c: deriving the guesses

Part 3: Modular properties and algebraicity for the 6-vertex
model
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MAP COUNTING

Introduction: Counting cubic maps
(Tutte, 1962)

The six vertex model on random lattices using Jacobi theta functions Andrew Elvey Price



QUASI-CUBIC MAPS

Definition: Quasi-cubic map: non-root vertices have degree 3
Definition: cn,m is the number of quasi-cubic maps with n edges
where the root vertex has degree m and C(t, x) =

∑
n,m≥0 tnxmcn,m.

Contract the root edge
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QUASI-CUBIC MAPS

Definition: Quasi-cubic map: non-root vertices have degree 3
Definition: cn,m is the number of quasi-cubic maps with n edges
where the root vertex has degree m and C(t, x) =

∑
n,m≥0 tnxmcn,m.

Contract the root edge→ still quasi-cubic! Two cases:

Γl

Γr

Γ
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Γ
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QUASI-CUBIC MAPS

Definition: Quasi-cubic map: non-root vertices have degree 3
Definition: cn,m is the number of quasi-cubic maps with n edges
where the root vertex has degree m and C(t, x) =

∑
n,m≥0 tnxmcn,m.

Contract the root edge→ still quasi-cubic! Two cases:

Γl

Γr

Γ

Γl

Γr

Γ

[x≥2]C(t, x)t
x [x≥2]C(t, x)

C(t, x)

C(t, x)
tx2C(t, x)2

1

C(t, x) = 1 +
t
x
[x≥2]C(t, x) + tx2C(t, x)2
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EULERIAN ORIENTATIONS

Part 1:
Eulerian orientations
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STORY TIME: BACK IN 2017...

This problem seems
hard. Can you com-
pute anything? Ooh, looks fun! Hey, this problem looks

fun. wanna try it?

Ok, sounds fun!
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ROOTED PLANAR EULERIAN ORIENTATIONS

Each vertex has equally many incoming as outgoing edges.
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EULERIAN ORIENTATIONS

Aim: Determine the number gn of (rooted planar) Eulerian
orientations with n edges

The generating function G(t) =

∞∑
t=1

gntn = t + 5t2 + . . .

In 2017, E.P. and Guttmann:
Computed the number gn of Eulerian orientations for n < 100.
Predicted that

gn ∼ κg
(4π)n

n2(log n)2 .

→ By correspondence, E.P. and Bousquet-Mélou conjectured the
exact form of G(t)... which we then proved together in Bordeaux
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EULERIAN ORIENTATIONS EXACT SOLUTION

Let R0(t) be the unique power series with constant term 0 satisfying

t =

∞∑
n=0

1
n + 1

(
2n
n

)2

R0(t)n+1.

The generating function G(t) =

∞∑
n=0

gntn of rooted planar Eulerian

orientations counted by edges is given by

G(t) =
1

4t2 (t − 2t2 − R0(t)).

As predicted,

gn ∼ κg
(4π)n

n2(log n)2 .
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EULERIAN ORIENTATIONS→ SIX VERTEX MODEL

Eulerian orientations

Height-labelled maps

Height-labelled
quadrangulations

Six-vertex model
configurations

[E.P. and Guttmann]

[E.P. and Guttmann]

[Miermont]/
[Ambjørn and Budd]

Solution of E.P. and
Bousquet-Mélou
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BIJECTION

Part 1a:
Eulerian orientations→ Six vertex

model
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“SIX” VERTEX MODEL

Each vertex has 2 incoming and 2 outgoing edges.

Non-alternating
(weight t)

Alternating
(weight tγ)

Definition: qn,k = number of maps with n vertices, k alternating and
n− k non-alternating.
Definition: weight of a map = product of weights of its vertices.
Definition: Q(t, γ) =

∑
n,k qn,ktnγk = sum of weights of all maps.

Aim: Determine Q(t, γ).
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BIJECTION TO HEIGHT-LABELLED MAPS

Eulerian orientations→ height-labelled maps

Labelled map:

Adjacent labels differ by 1

root edge from 0 to 1
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BIJECTION TO HEIGHT-LABELLED MAPS

Eulerian orientations→ height-labelled maps

0

Labelled map:

Adjacent labels differ by 1

root edge from 0 to 1
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BIJECTION TO HEIGHT-LABELLED MAPS

Eulerian orientations→ height-labelled maps

1

2

1 3 2

1

1

0
1

−1

0

`+ 1 `

Labelled map:

Adjacent labels differ by 1

root edge from 0 to 1
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LABELLED QUADRANGULATIONS

adjacent labels differ by 1.

By our bijection, Q(t, γ) counts labelled quadrangulations by
faces (t) and alternating faces (γ).

Non-alternating
(weight t)

Alternating
(weight γt)

`+ 1 `

`+ 1`+ 2

` `+ 1

`+ 1 `

Next step: Bijection between labelled quadrangulations with no
alternating faces and labelled maps (Miermont / Ambjørn and Budd).
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LABELLED QUADRANGULATIONS TO LABELLED MAPS

Start with a quadrangulation with no alternating faces.

The new map
is now a D-patch

`+ 1

`

`+ 2

1

2

1

3

2

1

1

0

1

0

2
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LABELLED QUADRANGULATIONS TO LABELLED MAPS

Draw a red edge in each face according to the rule.

The new map is
now a D-patch

`+ 1

`

`+ 1

`+ 2

1

2

1

3

2

1

1

0

1

0

2
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LABELLED QUADRANGULATIONS TO LABELLED MAPS

Remove all of the original edges.

This invisible bit needs to be long
enough to get to the next line.

`+ 1

`

`+ 1

1

2

1

3

2

1

1

0

1

0

2
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LABELLED QUADRANGULATIONS TO LABELLED MAPS

Remove any isolated vertices.

This invisible bit needs to be long
enough to get to the next line.

`+ 1

`

`+ 1

1

2

1

3

2

1

1

0

1

0

2

The six vertex model on random lattices using Jacobi theta functions Andrew Elvey Price



LABELLED QUADRANGULATIONS TO LABELLED MAPS

Remove any isolated vertices.

This invisible bit needs to be long
enough to get to the next line.

`+ 1

`

`+ 1

1

2

1

3

2

1

1

1

2

The six vertex model on random lattices using Jacobi theta functions Andrew Elvey Price



LABELLED QUADRANGULATIONS TO LABELLED MAPS

This is now a labelled map!

(after changing labels ` to 2− `).Edges
between equal labels get weight γt, other edges get weight t.

`+ 1

`

`+ 1

1

2

1

3

2

1

1

1

2
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LABELLED QUADRANGULATIONS TO LABELLED MAPS

This is now a labelled map! (after changing labels ` to 2− `).

Edges
between equal labels get weight γt, other edges get weight t.

`+ 1

`

`+ 1

1

0

1

−1

0

1

1

1

0
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EULERIAN ORIENTATIONS→ SIX VERTEX MODEL

This bijection shows that Q(t, 0) = G(t), the generating function for
rooted Eulerian orientations where t counts edges.

Eulerian orientations

Height-labelled maps

Height-labelled
quadrangulations

Six-vertex model
configurations

[E.P. and Guttmann]

[E.P. and Guttmann]

[Miermont]/
[Ambjørn and Budd]

Solution of E.P. and
Bousquet-Mélou
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SIX VERTEX MODEL

Part 2:
Solving the six vertex model

(on planar maps)
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“SIX” VERTEX MODEL

Each vertex has 2 incoming and 2 outgoing edges.

Non-alternating
(weight t)

Alternating
(weight tγ)

`+ 1 `

`+ 1`+ 2

`

`+ 1 `

Definition: qn,k = number of maps with n vertices, k alternating and
n− k non-alternating.
Definition: weight of a map = product of weights of its vertices.
Definition: Q(t, γ) =

∑
n,k qn,ktnγk = sum of weights of all maps.

Aim: Determine Q(t, γ).
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BACKGROUND ON THE SIX VERTEX MODEL

“Solved” by Kostov in 2000 using matrix integral techniques.

Solution was not rigorous.

We made this argument rigorous and simplified the form of the
solutions.

Six vertex model on maps

Matrix integral formulation

analytic functional equations

Formal functional equations

Solution

[Ginsparg, 91]

[Kostov, 00] and [Zinn-Justin, 00]

[Kostov, 00]

(Non-rigorous)
One cut assumption
(Non-rigorous)

[E.P., Zinn-Justin]

[E.P., Zinn-Justin]

Guess and check
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SOLUTIONS AT γ = 0, 1 [E.P. AND BOUSQUET-MÉLOU]

The generating function Q(t, 0) is given by

t =

∞∑
n=0

1
n + 1

(
2n
n

)2

R0(t)n+1,

Q(t, 0) =
1

2t2 (t − 2t2 − R0(t)).

The generating function Q(t, 1) is given by

t =

∞∑
n=0

1
n + 1

(
2n
n

)(
3n
n

)
R1(t)n+1,

Q(t, 1) =
1

3t2 (t − 3t2 − R1(t)).
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PREVIEW: SOLUTION FOR Q(t, γ)

Define

ϑ(z, q) =

∞∑
n=0

(−1)n(e(2n+1)iz − e−(2n+1)iz)q(2n+1)2/8.

Let q = q(t, α) be the unique series satisfying

t =
cosα

64 sin3 α

(
−ϑ(α, q)ϑ′′′(α, q)

ϑ′(α, q)2 +
ϑ′′(α, q)

ϑ′(α, q)

)
.

Define R(t, γ) by

R(t,−2 cos(2α)) =
cos2 α

96 sin4 α

ϑ(α, q)2

ϑ′(α, q)2

(
−ϑ
′′′(α, q)

ϑ′(α, q)
+
ϑ′′′(0, q)

ϑ′(0, q)

)
.

Then
Q(t, γ) =

1
(γ + 2)t2

(
t − (γ + 2)t2 − R(t, γ)

)
.
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SIX VERTEX MODEL

Part 2a:
Deriving functional equations
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CUBIC EULERIAN PARTIAL ORIENTATIONS (CEPOS)

Recall: Q(t, γ) counts six-vertex model configurations with a weight
t per vertex and γ per alternating vertex.

Definition: CEPO: a map using vertices of the types below
Vertex types:

Right turn
(weight ω−1)

Left turn
(weight ω)

Weight t per undirected edge

C(t, ω) =
∑
n,k

cn,ktnωk counts CEPOs (using weights above).

cn,2k: number of CEPOs with n + k left turns and n− k right turns

Theorem: Q(t, ω2 + ω−2) = C(t, ω).
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SIX VERTEX MODEL→ CEPOS

Theorem: Q(t, ω2 + ω−2) = C(t, ω)

OR

(weight t)

(weight γt)

(weight t)

(weight ω−2t) (weight ω2t)

Reverse direction: contract undirected edges.
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FUNCTIONAL EQUATIONS FOR QUASI-CEPOS

Definition: quasi-CEPO: non-root vertices are left turns or right turns.

W root vertex
(weight xdegree)

H root vertex
(weight x`yr)

` edges on left

r edges on right

W(x) ≡W(t, ω, x): root vertex is a W root vertex
H(x, y) ≡ H(t, ω, x, y): root vertex is a H root vertex

C(t, ω) = H(t, ω, 0, 0)

For functional equations: Contract the root edge.
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CUBIC EULERIAN PARTIAL ORIENTATIONS

Γl

ΓrW (x)

W (x)

Γ

H(x, 0)

Γ

H(0, x)

Γl

Γr

Γ
Γ

tx2W (x)2

ω−1xtH(x, 0)
ωxtH(0, x)

1

W(x) = ωxtH(0, x) + ω−1xtH(x, 0) + x2tW(x)2 + 1
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CUBIC EULERIAN PARTIAL ORIENTATIONS

Γl

ΓrW (x)

W (x)

ΓΓ

H(x, y) −H(0, y) H(x, y) −H(x, 0)

Γl

Γr

Γ
Γ

W (x)W (y)ω
x (H(x, y) −H(0, y)) ω−1

y (H(x, y)−H(x, 0))

H(x, y) =
ω

x
(H(x, y)− H(0, y))+

ω−1

y
(H(x, y)− H(x, 0))+W(x)W(y).
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ΓΓ

H(x, y) −H(0, y)

Γ
Γ

W (x)W (y)

H(x, y) −H(x, 0)

ω
x (H(x, y) −H(0, y)) ω−1

y (H(x, y)−H(x, 0))

H(x, y) =
ω

x
(H(x, y)− H(0, y))+

ω−1

y
(H(x, y)− H(x, 0))+W(x)W(y).

The six vertex model on random lattices using Jacobi theta functions Andrew Elvey Price



SIX VERTEX MODEL

Part 2b:
Solving functional equations
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FUNCTIONAL EQUATIONS FOR THE SIX VERTEX MODEL

Recall: C(t, ω) = Q(t, ω2 + ω−2) = H(t, ω, 0, 0) ≡ H(0, 0) is
characterised by:

W(x) = x2tW(x)2 + ωxtH(0, x) + ω−1xtH(x, 0) + 1

H(x, y) = W(x)W(y) +
ω

y
(H(x, y)− H(x, 0)) +

ω−1

x
(H(x, y)− H(0, y)) .

So, we just need to guess and check
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EXPRESSIONS FOR W(x) AND H(x, y)

ϑ(z) =
∞∑

n=0

(−1)n
(e(2n+1)iz

+ e−(2n+1)iz
)e(n+1/2)2 iπτ

ω = ie−iα
, t =

cosα

64 sin3 α

(
−
ϑ(α)ϑ′′′(α)

ϑ′(α)2
+
ϑ′′(α)

ϑ′(α)

)
,

b =
1

16t

cos(α)

sin3(α)

ϑ(α)2

ϑ′(α)2
, x0 =

cosα

2 sinα

ϑ′(0)

ϑ′(α)
, c = −ω − ω−1

,

V(z) = b

(
ϑ′(z)2

ϑ(z)2
−
ϑ′′(z)

ϑ(z)
+
ϑ′′′(0)

3ϑ′(0)

)
, x(z) = x0

ϑ(z + α)

ϑ(z)
,

W(0)
(y) = −

1

2π

∫ π
0

V(z− πτ
2 )x′

(
z− πτ

2

)
(

y + c−1 − iωx(z− πτ
2 )
)

x
(

z− πτ
2

) dz,

1

y
H
(

0,
1

y

)
= −

ω−1

2π

∫ π
0

V(z− πτ
2 )x′

(
z− πτ

2

)
W(0)

(
−c−1 − iω−1x

(
z− πτ

2

))
(y + c−1 − iωx(z− πτ

2 ))x
(

z− πτ
2

) dz,

1

y
H
( 1

y
, 0
)

= −
ω

2π

∫ π
0

V(z− πτ
2 )x′

(
z− πτ

2

)
W(0)

(
−c−1 − iω3x

(
z− πτ

2

))
(y + c−1 − iωx(z− πτ

2 ))x
(

z− πτ
2

) dz,

W(x) =
1

x
W(0)

( 1

x

)
, H(x, y) =

xyW(x)W(y)− ωxH(x, 0)− ω−1yH(0, y)

xy− ωx− ω−1y
.

Expressions are formal series in t, ω, and (in some cases) x, y and e2iz.
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SOLUTION FOR Q(t, γ)

Define

ϑ(z, q) =

∞∑
n=0

(−1)n(e(2n+1)iz − e−(2n+1)iz)q(2n+1)2/8.

Let q = q(t, α) be the unique series satisfying

t =
cosα

64 sin3 α

(
−ϑ(α, q)ϑ′′′(α, q)

ϑ′(α, q)2 +
ϑ′′(α, q)

ϑ′(α, q)

)
.

Define R(t, γ) by

R(t,−2 cos(2α)) =
cos2 α

96 sin4 α

ϑ(α, q)2

ϑ′(α, q)2

(
−ϑ
′′′(α, q)

ϑ′(α, q)
+
ϑ′′′(0, q)

ϑ′(0, q)

)
.

Then
Q(t, γ) =

1
(γ + 2)t2

(
t − (γ + 2)t2 − R(t, γ)

)
.
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SIX VERTEX MODEL

Part 2c:
Non-rigorously deriving expressions

for W(x) and H(x, y)

(by copying Kostov)
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“SOLVING” FUNCTIONAL EQUATIONS

Recall: Equations to solve:

W(x) = x2tW(x)2 + ωxtH(0, x) + ω−1xtH(x, 0) + 1

H(x, y) = W(x)W(y) +
ω

y
(H(x, y)− H(x, 0)) +

ω−1

x
(H(x, y)− H(0, y)) .

Step 1: Write ω = eiα for α ∈ R and choose t ∈ R small
→ series converge for |x|, |y| < 1

Step 2: (One cut assumption) Assume W(x) and H(x, 0) have
extensions that are analytic on C \ [r1, r2], for some r1, r2 ∈ R

Step 3: (Kernel method) write X(v) = ω+ω−1

1−iv(ω2+1) and

Y(v) = ω+ω−1

1−iv(ω−2+1) to parameterise
(

1− ω
y −

ω−1

x

)
= 0.

The second equation becomes:

0 = W(X(v))W(Y(v))− ω

Y(v)
H(X(v), 0)− ω−1

X(v)
H(0,Y(v))
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“SOLVING” FUNCTIONAL EQUATIONS

New equations:

W(x) = x2tW(x)2 + ωxtH(0, x) + ω−1xtH(x, 0) + 1

0 = W(X(v))W(Y(v))− ω

Y(v)
H(X(v), 0)− ω−1

X(v)
H(0,Y(v))

By analysing the cuts, we find that

U(v) := vωX(v)W (X(v)) + vω−1Y(v)W (Y(v))

+
iv2

t(ω2 − ω−2)
− v

t(ω + ω−1)2

is analytic except on 2 cuts iω[x′1, x
′
2] and −iω−1[x′1, x

′
2] and satisfies

U(iω(x + i0)) = U(−iω−1(x− i0)),

U(iω(x− i0)) = U(−iω−1(x + i0)),

for x ∈ [x′1, x
′
2].
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UNDERSTANDING U(v)

0

iωx′1

iωx′2

1
iωx

′
1

1
iωx

′
2

U(v) analytic except on slits .

U(iω(x± i0)) = U(−iω−1(x∓ i0)), for x ∈ [x′1, x
′
2].

i.e., as v→ slit, U(v)− U(v)→ 0.
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SOLVING FOR U(v)

0

iωx′1

0

πτ
2

−πτ
2

π − πτ
2

π

π+ πτ
2

V (z)

iωx′2

1
iωx
′
1

1
iωx
′
2

Left: U(v) is analytic on yellow region.
There is a unique τ ∈ iR>0 and conformal map V(z) from the flat
cylinder of height πτ onto this region (V(z) = V(z + π)).
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SOLVING FOR U(v)

0

aeiα

π − πτ
2

π+ πτ
2

beiα

ae−iα

be−iα

The six vertex model on random lattices using Jacobi theta functions Andrew Elvey Price



SOLVING FOR U(v)

0

aeiα

π − πτ
2

π+ πτ
2

beiα

ae−iα

be−iα

The six vertex model on random lattices using Jacobi theta functions Andrew Elvey Price



SOLVING FOR U(v)

0

aeiα

π − πτ
2

π+ πτ
2

beiα

ae−iα

be−iα

The six vertex model on random lattices using Jacobi theta functions Andrew Elvey Price



SOLVING FOR U(v)

0

aeiα

π − πτ
2

π+ πτ
2

beiα

ae−iα

be−iα

The six vertex model on random lattices using Jacobi theta functions Andrew Elvey Price



SOLVING FOR U(v)

0

aeiα

π − πτ
2

π+ πτ
2

beiα

ae−iα

The six vertex model on random lattices using Jacobi theta functions Andrew Elvey Price



SOLVING FOR U(v)

0

aeiα

π − πτ
2

π+ πτ
2

beiα

ae−iα

The six vertex model on random lattices using Jacobi theta functions Andrew Elvey Price



SOLVING FOR U(v)

0

aeiα

π − πτ
2

π+ πτ
2

beiα

ae−iα

The six vertex model on random lattices using Jacobi theta functions Andrew Elvey Price



SOLVING FOR U(v)

0

aeiα

π − πτ
2

π+ πτ
2

beiα

ae−iα

The six vertex model on random lattices using Jacobi theta functions Andrew Elvey Price



SOLVING FOR U(v)

0

aeiα

π − πτ
2

π+ πτ
2

beiα

ae−iα

The six vertex model on random lattices using Jacobi theta functions Andrew Elvey Price



SOLVING FOR U(v)

0

aeiα

π − πτ
2

π+ πτ
2

beiα

ae−iα

The six vertex model on random lattices using Jacobi theta functions Andrew Elvey Price



SOLVING FOR U(v)

0

beiα

aeiα

be−iα
ae−iα

0

πτ
2

−πτ
2

π − πτ
2

π

π+ πτ
2c

ϑ(z, τ)

ϑ(z + α, τ)
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SOLVING FOR U(v)

0

iωx′1

0

πτ
2

−πτ
2

π − πτ
2

π

π+ πτ
2V (z) = c

ϑ(z, q)

ϑ(z + α, q)

iωx′2

1
iωx
′
1

1
iωx
′
2

Left: U(v) is analytic on yellow region.

V(z) = c
ϑ(z, q)

ϑ(z + α, q)
,

where ω = ieiα and q = e2πiτ .
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SOLVING FOR U(v)

0

iωx′1

0

πτ
2

−πτ
2

π − πτ
2

π

π+ πτ
2V (z) = c

ϑ(z, q)

ϑ(z + α, q)

iωx′2

1
iωx
′
1

1
iωx
′
2

U(iω(x± i0)) = U(−iω−1(x∓ i0))

⇒ U(V(z +
πτ

2
)) = U(V(z− πτ

2
))
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SOLVING FOR U(v)
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′
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′
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SOLVING FOR U(v)

0

iωx′1

0

πτ
2

−πτ
2

π − πτ
2

π

π+ πτ
2V (z) = c

ϑ(z, q)

ϑ(z + α, q)

iωx′2

1
iωx
′
1

1
iωx
′
2

U(iω(x± i0)) = U(−iω−1(x∓ i0))

⇒ U(V(z + πτ)) = U(V(z))

⇒ U(V(z)) = A + B℘(z + α, τ)
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SOLVING FOR U(v)

0

iωx′1

0

πτ
2

−πτ
2

π − πτ
2

π

π+ πτ
2V (z) = c

ϑ(z, q)

ϑ(z + α, q)

iωx′2

1
iωx
′
1

1
iωx
′
2

U(iω(x± i0)) = U(−iω−1(x∓ i0))

⇒ U(V(z + πτ)) = U(V(z))

⇒ U(V(z)) = A + B℘(z + α, τ)

Hooray, it’s solved!
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SOLVING FOR U(v)

0

iωx′1

0

πτ
2

−πτ
2

π − πτ
2

π

π+ πτ
2V (z) = c

ϑ(z, q)

ϑ(z + α, q)

iωx′2

1
iωx
′
1

1
iωx
′
2

U(iω(x± i0)) = U(−iω−1(x∓ i0))

⇒ U(V(z + πτ)) = U(V(z))

⇒ U(V(z)) = A + B℘(z + α, τ)

→ integral expression for W(x) and H(x, y)→ Q(t, γ).
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SOLUTION FOR Q(t, γ)

Define

ϑ(z, q) =

∞∑
n=0

(−1)n(e(2n+1)iz − e−(2n+1)iz)q(2n+1)2/8.

Let q = q(t, α) be the unique series satisfying

t =
cosα

64 sin3 α

(
−ϑ(α, q)ϑ′′′(α, q)

ϑ′(α, q)2 +
ϑ′′(α, q)

ϑ′(α, q)

)
.

Define R(t, γ) by

R(t,−2 cos(2α)) =
cos2 α

96 sin4 α

ϑ(α, q)2

ϑ′(α, q)2

(
−ϑ
′′′(α, q)

ϑ′(α, q)
+
ϑ′′′(0, q)

ϑ′(0, q)

)
.

Then
Q(t, γ) =

1
(γ + 2)t2

(
t − (γ + 2)t2 − R(t, γ)

)
.
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MODULAR PROPERTIES

Part 3:
Modular properties in special cases

i

τ τ +1τ−1

−τ−1
τ −1

τ
τ−1
τ

3τ−2
2τ−1

Nice reference for modular properties of theta functions:
Elliptic Modular Forms and Their Applications, Zagier, 2008.
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VARYING τ

Recall: ϑ(z|τ) = ϑ(z, eiπτ ) =

∞∑
n=0

(−1)n(e(2n+1)iz + e−(2n+1)iz)e(n+1/2)2iπτ

Aim: relate ϑ(z|τ) to other τ values
Natural transformations: τ → τ + 1 and τ → − 1

τ
Equations:

ϑ(z|τ + 1) = eiπ/4ϑ(z, τ)

ϑ
( z
τ | −

1
τ

)
= −i(−iτ)

1
2 exp

( i
πτ z2

)
ϑ(z|τ)

These transformations generate the group of transformations

τ → aτ + b
cτ + d

,

satisfying ad − bc = 1.
This is isomorphic to the group SL2(Z) of matrices[

a b
c d

]
,

with determinant 1.
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ORBIT OF SL2(Z)

i

τ τ +1τ−1

−τ−1
τ −1

τ
τ−1
τ

3τ−2
2τ−1
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MODULAR FUNCTIONS

Definition: SL2(Z) is the group of matrices
[

a b
c d

]
with

determinant 1.
Action on upper half plane H = {z ∈ C|im(z) > 0}:[

a b
c d

]
· τ =

aτ + b
cτ + d

.

Definition: Let Γ be a finite index subgroup of SL2(Z). A modular
function is a meromorphic function f : H→ C satisfying the
following for all ρ ∈ Γ:

f (ρ · τ) := f
(

aτ + b
cτ + d

)
= f (τ).

Theorem: (classical) All modular functions are algebraically related
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ALGEBRAICITY FOR Q(t, γ)??

Recall:

t =
cosα

64 sin3 α

(
−ϑ(α, τ)ϑ′′′(α, τ)

ϑ′(α, τ)2 +
ϑ′′(α, τ)

ϑ′(α, τ)

)
.

R(t,−2 cos(2α)) =
cos2 α

96 sin4 α

ϑ(α, τ)2

ϑ′(α, τ)2

(
−ϑ
′′′(α, τ)

ϑ′(α, τ)
+
ϑ′′′(0, τ)

ϑ′(0, τ)

)
.

Q(t, γ) =
1

(γ + 2)t2

(
t − (γ + 2)t2 − R(t, γ)

)
.

Theorem [E.P. and Zinn-Justin]: if α ∈ πQ, then R and

S =
1
t

d2t
dR2

are both modular functions (when written as functions of τ ), so they
are algebraically related.
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Q(t, γ) =
1

(γ + 2)t2

(
t − (γ + 2)t2 − R(t, γ)

)
Specific cases:

γ = 0:
1
t

d2t
dR2 =

4
R(1− 16R)

.

γ = 1:
1
t

d2t
dR2 =

6
R(1− 27R)

.

γ = −1: 1
t

d2t
dR2 =

2
h(1 + h)(1 + 4h)(1 − 8h)

, where R = h(1+ 2h).

γ = 1+
√

5
2 : R and S =

1
t

d2t
dR2 are related by

R = h

(
1−

1 +
√

5

2
h

)
/
(

1 + (2 +
√

5)h
)3

S = (5 +
√

5)
(

1 + (2 +
√

5)h
)6
/

(
h

(
1−

11− 5
√

5

2
h

)(
1−

11 + 5
√

5

2
h

)2 (
1−
√

5− 1

2
h

))
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THE CASES γ = 0, 1

for γ = 0: the equation
1
t

d2t
dR2 =

4
R(1− 16R)

implies

t =

∞∑
n=0

1
n + 1

(
2n
n

)2

R(t, 0)n+1,

for γ = 1: the equation
1
t

d2t
dR2 =

6
R(1− 27R)

implies

t =

∞∑
n=0

1
n + 1

(
2n
n

)(
3n
n

)
R(t, 1)n+1

Recall: in each case

Q(t, γ) =
1

(γ + 2)t2

(
t − (γ + 2)t2 − R(t, γ)

)
.
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QUESTIONS

Are W(x) and H(x, y) D-algebraic?

If not, the full generating functions that are used in the solution
are non-D-algebraic, but the single parameter generating
function is D-algebraic. How common is this? Are there cases
where we can be confident it doesn’t happen (e.g., quarter plane
walks/excursions)?
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Thank you!
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