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Introduction

The Galois theory of difference equations has witnessed a major evolution in the
last two decades. In the particular case of g-difference equations, authors have in-
troduced several different Galois theories. In this memoir we consider an arithmetic
approach to the Galois theory of g-difference equations and we use it to establish
the relations among the different theories in the literature.

Let ¢ be a non-zero element of the field C of complex numbers. A (linear)
g-difference system is a functional equation of the form

(0.1) Y(qz) = A(2)Y (z), with A(z) € GL,(C(x)).

The leitmotif of the paper, which is sometimes hidden, sometimes openly used,
is the Galoisian properties of the so-called dynamics of the system , namely
the set of maps obtained by iteration of the maps (z,X) —— (gz, A(z)X) and
(v, X) > (¢ 'x, A(g"*2)71X), both defined over U x C¥, where U is an open
subset of P{, and with values in P{ x C”. The latter is deduced from the functional
system Y (¢ 'x) = A(q~ ) "'Y (z), which is equivalent to (0.1)).

An early Galois theory for g-difference equations, which we may call the “clas-
sical” Picard-Vessiot theory, is based on the construction of abstract solutions (see
[vdPS97]) and the Galois group is defined as the group of C(z)-automorphisms
of the Picard-Vessiot ring, i.e., the “minimal” C(z)-algebra generated by the ab-
stract solutions. A key-point of this approach is that the field of constants C =
{c € C(z)|o4(c) = ¢} is algebraically closed. This assumption allows, among other
things, to consider only the C-points of the Galois group, without being obliged to
have a schematic point of view.

Other approaches are based on the remark that the system determines a
fiber bundle over the torus E := C*/q¢”. The fact that its pull back on C* is trivial
means that has an invertible solution matrix, with entries meromorphic on C*.
See [Pra86]. Two Galois theories are based on the existence of these meromorphic
solutions. The first one, initiated by Sauloy and Ramis (see [Sau04bl), is more
analytic, uses the Tannakian formalism and describes the Galois group as a linear
algebraic group defined over C. The second one, introduced in [CHSO08| Definition
2.1], provides a Galois group for , which is a linear algebraic group scheme
defined over the field C'y of meromorphic functions over E. It acts functorially
as the group of C'g(x)-automorphisms of the “weak” Picard-Vessiot ring, i.e., the
Cg(x)-algebra generated by the meromorphic solutions of the system.

In all the theories described above, the structure of the Galois group is a mirror
of the algebraic relations satisfied by the entries of an invertible solution matrix of
(0.3, over the base field. In [CHS08], these approaches are compared and proved
to coincide up to some field extensions.

In 2008, Hardouin and Singer have developed a Galois theory for parameterized
functional equations. Consider a field K of characteristic 0 and an element ¢ € K,
g # 0,1, not a root of unity. We equip K (x) with a derivation, for instance with
the derivation 0 = x%. Given a linear g¢-difference system with coefficients in
K(x), the purpose of a parmeterized Galois theory is to produce a group that gives
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viii INTRODUCTION

information about the differential algebraic relations between the solutions of the
g-difference system, i.e., the algebraic relations satisfied by the solutions and their
successive derivatives with respect to 9. The prototype of the possible applications
of a parameterized Galois theory is a Galoisian proof of Holder’s theorem, saying
that the classical Gamma function cannot be solution of a differential equation with
rational coefficients.

In [HSO8]|, the authors attached to such a g-difference system a linear differ-
ential algebraic group a la Kolchin, defined over K. This is a group of matrices
defined as the set of zeros of a finite number of algebraic differential equations.
In analogy with the constructions of [vdPS97], the solutions are abstract and the
theory of Hardouin-Singer requires that the field of o,-constants is differentially
closed with respect to 0. Other approaches are possible: There are as many pa-
rameterized theories as classical theories and, if one considers the trivial derivation,
one recovers their classical counterpart.

In this work, we consider the parameterized Galois theories in the special case of
g-difference equations and from an arithmetic point of view. Relying on the differ-
ential Tannakian formalism (see [Ovc09| for instance), we attach to a ¢-difference
system Y (qz) = A(x)Y (z) with A(z) € GL,(K(z)) a differential algebraic group
scheme, that we call parameterized intrinsic Galois group. Roughly, this differential
algebraic group scheme is linked to the differential algebraic relations satisfied by
the entries of A(x), in the sense that it only relies on differential algebraic construc-
tions of the associated ¢-difference module, and therefore on the associated matrix
constructions of A(x) and its dynamics. The advantages of considering this group
are its intrinsic nature and its arithmetic description (see Chapter , which is an
analogue of the conjectural description obtained by Katz in [Kat90] for the Lie
algebra of the intrinsic Galois group of a linear differential system.

Theorem below exhibits an arithmetic set of generators of the parameter-
ized intrinsic Galois group. These generators are called the curvatures of the system
and are intrinsically defined, since they are obtained specializing conveniently cer-
tain sub-sequences of the dynamics (A(¢" 'z)... A(z))neN. The proof of Theorem
relies on a rationality criteria for the solutions of a g-difference system. It ex-
tends the main result of [DV02], in which the assumption that K is a number field,
and hence that ¢ is algebraic, is crucial. Here we only assume K to be a finitely
generated QQ-algebra and ¢ can be any number, algebraic or transcendental. We
state here Theorem in the particular case K = Q(gq) and under the assumption
that ¢ is a transcendental number:

THEOREM 1. Let A(x) € GL,(Q(q,x)). The q-difference system Y (qx) =
A(2)Y (z) admits a full set of solutions in Q(q,x) if and only for almost all n € N
there exists an n-th primitive root of unity ¢, such that A(¢q"'x) ... A(z) specializes
to the identity matriz at q = (,.

Unlike the case of linear differential systems, the computation of the curvatures
of a g-difference system relies only on matrix multiplication. Thus, one may hope to
develop fast algorithms to compute the curvatures and perhaps also the parameter-
ized intrinsic Galois group in terms of differential polynomial equations annihilated
by the curvatures. See [BS09] in the differential case. Notice that the arithmetic
description of the parameterized intrinsic Galois group provides an arithmetic an-
swer to problem of the rationality of the solutions of the ¢-difference systems as well
as the control of their differential dependencies with respect to parameters (see for
instance [AR13] for some algorithms that tackle these questions).

In Part [4 we compare the parameterized intrinsic Galois group with all the Ga-
lois groups detailed above (see Proposition , proving that all these differential
algebraic groups become isomorphic over a suitable field extension. This result has
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many consequences. First of all, it shows that the theory of [HSO08| descends to
the field of coefficients of the initial g-difference system, without any assumption
on the field of o-constants (see [Wib12b| or [DVH11] for a descent over an alge-
braically closed field of o4-constants). Secondly, the differential algebraic relations
satisfied by meromorphic solutions are encoded by the curvatures of the system (see
Corollary [8.13). In fact the group of [HHS08] acts on some abstract solutions of the
g-difference system and one cannot apply the results to special solutions, without
some preliminary work. Knowing that all the groups in the literature are forms of
the same group allows to encompass this difficulty.

Inspired by the work of André ([AndO1]), we study the behavior of the pa-
rameterized intrinsic Galois group when ¢ varies and especially when ¢ goes to 1.
We prove that the specialization of the parameterized intrinsic Galois group of a
g-difference equation Y (gx) = A(q,x)Y (z) with coefficients in a field k(q,z) such
that [k : Q] < oo at ¢ = a for any a in the algebraic closure of k, contains the
parameterized intrinsic Galois group of the specialized equation. If k is a number
field, this holds also if we reduce the equations in positive characteristic, so that
g reduces to a parameter in positive characteristic. So if we have a ¢-difference
equation Y (qz) = A(q,x)Y (x), we can either reduce it in positive characteristic
and then specialize ¢, or specialize ¢ and then reduce in positive characteristic. In
particular, for ¢ = 1 we obtain from

(¢—1)z (¢— 1z
a differential system. The phenomenon is explicitly described in the case of hyper-
geometric functions (see Chapter |§| and, in particular, Corollary .

Finally, the description of the parameterized intrinsic Galois group in terms
of curvatures allows us to understand the link between the linear and non-linear
Galois theory of g¢-difference systems. In [Gra], A. Granier introduces a Galois
D-groupoid for non-linear g-difference equations, in the spirit of Malgrange’s work.
In Corollary [T1.10] we show, using once more the curvature characterization of the
parameterized intrinsic Galois group, that the Malgrange-Granier D-groupoid gen-
eralizes the parameterized intrinsic Galois group to the non-linear case. Thanks to
our comparison results, we are able to compare the Malgrange-Granier D-groupoid
to the differential Galois group of Hardouin-Singer. This answers a question of
Malgrange ([Mal09], page 2]) on the relation among D-groupoids and Kolchin’s
differential algebraic groups.

Description of the main results

The paper being relatively long, we give here a quite detailed description of
the content. Part [I]is an introduction to g-difference equations and explains some
preliminaries results.

Grothendieck conjecture for ¢-difference equations

In [DV02], the first author proved a g¢-difference analogue of the Grothendieck
conjecture on p-curvatures, under the assumption that ¢ is an algebraic number
and that the field of constants is a number field. In this paper, we generalize this
result in two different directions.

Consider a field of rational functions K (), a transcendental element ¢ € K,
such that K is itself a field of rational functions in ¢ of the form k(q), and a
g-difference system Y (gz) = A(x)Y (x), with A(z) € GL(K(z)). We prove the
following result (see Theorem for a more general and intrinsic result):



b'q INTRODUCTION

THEOREM 2. A g-difference system Y (qz) = A(x)Y (z), with A(z) € GL, (K (x)),
has a solution matriz in GL, (K (x)) if and only if for almost all positive integer n
there exists a primitive n-th root of unity ¢, such that

[A(g" ) -+ Aqa) A(x)]

= = identity matriz.

In the present article we work under more general assumptions. Namely, we
assume that & is a perfect field, of any characteristic, and that K is a finite extension
of k(g). Replacing k by its perfect closure, the theorem above covers all the possible
cases in which ¢ is transcendental over the prime field.

Suppose now that ¢ is algebraic over the prime field, and that the characteristic
of K is zero. We consider again the g-difference system Y (gz) = A(z)Y (x), with
A(z) € GL(K(z)). We can always suppose that K is actually finitely generated
over Q. For the sake of simplicity, we assume in this introduction that K = Q(«)
is a purely transcendental extension and that ¢ € Q, ¢ # 0,1, —1. For almost all
rational primes p the image of ¢ in F, is well defined and non-zero, so that there
exists a minimal positive number x, such that ¢"» = 1 modulo p. Let ¢, be a
positive integer such that 1 — ¢"» = pepg, with h, g € Z prime to p. We have (see
Theorem [3.6)):

THEOREM 3. A g-difference system Y (qx) = A(x)Y (x), with A(z) € GL, (K (x)),
has a solution matriz in GL, (K (x)) if and only if for almost all prime p we have

A(q" ') -+ Alqx) A(x) = identity matriz modulo p'r.

The statement above is a little bit imprecise, since we should have introduced a
Z-algebra contained in K (z) that would have given a precise sense to the reduction
modulo p%?, for almost all p. The reader will find a more formal statement in Part
where the result above is proved under the assumption that K is any finitely
generated extension of Q and that ¢ is an algebraic number, not a root of unity. As
already pointed out, the first author proves in [DV02, Thm.7.1.1] the statement
above under the assumption that K is a number field. Our proof relies on [DV02]
Thm.7.1.1], in the sense that we consider a transcendence basis of K over Q as a
set of parameters varying in the algebraic closure of QQ and therefore we make a
non-trivial reduction to the situation considered in [DV02], for sufficiently many
special values of the parameters.

Notice that if one starts with a g-difference system over C(z) and a complex
number ¢, which is not a root of unity, then it is always possible to reduce to one
of the two situations above.

Intrinsic Galois groups

Once again, let K be a field of characteristic zero and ¢ a non-zero element
of K, which is not a root of unity. We will denote by o, the g-difference operator
f(x) = f(qx). A g-difference module Mg () = (Mg (a), Eq) over K(z) is a K(x)-
vector space of finite dimension v equipped with a o4-semilinear bijective operator
g

E.(fm) = 04(f)X4(m), for any m € M and f € K(x).
The coordinates of a vector fixed by 3, with respect to a given basis are solution
of a linear g-difference system of the form

(Sy) Y(gz) = A(2)Y (z), with A(z) € GL,(K(z)).

We consider the collection Constr(M g () of K (x)-linear algebraic constructions of
M (z) (direct sums, tensor product, symmetric and antisymmetric product, dual).
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The operator X, induces a g-difference operator on every element of Constr(M g (z)),
that we will still call 3;. Then the intrinsic Galois group of Mg, is defined as:

Gal(Mg (), MKk () = {¢ € GL(Mkg(y)) : ¢ stabilizes

every subset stabilized by X, in any construction}.

Of course, one can give a Tannakian description of Gal(Mg(y), MK (). As in
[Kat82], Theorem [2{and Theorem [3|are equivalent to the the following descriptions
of the intrinsic Galois group:

THEOREM 4. In the notation of Theorem@ (resp. Theorem @, the intrinsic
Galois group Gal(Mg (z), Nk (z)) 15 the smallest algebraic subgroup of GL(Mg (,)),
whose specialization at (, contains the specialization of the operator X7 at (y, for
almost all positive integer n and for a choice of a primitive n-th root of unity
Cn (resp. whose reduction modulo p'» contains the reduction of the operator "
modulo pr, for almost all prime p).

The statement is a little bit informal. The reader will find a precise statement
in Chapter [6]

As the notion of intrinsic Galois group is deeply related to the notion of tan-
nakian category, the notion of differential intrinsic Galois group is related to the
notion of differential tannakian category developed by A. Ovchinnikov in [Ovc09].
We show in this paper how the category of g¢-difference modules over K(z) may
be endowed with a prolongation functor F' and thus turns out to be a differential
tannakian category. Intuitively, if M is a ¢-difference module, associated with a
g-difference system o,(Y) = AY, the g¢-difference module F'(M) is attached to the

g-difference system
A 0A
04(2) = ( 0 A ) Z.

Notice that if Y verifies 04(Y) = AY, then Z = yoo)

0 Y

system above. We consider the family Constr?( Mg (z)) of constructions of differ-
ential algebra of M (,), that is the smallest family containing Mg (,) and closed
with respect to all algebraic constructions (direct sums, tensor product, symmet-
ric and antisymmetric product, dual) plus the prolongation functor F'. Then the
differential intrinsic Galois group of Mg (,) is defined as:

is solution of the

Gala(MK(m), Nk () = 1@ € GL(Mg(s)) : ¢ stabilizes every X -stable subset

in any construction of differential algebra}.

The group Gal®(M K(z)> 1K ()) 15 endowed with a structure of linear differential
algebraic group (cf. [Kol73]). Theorem [2|and Theorem [3| are equivalent to the the
following descriptions of the intrinsic Galois group:

THEOREM 5. In the notation of Theorem@ (resp. Theorem @, the parameter-
ized intrinsic Galois group Gala(MK(x), Nk (x)) 18 the smallest differential subgroup
of GL(M (5)), whose specialization at (,, contains the specialization of the operator
34 at Cn, for almost all positive integer n and for a choice of a primitive n-th root
of unity C, (resp. whose reduction modulo p» contains the reduction of the operator
" modulo p'r, for almost all prime p).

This implies, for instance, (¢f. Theorem |4 above and Corollary in the text
below):
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COROLLARY 6. The differential intrinsic Galois group Gala(MK(z),nK(z)) is
a Zariski dense subset of the algebraic intrinsic Galois group Gal(Mg (2), MKk (z))-

Comparisons with the other Galois theories for linear differential
equations

In Part 4] we relate the intrinsic Galois groups, both algebraic and differential,
with the more classical notions of Galois groups. In Corollary we prove that
the differential dimension of Gal?(M K(z) K (x)) as a differential algebraic group
is equal to the differential transcendence degree of the field generated by the mero-
morphic solutions of Y (gx) = A(z)Y () over the differential closure of the field of
elliptic functions. This means that the differential relations among the solutions
can already be determined from the curvatures.

To study the specializations of the intrinsic Galois groups, differential and alge-
braic, we use the language of generalized differential rings and modules, introduced
by Y. André (¢f. [And01]), that allows to treat differential and difference modules
in the same setting. It is therefore adapted to our situation where the reductions
of Mg can be either g-difference modules or differential modules. We prove
that, for all finite places v of K, the specialization of Gal(M g (4, Nk (x)) (resp.
Gala(MK(x), Nk (z))) at v gives an upper bound for the intrinsic (resp. differential)
Galois group of the reduction of Mg (,) modulo v. Here we are considering the case
K = k(q), with ¢ transcendental.

When we specialize ¢ to 1, we find a differential module. Going backwards, i.e.,
deforming a differential module, we can deduce from the results above a description
of an upper bound of its intrinsic Galois group, defined in [Kat82]. In fact, given

k(x)/k-differential module (M, V), we can fix a basis e of M such that

V(e) = eG(z),

so that the horizontal vectors of V are solutions of the system Y’ (z) = —G(2)Y (z).
Then My(q.0) := M ®j(2)k(q, x) has a natural structure of g-difference module define
by X,e = e(1 4 (¢ — 1)xG(x)). This the most naive ¢g-deformation of a differential
module and more sophisticated choices are possible. We have (see Corollary :

COROLLARY 7. The intrinsic Galois group of (M,V) is contained in the “spe-
cialization at ¢ = 17 of the smallest algebraic subgroup G of GL(Mjy(q,4)) that con-
tains almost all the specialization of the operators A, : My g2y — My(q,), defined

by:
§=§H 1+ (¢ —1)¢'2G(q'z)),

at a primitive n-th root of umty Cn, for almost all integer n.

Comparisons with Malgrange-Granier Galois theory for non-linear
differential equations

A. Granier has defined a Galois D-groupoid for nonlinear g-difference equations,
in the wake of Malgrange’s work. In the particular case of a linear system Y (qz) =
A(z)Y (x), with A(z) € GL,(C(z)), the Malgrange-Granier D-groupoid is the D-
envelop of the dynamics, i.e., it encodes all the partial differential equations over
P x C” with analytic coefficients, satisfied by local diffeomorphisms of the form
(r,X) = (¢"x, Ap(2)X) for all k € Z, where Aj(x) € GL,(C(x)) is the matrix
obtained by iterating the system Y (¢z) = A(z)Y (x) so that:

Y(¢“) = A(@)Y (@),



INTRODUCTION xiii

Notice that:
Ap(z) == A(¢*tz) ... A(qr)A(z) for all k € Z, k > 0;
Ao(I) = Idl,,
Ap(z) == A(g*x)TA(¢* )t A(g i)t forall k € Z, k < 0.

Using Theorem 10, we relate this analytic D-groupoid with the more algebraic
notion of differential intrinsic Galois group. We prove that the solutions in a neigh-
borhood of {xg} x C¥ of the sub-D-groupoid of the Malgrange-Garnier D-groupoid,
which fixes the transversals, are precisely the points of the differential intrinsic Ga-
lois group in the ring C{z — 2} of germs of analytic functions at x.

For systems with constant coefficients, we retrieve the result of A. Granier (cf.
[Gral Thm. 2.4]), i.e., the evaluation in 2 = z of the solutions of the transversal D-
groupoid is the usual Galois group. Notice that in this case algebraic and differential
Galois groups coincide. The analogous result for differential equations is proved in
[Mal01]. B. Malgrange, in the differential case, and A. Granier, in the ¢-difference
constant case, establish a link between the Galois D-groupoid and the usual Galois
group: This is compatible with our results since in those cases the algebraic intrinsic
and differential Galois groups, as well as the usual Galois groups, coincide ( cf.
below).
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CHAPTER 1

Generalities on ¢-difference modules

We quickly recall some notations and a few basic results about g-difference
algebras and g-difference modules. For a more detailed introduction to ¢-difference
modules see [vdPS97, Chapter 12], [DV02, Part I] or [DVRSZ03].

1.1. Basic definitions
Let K be a field and ¢ # 0,1 be a fixed element of K. The field K(z) is
naturally a g-difference field, i.e., it is equipped with the ¢-difference operator
o K(z) — K(x)
fl@) — flgz)

We can associate to o, a non-commutative derivation, that we will call g-derivation,

defined by
(1)) = LD,

and satisfying a g-Leibniz formula:

dq(f9)(x) = f(qr)de(9)(x) + dyg(f)(x)g(x), for any f,g € K(x).

Notice that, if we set [n], = £, [n]}, = [nlg[n—1]4 - - [1]4, for any n > 1, [0], = 1,
then
- . o
dyz" = [ T 2" 7%, for any pair of positive integers s, n, such that n > s.
n— s
q
Therefore we define the g-binomial (7) = %, so that 2o gzn — (7) ams.
s/q [n—s]glslg [sl, s/q

When ¢ is a root of unity of order s, dj and all its iterations are equal to 0.
Nonetheless, the g-binomials (;;)q and the operators [:%]. are well defined and
q

non-zero for every positive integer s.

More generally, we will consider a g-difference extension F of K (x), i.e., a field
extension F of K(x) equipped with a field automorphism extending the action of
04, which we will also call g-difference operator and denote o,. Of course, F is also

equipped with the skew derivation d; := ZSII. We denote by F7¢ the field of
constant of F, i.e., the subfield of F of all elements fixed by o,.

Typical examples of g-difference extensions of K(z) are the fields K((z)) or
K(x'/7), for 7 € Z~1. In the latter case, one sets o,(z/") = gz'/", for a given r-th
root ¢ of q. If K = C, one can naturally consider also the fields of meromorphic
functions over C, over C* = C \. {0} or over any domain invariant under the action

of o4.

DEFINITION 1.1. A g-difference module Mz = (Mr, %) (of rank v) over Fis a
finite dimensional F-vector space Mz (of dimension v) equipped with an invertible
oq-semilinear operator X, : Mx — My, i.e., a bijective additive map from Mz to
itself such that

Yy(fm) = 04(f)X4(m), for any f € F and m € Mx.

3
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We will call ¥, a g-difference operator over Mz or the g-difference operator of M.

A morphism of ¢-difference modules (over F) is a morphism of F-vector spaces,
commuting with the g-difference operators. We denote by Dif f(F, o) the category
of g-difference modules over F.

1.1.1. Construction of linear algebra. Let Mz = (Mz,3, ) and Nz =
(Nr,X4n) be two g-difference modules over F. The direct sum Mz & Nx of Mz
and Nr is the ¢-difference module such that:

e the underline F-vector space is Mx & Nr;
o the g-difference operator is a o4-semilinear bijection defined by m @& n —
Xg.m(m) & Ig,n(n).
The tensor product Mz @7 N of Mz and N over F is the g-difference module
such that:
e the underline F-vector space is Mr @ Nr;
o the g-difference operator is a o,-semilinear bijection defined by m ® n —
Zq,M(m) ® Equ(n).
The dual g-difference module M?*% = (M5, E;’M) of Mz is the ¢-difference module
defined as follows:
e the underline F-vector space Mx is the dual F-vector space of Mr;
o Xl O'q_l oo Xy M, ie., for any m € My and any ¢ € M3 we
have (37 5/ (¢),m) = o5 @, Bg,ar(m)).
We say that a g-difference module Nz over F is a construction of linear algebra
of Mz if Nz can be deduced from M x by direct sums, duals, tensor products,
symmetric and antisymmetric products. The latter constructions can be deduce
from the ones defined above in the usual way.

1.1.2. Basis. Let Mz = (MFr,%,) be a g-difference module over F of rank
v. We fix a basis e of Mz over F. Let A € GL,(F) be such that:

Yq.e =eA.
If f is another basis of Mz, such that f = eF', with F' € GL,(F), then ¥, f = B,
with B = F~1 Ao, (F).
PROPOSITION 1.2. Let K be a field as above, Mg, a q-difference module

over K(x) and let k = Q or I, according that the field K has characteristic zero
or p > 0, respectively. For any q-difference module My, there erists a finite

generated extension KCK of k, containing q, and a q-difference module Mf((z)
such that Mg,y = M}}(Z) D% (a) K(z).

PRQOF. To prove the lemma, it suffices to fix a basis e of M and to consider
a field K generated over k£ by g and all the entries of the matrix of ¥, with respect
to the basis e. O

REMARK 1.3. We will always denote with the same letter, but with different
subscripts, ¢-difference modules that become isomorphic after an extension of the
base field, as in the statement above.

1.1.3. Horizontal vectors. A horizontal vector of M is an element m €
Mgz such that ¥,(m) = m. We denote by MJET“ the set of horizontal vectors of

Mxz. One proves easily that it is a F%¢-vector space. The dimension of /\/l?—_q is
invariant by extension of the constants:

PROPOSITION 1.4. Let F be a q-difference field and with K = F° and let K’
be a o4-constant field extension of K. Let M x be a q-difference module over F and
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Mgy = Mz @7 F(K') the q-difference module over F(K') obtained by scalar
extension. Then (M]:(K/))Eq = M?—q ®x K'.

ProOF. First of all notice that F(K')°¢ = K’'. We have a natural injective
map

= g
K/®KM]_—q — (M]-'(K’)) .
We have to show that it is also surjective. Let e be a basis of Mx over F such that

Y.e =eA, with A € GL,(F). Let z € (M]:(K/))Zq and let us write z = eZ, where
Z € F(K')". The set

a={re K'@x Fst.rZ e (K @ F)"}

is a non-zero ideal of K'®@x F stable by o,. Indeed, if r € athen X,(rz) = eAo,(rZ)
and Aoy (rZ) € (K' @k F). Since o4(r)z = X4(rz), we find that o,(r) € a. By
[vdPS97, Lemma 1.11], the algebra K’ ®x F has no non trivial ideal stable under
o4. Thus 1 belongs to the ideal a, which implies that Z € (K’ ®x F).

Let {\;}; € K’ be a (maybe, infinite) basis of K'/K. We can write z =
> \i @ egi, for some ¢f; € F¥, not all zero. Since ¥4(z) = z, we obtain:

ZM ® ey = Z)\i ® eAoy (%),

where o, acts on vectors componentwise. We conclude that §; = Ao,(¥;) for all
and therefore that ey; € M%, for all . This ends the proof. O

1.1.4. ¢-difference modules over a ring. In the sequel, we will deal with
g-difference modules over rings. We do not want to be too formal on this point,
since notations and definitions are quite intuitive.

Let O be a subring of K containing ¢. Then Olx] is stable by o, and therefore
is a g¢-difference algebra. Let A be a g-difference algebra over O[z], meaning an
algebra over O[z], stable by a natural extension of ,. For instance, we will consider
algebras of the form

1 1

1" P@) Plaw) Pla) )

for some P(x) € O[z].

A g-difference module M = (M,3%,) over A will be a free A-module M of
finite rank, equipped with a semilinear invertible operatorﬂ ¥,. All the notions
introduced above generalize intuitively to this case.

If Ais a domain and F is the fraction field of A, then

My = (Mg = M ®4F.2, ®0,)
is a g-difference module over F. Notice that any g-difference module over F comes
from a g¢-difference module over A, for a convenient choice of A C F.
1.2. ¢g-difference modules, systems and equations

Let My = (Mr,X,) be a g-difference module of rank v over a g-difference field
F. We fix a basis e of Mx over F, such that:

Yqee = e4,
with A € GL,(F).
e could have asked that 34 is only injective, but then, enlarging the scalars to a g-difference

algebra A’/ A, constructed inverting some elements, we would have obtained an invertible operator.
For our purpose, the assumption that X, is invertible is not restrictive.
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DEFINITION 1.5. We call
(L.1) o,(Y) = A7Y,

the (g-difference) system (of order v) associated to Mz, with respect to the basis
e.

If y € F” are the coordinates of a horizontal vector m € Mz with respect to
the basis e, then  verifies X,(ey) = ey, i-e., ¥ = Aoy(¥). This means that 7 is
a solution vector of the g¢-difference system . On the other hand, a solution
vector of always represents a horizontal vector of M in the basis e.

Two systems are said to be equivalent by gauge transformation if they are
associated to the same g-difference module, with respect to two different basis. Of
course, one associates a g-difference module, with underlying F-vector space F,
to any g¢-difference system of order v.

To a given linear g-difference equation
(1.2) apy +aroqy + - +ay,o,y =0, with as,...,a, € F and apa, # 0,
one naturally associates a linear g-difference system
0 1 0

(1.3) o (Y)=| Y.
! 0 0 1

\—ao/a, —ai/a, ... —a,_1/a,)
If z is a solution of ([1.2) in some g-difference extension of F, then the vector
“(z,04(2),...,0571(2)) is a solution column of (L.3). The equation (1.2) has at
most v solutions in a g-difference extension G of F, which are linearly independent
over the field G of og-invariant elements of G. If z;,..., 2, are those solutions,
then the g-analog of the Wronskian Lemma says that the matrix

Z1 e Zy
og(z1) ... oq(2)
or MNz) . o Nz

is an invertible solution of .

Given a g-difference module (Mr,%,) of rank v over F, such that ¢ is not a
root of unity of order smaller than v, the Cyclic Vector Lemma (see for instance
[DV02] §1.3]) allows to find an element m of Mz, called cyclic element, such that
m, Xq(m),...,X¢~1(m) is a basis of Mr.

1.3. Some remarks on solutions
Let 04(Y) = BY be a g-difference system, with B € GL, (F).

DEFINITION 1.6. Let G be a ¢-difference field extension of F. A fundamental
solution matrix of 04(Y) = BY in G is an invertible matrix F', with entries in G,
such that o,(F) = BF.

Recursively, we obtain from o4,(Y) = BY a family of higher order ¢-difference
systems:
o (Y)=B,Y and djY = G,.Y,
with B, € GL,(F) and G,, € M,(F), for any positive integer n. Notice that
By := B and:
B1 —

1
Bn+1 = O'q(Bn)Bl, Gl = m

and Gpi1 = 04(Gp)G1(x) + dgGa.
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It is convenient to set By = G = 1 and G, = Su for any n > 0. Notice that G

[n]

is well defined even if ¢ is a root of unity. ’

PROPOSITION 1.7. Let F = K(x) and suppose that the matriz G does not have
a pole at 0 (or equivalently that B does not have a pole at 0 and that B(0) is the
identity matriz), then W(x) = > - Gn)(0)x" is a fundamental solution matriz
(in K((x))) of the system o,(Y) = BY. Moreover, it is the only fundamental
solution matriz with coefficients in K[[z]], whose constant term is the identity.

If K is a field equipped with a norm such that |q| # 1, then ), - Gp,)(0)z" has
a non-zero radius of convergence and, hence, an infinite radius of meromorphyﬂ

The proof of the proposition above is similar to the proof of the resolvent in
the differential case. Proposition [[.7] has a multiplicative avatar:

PROPOSITION 1.8. Let K be a field, | | a norm (archimedean or ultrametric)
over K and q an element of K, such that |q| > 1. We consider a g-difference system
Y(qz) = B(x)Y (z) such that B(xz) € GL,(K(z)), zero is not a pole of B(x) and
such that B(0) is the identity matriz. Then the infinite product

Z(x) = (Bla™'#)Bla %) B(a %))

is the germ of the analytic fundamental solution matriz at zero such that Z(0) is
the identity, and has infinite radius of meromorphy.

ProoF. If |g| > 1, the infinite product defining Z(z) is convergent in the
neighborhood of zero and it is a solution of Y (gx) = B(z)Y (x), such that Z(0) is the
identity matrix. The fact that Z(z) is a meromorphic function with infinite radius of
meromorphy follows from the fact that the functional equation Y (¢gx) = B(z)Y (2)
“propagates” meromorphy. O

REMARK 1.9. Notice that, independently of the characteristic of K, if ¢ is not
a root of unity, then we can always find a norm over K such that |¢| > 1. Of course,
the norm does not need to be archimedean.

Moreover, in Proposition if |¢| < 1 then one has to consider the product

ano B(qn@il-

1.4. Trivial ¢-difference modules

The purpose of the second part of this work is to give an arithmetic character-
ization of trivial ¢-difference modules, where trivial means:

DEFINITION 1.10. We say that the ¢-difference module M = (M, 3,) of rank
v over a g-difference algebra A is trivial if there exists a basis f of M over F such
that ¥, f = f.

The definition applies in particular to the case of a ¢-difference module over a
field. For further reference, we state some properties of trivial g-difference modules.

PrOPOSITION 1.11. Let F be a q-difference field as above and Mzx be a q-
difference module over F. The following statements are equivalent:

(1) The q-difference module M x is trivial.

(2) There ezists a basis e of Mx such that the q-difference system associated
to Mz with respect to the basis e has an invertible solution matriz in
GL, (F).

(3) For any basis e of Mz, the q-difference system associated to Mz with
respect to the basis e has an invertible solution matriz in GL, (F).

2In the sense that its entries are quotient of two entire analytic functions with respect to | |.
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(4) dimzos MZ = dimz M.
PROOF. Let ¢ be a basis of Mz, such that ¥,e = eA(z), and f be a basis of
Mg, such that f = eF(z), with F((x) € GL,(F). Then ¥, f = [ if and only if

[ =3q(eF(2)) = eA(x)F(qz) = fF ()" A(z) F(qz),

therefore if and only if F(qx) = A(z)~'F(z). This proves the equivalence among
(1), (2) and (3). The equivalence between (1) and (4) follows from the fact that f

is both a basis of Mz over F and of M]ZC" over F74. O

The following statement is a corollary of the proposition above and of Propo-
sition [L.4t

COROLLARY 1.12. Let K be a field, q # 0,1 be an elementof K, and Mg . be
a q-difference module over K(x). Let K' be an extension of K, on which o, acts as
the identity, and let Mg/ (z) = Mg (2) @k () K'(x). Then M ) is trivial if and
only if My () is trivial.

ProOF. It follows from Proposition that Mi",(z) = M?{q(w) Qx K'. (]

Finally we consider the case of a g-difference module whose associated system
has a algebraic solution over the base field K (x).

PROPOSITION 1.13. Let K be a field and q be an element of K which is not a
root of unity. We suppose that there exists a norm | | over K, such that |q| # 1,
and we consider a linear q-difference equation
(1.4) a, (2)y(q"x) + ay—1(2)y(¢" ") + - - + ag(x)y(z) = 0
with coefficients in K (x). If there exists an algebraic g-difference extension F of
K(x) containing a solution f of (1.4), then f is contained in an extension of K (x)
isomorphic to L(q,t), with ¢" = q,t" = x and L|K is a finite field extension.

PrOOF. Let us look at as an equation with coefficients in K((z)). Then
the algebraic solution f of can be identified to a Laurent series in K ((t)),
where K is the algebraic closure of K and ¢" = x, for a convenient positive integer
7. Let ¢ be an element of K such that ¢" = ¢ and that o,(f) = f(qt). We can look
at (1.4)) as a g-difference equation with coefficients in K(q,t). Then the recurrence
relation induced by over the coefficients of a formal solution shows that there
exist f1,..., fs solutions of in K(q)((t)) such that f € >, K f;. It follows that
there exists a finite extension K of K (§) such that f € K((t)).

We fix an extension of | | to K, that we still call | |. Since f is algebraic, it is
a germ of meromorphic function at 0. Since |g] # 1, the functional equation (L.4)
itself allows to show that f is actually a meromorphic function with infinite radius
of meromorphy. Finally, if we chosen r big enough, f can have at worst a pole at
t = oo, since it is an algebraic function, which actually implies that f is the Laurent
expansion of a rational function in K(q,t). O

We recall the following properties of g-difference fields (see [CS12, Lemma A .4]
for the case of characteristic zero):

COROLLARY 1.14. Let K be a field, ¢ € K be not a root of unity and Mg ) a
q-difference module over K(x). If there exists a finite q-difference extension F of
K () such that My = Mg (o) @k (z) F 18 trivial, then there exists a positive integer
r such that F C L(z'/"), where L|K is a finite o,-constant field extension.

PrOOF. It is enough to apply the previous proposition to the entries of a fun-

damental solution matrix of the g-difference system associated to a cyclic basis of
MK(z) . O
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1.5. Regularity

Let A be a sub-g-difference algebra of K((x)). We recall the following basic
definition (see for instance [vdPS97] or [Sau00]).

DEFINITION 1.15. A g¢-difference module (M, %,) over A is said to be regular
singular at 0 , if there exists a basis e of (M @4 K((2)), X, ® 04) over K((z)) such
that the action of ¥, ® o, over e is represented by a constant matrix A € GL, (K).

It follows from the Frobenius algorithmﬂ, that a g-difference module M (,) over
K (z) is regular singular if and only if there exists a basis e such that X,e = eA(x)
with A(z) € GL,(K(z)) N GL,(K][[z]]). The eigenvalues of A(0) are called the
exponents of M at 0. They are well defined modulo ¢%. The g-difference module
M is said to be regular singular tout court if it is regular singular both at 0 and at
00, i.e., after a variable change of the form = = 1/¢.

For further reference, we explicitly state the following lemma, which is a con-
sequence of the Frobenius algorithm:

PROPOSITION 1.16. Let M = (M,X,) be a g-difference module over a sub-q-
difference ring A of K((x)). We suppose that q is not a root of unity. The following
statements are equivalent:

(1) There exists a basis e such that Yqe = eA(x), with A(z) € GL, (K (z)) N
GL,(K][[z]]), and such that A(0) is a diagonal matriz with eigenvalues in
q? (i.e., M has a reqular singularity at 0, with integral exponents and no
logarithmic singularity at 0).

(2) The g-difference module Mg ((yy) is trivial.

Singular regularity can be characterized with the help of a Newton polygon.
Namely, regular singular g-difference modules are the ones whose Newton polygon
has only one finite slope equal to 0 (see [Sau04c, Page 200]). We are not going to
define or to list the properties of Newton polygons. We only point out that they
are the keys to the proof of the statements below.

Let Mg ;) be a g-difference module of rank v and let r € N be a positive
integer. We consider a finite extension L of K containing an element g such that
q" = q. We consider the field extension K(z) < L(t),  — t". The field L(¢) has a
natural structure of g-difference field extending the g-difference structure of K(x).
If follows from [Sau04c, §1.1.4] that:

PROPOSITION 1.17. The q-difference module M is reqular singular at x = 0 if
and only if the q-difference module My ) := (M ® 4 L(t), X5 := ¥, ® 03) over L(t)
is reqular singular at t = 0.

1.6. Irregularity

Next statement gives the structure of general ¢-difference modules. It can be
deduced from the formal classification of ¢-difference modules (see [Pra83, Corol-
lary 9 and §9, 3)], [Sau04cl, Theorem 3.1.6]):

PROPOSITION 1.18. We suppose that q is not a root of unity. Let Mg (,) be a
g-difference module of rank v over K (x). Then there exists a positive integer r and
a finite extension L(t) of K(x), with t" = x, r|v!, and ¢ € L, with (q)" = q such
that Mg () @ L((t)) is a direct sum of q-difference modules N;. For any i there
ezists a basis e; of N; and a positive integer r; such that Xge; = QitB,—.j, with B; an
invertible matriz with coefficients in L.

3¢f. [wdPS97] or [Saud0, §1.1]. The algorithm is briefly summarized also in [Sau04b),
§1.2.2] and [DVRSZ03|.
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COROLLARY 1.19. There exist an extension L(t)/K(x) as above, a basis f
of the q-difference module My and an integer £ such that Xgf = fB(t), with
B(t) € GL,(L(t)) of the following form:

(1.5) s

B By_
B(t) = L 281 as an element of GL,(L((t)));
By is a constant non-nilpotent matriz.



CHAPTER 2

Differential tannakian formalism

This chapter is preliminary to Part[{} It may give a better insight on Part[3,
that uses some notions introduced below in a few very specific points.

In [HSO08], the authors developed a parametrized Galois theory of ¢-difference
systems, that takes into account the action of an auxiliary derivation. In this
Galois theory, the groups are linear differential algebraic groups in the sense of
Kolchin ([Kol73]), that is, zero sets of differential algebraic equations. The theory
of [HSO08]| is part of a more general framework, known as differential Tannakian
formalism. Initially developed in [Ovc09] and [Kam10], it is nowadays general-
ized to encompass any kind of auxiliary operators (see [Kam12]). The differential
Tannakian formalism extends the natural ideas of the classical Tannakian formal-
ism in the following sense. A Tannakian category is equivalent to the category of
representations of an affine group scheme, in other terms, to the category of comod-
ules over the coordinate ring of an affine group scheme. By Morita equivalence, any
morphism on the coordinate ring gives birth to a natural transformation on the cat-
egory and vice versa (for instance, the existence of tensor products in the category
corresponds to the multiplication law in the coordinate ring whereas the existence
of dual objects corresponds to the inversion map in the Hopf algebra structure of
the coordinate ring). Through this dictionary, one should be able to understand the
action of an auxiliary operator on the coordinate ring. For instance, a derivation
on the coordinate ring corresponds to what we call prolongation functor in

After an introduction to some notions of differential algebra and to some basic
facts about differential Tannakian categories, we introduce the parametrized Galois
theory, following [HS08], and explain its connection with the differential Tannakian
formalism.

2.1. Differential algebra

In this section, we quickly recall some basic facts of differential algebra as well
as some very basic notions of differential algebraic geometry, mainly in the affine
case. We largely use standard notations of differential algebra as can be found in
[Kol73].

2.1.1. Differential algebra. A differential ring (or 0-ring for short) is a ring
R together with a derivation 0 : R — R, i.e.,, a map 0 : R — R satisfying the
Leibniz rule d(ab) = d(a)b+ ad(b), for all (a,b) € R?. The ring of d-constants of R
is R% = {r € R| 9(r) = 0}. All rings considered in this work are commutative with
identity and all differential rings contain the ring of integer numbers. In particular,
all fields are of characteristic zero.

Given two O0-rings (R, 0) and (R’,9’), a morphism ¢ : R — R’ of O-rings is a
morphism of rings such that 9 = 9'1.

A 0O-ideal J of a O-ring R is an ideal of R that is invariant under the action
of 0. A O-ring R is said to be 0-simple if it does not contain any non-zero proper
O-ideals.

11
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A O-field k is a field that is also a 0-ring. A 0-k-algebra R is a k-algebra and
a 0-ring such that the morphism k — R is a morphism of d-rings. Given two J-k-
algebras (R, 0) and (R’,0’), a morphism v : R — R’ of 0-k-algebras is a morphism
of k-algebras such that 0 = 0'1. If, moreover, R is a d-field and a 9-k-algebra,
we say that R|k is a O-field extension.

Let k be a 0-field and R a 0-k-algebra. If B is a subset of R, then k{B}s denotes
the smallest 0-k-subalgebra of R that contains B. If R = k{B}y for some finite
subset B of R, we say that R is finitely J-generated over k. If K|k is an extension of
0O-fields and B C K, then k (B), denotes the smallest 0-field extension of k inside
K that contains B. The 0-k-algebra k{z}s = k{x1,...,xn}o of O-polynomials over
k in the O-variables x1, ..., x, is the polynomial ring over k in the countable set of
algebraically independent variables x1,...,z,, d(x1),...,0(x,),..., with an action
of 0 as suggested by the names of the variables. Of course, for any 0-field extension
L|k and any f := (f1,..., fn) € L™, one has a 9-k-morphism k{xz}s to L, which
assigns x; to f;, for all i = 1,...,n. We say that f is a solution of the differential
algebraic equation P(z) = 0, for some P € k{x}g, if P lies in the kernel of the
specialization morphism above. N

The differential closure of a O-field k is a O-field extension k of k, with the
property that any system of differential algebraic equations with coefficients in k,
having a solution in some differential field extension of k, has a solution in k. If k&
coincides with its differential closure, it is said to be differentially closed or d-closed,
for short.

DEFINITION 2.1. Let L|K be a O-field extension. Elements ai,...,a, € L
are called differentially (or 0-algebraically) independent over K if the elements
ay,...,an,0(a1),...,0(ay,),... are algebraically independent over K. Otherwise,

they are called differentially dependent over K. A O-transcendence basis of L over
K is a maximal differentially independent set over K, subset of L. Any two O-
transcendence basis of L|K have the same cardinality and so we can define the
O-transcendence degree of L|K (or differential transcendence degree of L|K, when
the choice of 9 is clear, or also 0-trdeg(L|K), for short) as the cardinality of any
O-transcendence basis of L over K.

Finally, we introduce the notion of (o4, 0)-algebra. As in §I} let K be a field
and g # 0,1 be a fixed element of K. We endow K (x) with the ¢-difference operator
o4(z) = qz. Let F be a g-difference field extension of K (x). We assume moreover
that F is a ¢-difference differential field, i.e., a g-difference field endowed with a
derivation 0 that commutes with o,. For instance, endowed with the derivation
9 = xiL, the field K(z) is a (04,0)-field. Since we don’t want to bother the
reader with many similar definitions, we recall the basic conventions: Algebraic
attributes always refer to the underlying ring whereas the operator suffix means
that the algebraic attributes commutes with the operator. For instance, a o,-ideal
is an ideal stable by o4, a (04, 0)-morphism is a ring morphism which commutes
with o4 and 0.

2.1.2. Differential algebraic geometry. In this paper, we work with the
formalism of affine differential group schemes, as can be found in [Kov02]. In this
section, we fix a 0-field k of characteristic zero, not necessarily d-closed. We define
an affine differential k-scheme as follows:

DEFINITION 2.2. An affine 0-k-scheme (or O-scheme over k) is a (covariant)
functor from the category of 9-k-algebras to the category of sets which is repre-
sentable.
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The definition above means that a functor X from the category of 0-k-algebras
to the category of sets is a 0-k-scheme if and only if there exists a 0-k-algebra
k{X} and an isomorphism of functors X ~ Alg?(k{X}, —), where Alg? stands for
morphism of 9-k-algebras. By the Yoneda lemma, the 0-k-algebra k{X} is uniquely
determined up to unique 0-k-isomorphisms. We call it the ring of 0-coordinates
of X. A O-k-scheme X is called 0-algebraic (over k) if k{X} is finitely 0-generated
over k. We say that a 0-k-scheme X is reduced if £{X} has no non-zero nilpotent
elements.

Let X be a 0-k-scheme. By a closed 0-k-subscheme Y C X we mean a sub-
functor Y of X which is represented by k{X}/I(Y") for some O-ideal I(Y") of k{X}.
The ideal I(Y) of k{X} is uniquely determined by Y and vice versa. We call it the
vanishing ideal of Y in X.

A morphism of 0-k-schemes is a morphism of functors. If ¢: X — Y is
a morphism of 0-k-schemes, we denote the dual morphism of 0-k-algebras with
o*: k{Y} — k{X}.

If a functor (resp. 0-algebraic functor) X factors through the category of group,
we say that X is a differential (resp. differential algebraic) group k-scheme. By a
0-subgroup H of GG, we mean a group 0-k-subscheme H of G. We call H normal
if H(S) is a normal subgroup of G(S) for every 0-k-algebra S. As in the classical
setting, Yoneda lemma implies that, for a differential group k-scheme G, the algebra
k{G} is a 0-k-Hopf algebra, i.e., a 0-k-algebra equipped with the structure of a Hopf
algebra over k such that the Hopf algebra structure maps are morphisms of 0-rings.
It also follows immediately that the category of differential group k-schemes is anti-
equivalent to the category of 0-k-Hopf algebras. Then, since Hopf algebras over
fields of characteristic zero are reduced by [Wat79bl, Cartier’s Theorem in §11.4],
we get that any differential group k-scheme is automatically reduced. Reduced
differential schemes correspond to differential varieties in the sense of Kolchin (see
for instance [Kol73|), for whom it suffices to focus on the solution set of a system
of differential equations with value in a sufficiently big field, i.e., a d-closed field.

The differential schemes considered in this paper are all reduced. Thus, we
only define the differential dimension of a reduced differential scheme. So let V'
be a reduced differential algebraic scheme defined over k. We can write k{V} =
k{x1,...,z,}s/q for some positive integer n and some radical 0-ideal q C k{z1,...,2,}o.
Since q is radical, by [Kap57, Theorem 7.5] there exists finitely many prime 0-ideals
p; such that ¢ = Np;. Now, we can define the differential dimension of V over k,
denoted by 0-dim(V|k) as the maximum of the 0-trdeg(L;|k) where L; denotes the
fraction field of k{x1,..., 2, }o/p;. In [Kol73| I11.§6.Proposition 3], Kolchin proved
that if & C k' is an extension of O-field and if V is a reduced differential algebraic
scheme defined k, then 0-dim(V'|k) = 0-dim(Vj/|k’), where V. is the base extension
of V to k.

Let V be an affine k-scheme, i.e., a (covariant) functor from the category of k-
algebras to the category of sets which is representable by a k-algebra k[V]. We call
E[V] the ring of coordinates of V. In [Gil02], the author shows that the forgetful
functor

n: O-k-algebras — k-algebras,

that associates to any 0-k-algebra its underlying k-algebra, has a left adjoint de-
noted by D. This implies that the functor V from the category of 9-k-algebras to
the category of Sets, defined by the composition of V' with the forgetful functor n
is a differential k-scheme, whose ring of J-coordinates is precisely D(k[V]). We call
V, the differential scheme attached to V. The simple idea behind this construc-
tion is that polynomial equations are J-polynomials. More precisely if V' C A}, the
affine space of dimension n over k, and if I(V') C k[z1, ..., x,] is the vanishing ideal
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of V' as subscheme of A} then the vanishing ideal of V as 0-subscheme of Aj}} is
nothing else than the d-ideal generated by I(V) in k{z1,...,z,}s. Finally, Kolchin
irreducibility theorem states that if k[V] is a finitely generated integral k-algebra,
then D(k[V]) is a finitely O-generated integral 0-k-algebra and the dimension of V'
as affine scheme coincides with the 0-dimension of V (|Gil02] §2]).

Conversely, given a J-subscheme V of some A}, we can attach to V an affine
subscheme of A} as follows. Let I(V) C k{x1,...,z,}o be the vanishing ideal
of Vin A?. Let VZ be the affine subscheme of A7 defined by the ideal I(V) N
k[x1,...,2,]. We say that VZ is the Zariski closure of V inside A%7. The idea is
simply to throw away all the differential algebraic equations of V that contain a
derivation and keep the polynomial ones.

2.2. Fiber and forgetful functor

The differential formalism was simultaneously developed in [Ovc09] and [Kam10]|
and later generalized by Kamensky (see [Kam12]) to include all type of auxiliary
action on the Tannakian category. In this section, we apply this formalism to the
category of g-difference modules over a g-difference differential field (F,o4,0). As
detailed for instance in [Sau04b], the category Dif f(F,o4) is a Tannakian cate-
gory in the sense of [DMOS82]. Up to certain field extension k of F%, we know
by usual Tannakian equivalence that this category is equivalent to the category of
comodules over the coordinate ring k[G] of an affine group k-scheme. We show in
the sequel how Dif f(F,o,) can be endowed with an endofunctor, called prolonga-
tion functor, that will translate, by Morita equivalence, into a derivation on k[G].
This derivation will give to G the structure of a 0-group scheme over k.

So, let (F,o4,0) be a (oy,0)-field and let Dif f(F,o,) be the category of ¢-
difference module over F. This category is a tensor category and we denote by
1 = (F, 0,) the unit object for the tensor product. Dif f(F,o,) is a rigid category,
i.e., it posses internal Homs and each object is canonically isomorphic to its bidual.

We define below the prolongation functor in the general framework of projective
modules over a d-k-algebra. In Chapter [7] we will give a more explicit description
of this notion in the case of the category Dif f(F,0,) of g-difference modules, using
the associated ¢-difference system. Let (k,d) be a O-field and S be a 9-k-algebra.
We can endow the category Projs of finitely generated projective modules over &
with an endofunctor Fy, called prolongation functor, as follows. For M an object
of Projs, we define Fy(M) := S[0]<1 ®s M where S[9]<; is the set of differential
operators of order less than or equal to 1. In agreement with the Leibniz rule,
the right S-module structure of S[J] is given by d.a = a.0 + 9(a). Then, the
left S-module structure of Fy(M) satisfies A0 @ v = 9 @ Av — I(A) ® v, for all
AeSandv e M. If f e Hom(M,N), we define Fy(f) : Fo(M) — Fy(N) as
Fy(f)(0'®@m) = 0'® f(m), for i = 0, 1, where we have used the convention that 9"
is the identity map. One can remark that, if 0 is the trivial derivation, then Fy(M)
coincides with the direct sum M & M. Now, if we see Dif f(F,0,) as a subcategory
of Projr, we point out that, given an object Mr = (Mr, %,), we are able to extend
the action of 3, to Fy(Mx) via £,(0*(m)) := 8*(X,(m)), for i = 0,1 and m € Mx.
This shows that Fy restricts to an endofunctor of Dif f(F,o,). Together with this
additional structure, (Dif f(F,oq), Fp) is a differential Tannakian category over
F?a as defined in [GGO13| §4.4], i.e., a F%4-linear, tensor, rigid category together
with a prolongation functor, satisfying precise commutative diagrams.

Now, following [GGO13| Definition 4.9], we define the notion of differential
fiber functors as follows:

DEFINITION 2.3. Let S be a 0-F%a-algebra. We say that a functor w : Dif f(F,04) —
Projs is a differential fiber functor over S if it is
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exact,

faithful,
F7a-linear,
tensor-compatible

and it commutes to Fy, i.e., Fyow = wo Fy. E| We say moreover that w is a neutral
differential fiber functor if S = F7.

REMARK 2.4. e If 0 is the trivial derivation, a differential fiber functor is a
fiber functor in the sense of the classical Tannakian theory [DMOS82] p. 148].
o The forgetful functor nr : Dif f(F,04) — Vectr, which assigns to any ¢-
difference module its underlying F-vector space, is a differential fiber functor over

F.

Since one of our main purposes is to compare distinct fiber functors, we in-
troduce the functor of differential tensor morphisms between two differential fiber
functors.

DEFINITION 2.5. Let wy,ws @ Dif f(F,04) = Projs be two differential fiber
functors. For any S-algebra R, we define Hom®(wq,ws)(R) as the set of all se-
quences of the form

{Ax,|XF object of Dif f(F,oq)},

such that

e )y, is an R-linear homomorphism from wy(Xr) ® R to wa(Xr) @ R,
e )\ is the identity on 1 ® R,
e for every o € Hom(Xx, Yx), we have

)\y]_. o (a ® ZdR) = (Oé (9 ’LdR) o /\X],_.7

® Axy @ Ayy = Axr@ysr-
For R a 0-S-algebra, we define Hom®:? (w1, ws)(R) as the subset of Hom® (w1, ws)(R)
of all sequences such that:

b Fa(/\XJ-') = )\FE)(X}')' E|

The functor Hom®?(wy,ws) is a subfunctor of Hom® (w1, ws), composed with
the forgetful functor from 0-S-algebras to S-algebras. If O is the trivial deriva-
tion, these two functors coincides and Hom® (wy,ws) is representable by an affine
F-scheme (see [DMOS82], p.117]). Since morphisms of tensor functors are iso-
morphisms, by [DMOS82|, Proposition 1.13], the same holds for differential mor-
phisms of differential tensor functors. Thus, we will now write Isom®?(w,ws)
(resp. Isom® (w1, ws)) instead of Hom®(wy,ws) (resp. Hom®(wy,ws)) and, when
Wi = wy = w, we write Aut®?(w) (resp. Aut®(w)). In that special case, it occurs
that the functor Aut®9(w) (resp. Aut®(w)) is a group functor, where the compo-
sition is given by the composition of morphisms.

Finally, [GGO13l Proposition 4.25] gives in our context:

PROPOSITION 2.6. Let S be a 0-F72-algebra and let w : Dif f(F,04) — Projs
be a differential fiber functor. Let A be the S-Hopf algebra that represents the
functor Aut®(w) (see [Del90, Proposition 6.6]). Then, A has a canonical structure
of 0-S-Hopf algebra and represents the functor Aut®?(w).

IThis last equality has to be understood as a natural isomorphism.
2The first prolongation is to be understood inside Projr whereas the second one is the
prolongation in Dif f(F,o0q).
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This paper is concerned with the Galois group of a given g¢-difference module
rather than with the differential affine group scheme attached to the whole category
Diff(F,oq). Thus, from now on, we will restrict ourselves to the strictly full
differential Tannakian subcategory generated inside Diff(F,o,) by a single g¢-
difference module M z. To do this, we need to introduce some notations. Given a
g-difference module Nz, we consider the following categories:

e (Nx)® the strictly full subcategory of Dif f(F,o,) formed by the subquo-
tients of finite direct sums of copies of Nr, i.e., the abelian subcategory
generated by Nz,

o (N7)® the strictly full Tannakian category generated by Nz,

o (N7)®9 the strictly full differential Tannakian category generated by Nz.

The differential Tannakian category generated by a single g-difference module Mz
admits a very simple description. We consider the constructions of linear (resp.
linear differential) algebra of Mz, i.e., the list of g-difference modules

PMF Mz (resp. PMF © Mz @ FyMF 0 M5z5))

where 4, j (resp. i, 7,1, 7) are non-negative integers and M%* denotes the dual of M x
(resp. M denotes the dual of Mz and F} the I[-th iterate of the prolongation
functor). If we order the sub-objects of the constructions of linear (resp. linear
differential) algebra of Mz by the relation “be a direct summand” then (Mx)®
(resp. (M x)®9) is the filtering union of the abelian categories (N7)®, where N
runs through the sub-objects of a construction of linear (resp. linear differential)
algebra of M r. These inductive description allows to see Tannakian as well as
differential Tannakian equivalence as an inductive limit of Morita equivalences (see
[DMOS82|, Lemma 2.13]).

Now, we restrict ourselves to (Mz)®?. Let w : (Mx)®9 — Vectresqs be a
neutral differential fiber functor. We denote, once again, by nr : (Mz)®? —
Vectr the forgetful functor. As a direct application of Proposition [2.6] we find
that Aut®9(w) (resp. Aut®?(nz)) is a differential algebraic group defined over
Foa (vesp. F). Moreover, Aut®?(nz) coincides with the parameterized intrinsic
Galois group Gal?(Mx,nr), as defined in Definition See Proposition and
Proposition [7.6] below.

2.3. Fiber functor and parametrized Picard-Vessiot extensions

There is a one to one correspondence between the neutral fiber functors on a
category of differential (resp. difference) modules and and the Picard-Vessiot exten-
sions, which are sort of “minimal rings of solutions”. (See [Del90), §9] for differential
equations and [And01], §3.4] for a larger class of functional equations.) In [GGO13|
Theorem 5.5] following the ideas of Deligne, the authors proved among other things
that this correspondence still holds for differential equations with differential pa-
rameters. We have no doubt that the correspondence established by Deligne holds
for arbitrary differential Tannakian categories and especially for g-difference mod-
ules with a differential parameter. Anyway this result appear nowhere and we have
decided to avoid this point, which is not necessary to our exposition.

In this section, we introduce some of the several known notions of parametrized
Picard-Vessiot rings attached to a g-difference equation. We show in Proposition [2.9]
how they yield to neutral differential fiber functors. Let (F, o4, 0) be a g-difference
differential field and

(2.1) oy(Y) = AY,

with A € GL,(F), a ¢-difference system. In [HSO08|, the authors define the notion
of minimal 9-F-algebra containing the solutions of ([2.1) as follows:



2.3. FIBER FUNCTOR AND PARAMETRIZED PICARD-VESSIOT EXTENSIONS 17

DEFINITION 2.7. A (o4, 0)-F-algebra R is a parametrized Picard-Vessiot ring
for equations if
(1) Ris a simple (oq4, 0)-F-algebra, i.e., there are no non-trivial ideal stable
under o, and 0,
(2) there exists a Z € GL,(R) such that 04(Z) = AZ and
(3) R=k{Z, -}, that is R is generated a d-ring by the entries of Z and
the inverse of the determinant of Z.

Such a ring always exists. A basic construction is to consider the ring of differ-
ential polynomials S = F{Y, ﬁ}a, where Y is a matrix of differential indetermi-
nates over F of order v , and to endow it with a g-difference operator compatible
with the differential structure, i.e., such that

0q4(Y) =AY, 0,(0Y) = A0Y + 0AY,. ...
Any quotient of the ring S by a maximal (o4, 0)-ideal is a (g4, 9)-Picard-Vessiot ring.

By [HSO08|, Lemma 6.8], a parametrized Picard-Vessiot ring and more generally
any simple (o4, 0)-F-algebra R, finitely differentially generated over F, posses the

following structure. There exist a positive integer ¢ and ey, ..., e;_1 idempotents of
R such that

(].) R=Ry®...R;_1, R; =¢;R,

(2) 04 permutes transitively the set {Ro,...,R;_1} and o} leaves each R;

invariant, and
(3) each R; is a domain and a simple (o}, d)-F-algebra.
Following [Wib12al, we call (o, 0)-F-pseudoalgebras, the (o, 0)-F-algebras hav-
ing the above structure.
Now, we introduce the notion of weak parametrized Picard-Vessiot ring. It is
the parametrized analogue of [CHSO08|, Definition 2.1].

DEFINITION 2.8. Let R be a (04, 0)-F-pseudoalgebra. We say that R is a weak
parametrized Picard-Vessiot ring for (2.1)) if

(1) R=F{Z, #(Z)}a where Z € GL,(R) and 0,(Z) = AZ,
(2) Row = Fou.

In [HSO8| Proposition 6.14], the authors shows that if one assume F7¢ to
be a 0-closed field, then the o4-constants of any parametrized Picard-Vessiot ring
coincide with F?¢. In other words, they show that, starting with a differential closed
field of o4-constants, a parametrized Picard-Vessiot ring is a weak parametrized
Picard-Vessiot ring. Following an idea of M. Wibmer, one can show that, if 7% is
algebraically closed, there exists a weak Picard-Vessiot ring, which is moreover o4-
simple, i.e., has no non-trivial o,-ideals (see [Wib12b| and [DVH11]). However,
unicity is assured only if one extends the constants to the differential closure of
FCa,

PROPOSITION 2.9. Let M x be a q-difference module over F and let R be a weak
parametrized Picard-Vessiot ring for a g-difference system o,(Y) = AY attached to
Mzx. Then,

WR <M]:>®’a — Vectreq,
Nr — K@T(Zq—id,Nf®fR)
is a neutral differential fiber functor.

PROOF. Let i be a positive integer. Since R = F{Z, ﬁ(z)}aa where Z €
GL,(R) and 0,(Z) = AZ, the prolongation of order i of Mz is trivialized by R,
i.e., possess a fundamental solution matrix with coefficients in R. Indeed, a g¢-

difference system attached to Fy(Mx) is given by o,(Y) = (13 8(;14)) Y and a
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a(2)
0 Z
ear differential algebra of M . This comes from the fact that a g-difference system
(resp. fundamental solution matrix) attached to X'z is obtained from A (resp. 2)
by the same construction of linear differential algebra. Then, it is clear that any
sub-object Nx of Xz possess a fundamental solution matrix with coefficients in R.
Thereby, for any object N in (M 5)®9 we find a functorial isomorphism between
Nz @7 R and wr(NF) @z-« R. We deduce from this fact that wg is a faithful,
exact, F%¢-linear tensor functor. It is neutral because R%? = F?¢ The fact that
wr intertwines with Fjy corresponds exactly to the fact that a fundamental solution
matrix attached to Fp(Mr) is given by the prolongation of a fundamental solution
matrix attached to Mz, as explained above. 0

fundamental matrix is ) Then R trivializes any construction Nz of lin-

To conclude this chapter, we choose to introduce the differential algebraic group
attached to a weak parametrized Picard-Vessiot ring R, i.e., the group of functorial
(04, 0)-F-automorphism of R. Then, we show that this latter group scheme corre-
sponds to the group of differential tensor automorphism of the neutral differential
fiber functor wg, corresponding to R by Proposition This incarnates the differ-
ential Tannakian group of a ¢-difference module, as the group of automorphisms of
the solutions preserving the differential algebraic relations between the solutions.

DEFINITION 2.10. Let Mz be a g-difference module over F. Let R be a weak
parametrized Picard-Vessiot ring for a ¢-difference system attached to Mxz. We
define the functor of (o, 9)-automorphisms of R as follows

G%: {0-Foa-algebras} — {Groups}
S = AutZrP(Re S),
where Autgfé’g) (R®S) stands for the group of (o4, 0)-F ®S-automorphism of R®S.

REMARK 2.11. If 0 is the trivial derivation, this group corresponds to the group
Gr as defined in [CHSO08|, Proposition 2.2].

PROPOSITION 2.12. Let Mx be a q-difference module over F. Let R be a weak
parametrized Picard-Vessiot ring for a q-difference system attached to Mx. Then,
G% is representable by a linear differential algebraic group defined over F°q.

PROOF. We omit this proof which is a straightforward differential analogous
of [CHSO08| Proposition 2.2]. O

PROPOSITION 2.13. Let Mz be a q-difference module over F. Let R be a weak
parametrized Picard- Vessiot ring for a q-difference system attached to Mx. Then,

the linear differential algebraic groups Aut®?(wg) and G% are isomorphic over
FOa.

REMARK 2.14. The statement above is the parameterized anologue of [vdPS97],
Theorem 1.32.2)].

PRrOOF. Let S be a 0-F%-algebra. An element vs € Aut®?(wg)(S) acts by
S-linearity on the linear forms on the differential symmetric algebra of w(Mx)” ®
S. Thus, 7s defines an S-automorphism on the differential polynomial algebra
F{X, ﬁ(x)}a@S = F{(Xij)1<ij<vs de%(x)}aﬁ&s. If we let 04 acts on F{X, ﬁ(}()}a
with 0,(X) = AX then s commutes with o, and 9. This a consequence of the
fact that s is a differential tensor automorphism of w. Now, s stabilizes every
w(Nx) ® S for any g¢-difference module N contained in a differential algebraic
construction of M x. It follows that s stabilizes in F{X, ﬁ(x)}a the ideal of dif-
ferential algebraic relations J satisfied by a fundamental solution matrix Z over F.
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Indeed, a differential algebraic relation for Z can be seen as a F-linear form that an-
nihilates on a construction Nz of linear differential algebra of M . Since the set of
F-linear forms that annihilate on Nz is a g-difference submodule of V%, it must be
stabilized by . This proves that vs acts S-linearly on F{X, ﬁ(x)}a/ﬂ&s = R®S.
This gives an embedding of Aut®?(wg) in G%.

Conversely, any 75 € G%(S) acts on Nr@ R®S via id®T, for any N'F contained
in a construction of linear differential algebra of M x. Since this action commutes
with 3,, we find an action of 7s on w(Nz)®S. This gives us the inverse embedding
of G% into Aut®?(wg). O
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CHAPTER 3

Rationality of solutions, when ¢ is an algebraic
number

Let K be a field and ¢ # 0,1 be an element of K. We are concerned with
the problem of finding a necessary and sufficient condition for a ¢-difference mod-
ule Mgy = (Mg(s),3,) over K(x) to be trivial (see Definition . This is
equivalent to the problem of finding a necessary and sufficient condition for a linear
g-difference system with coefficients in K (z) to have a fundamental solution matrix
with entries in K ().

Notice that we are not making any assumption on the characteristic of K. We
have to consider the following cases:

(1) ¢ is a root of unity;
(2) ¢ is algebraic over the prime field, but is not a root of unity;
(3) ¢ is transcendental over the prime field.

These six cases (three cases for the characteristic zero, and three cases for the
positive one) actually boil down to three. In fact, we will first consider the (trivial)
situation in which ¢ is a root of unity: If K has positive characteristic this includes
both (1) and (2) above. Then we will consider the case in which K has characteristic
zero and q is algebraic over Q. Finally, in the next chapter, we will consider the
case in which ¢ is transcendental over the prime field, Q or F,, regardless of the
characteristic.

It is not difficult to prove that:

PropPOSITION 3.1 ([Hen96] or [DV02], Proposition 2.1.2]). If q is a primitive
root of unity of order k, a q-difference module Mg,y over K(x) is trivial if and
only if 37 is the identity.

The proposition above completes the study of the triviality of g-difference mod-
ules when ¢ is a root, of unity, at least as far as the problem we are considering here
is regarded. We refer to [Har10] for a more sophisticated approach.

3.1. The case of ¢ algebraic, not a root of unity

If ¢ is algebraic, but not a root of unity, we are necessarily in characteristic
zero. The example below gives the guidelines for the whole chapter.

EXAMPLE 3.2. Let K = Q(a) be a purely transcendental extension of degree 1
and let ¢ € Q~{0,1, —1}. We consider a g-difference module M ;) = (Mg (4, Xq)
over K(z). Let us choose a basis e of M,y and let Y (¢qr) = B(a,z)Y (x) be the
associated g¢-difference system. One can construct by hand a Z-algebra stable by
04, of the form:

1 1
A=7|a,z, Pa) Plgn)’ |
for a convenient choice of P(z) € Za, x], such that ¢ € A and B(a, x) and B(a,z)™!
are both matrices with coefficients in .A. For almost all primes p in Z, one can reduce
both ¢ and A modulo p, and hence the coefficients of B(a,z). In particular, for all

23



24 3. RATIONALITY OF SOLUTIONS, WHEN @ IS AN ALGEBRAIC NUMBER

such p’s there exist a minimal positive integer «, and a positive integer ¢, such
that ¢"» = 1 modulo p and ¢"» — 1 = pepg, with r, s prime to p. The main result of
this chapter (see Theorem [3.6] below) is that the system Y (gz) = B(a, z)Y (z) has
a fundamental solution with coefficients in K () if and only if for almost all p we
have

(3.1) Bla,q"*'2)B(a, ¢"*%z)--- B(a,z) = 1 modulo p», i.e., in A/p'r A.

This last condition is equivalent to the fact that the reduction modulo p%» of the
operator Y¥q” is the identity, and is verified, in particular, if the reduction of the
system Y (qz) = B(a,z)Y (z) modulo p‘» has a fundamental solution matrix with
coefficients in A/p‘» A. We will proceed as follows: We will first prove that the
system Y (gx) = B(a,z)Y (z) has a fundamental solution with coefficients in K (x)
if and only if, for all « in a dense subset of the algebraic closure Q of Q, the system
Y(qz) = B(a,x)Y(z) has a fundamental solution with coefficients in Q(z). As
a consequence of [DV02, Theorem 7.1.1], we will show that this last condition,
holding for all a in a dense subset of Q, is equivalent to .

First of all we need to introduce some notation, that generalizes the one in the
previous example to the case of a number field. Notice that we can always suppose,
and we will, that K is finitely generated over Q (see Proposition . Let @ be
the algebraic closure of Q inside K. Then the field K has the form Q(a,b), where
a=(ay,...,a,)is a transcendence basis of K/Q and b is a primitive element of the
algebraic extension K/Q(a). We call Og the ring of integers of @, v a finite place
of @ and 7, a v-adic uniformizer in Og.

We fix an element ¢ € K which is algebraic over QQ and not a root of unity, i.e.,
an element ¢ € (Q which is not a root of unity. For almost all v,

e the order k, of ¢ modulo v, as a root of unity,
e the positive integer power ¢, of m,, such that ¢; (1 — ¢**) is a unit of
O,
are well defined.

We consider a g-difference module Mg ;) = (Mg (s, Xq) over K(z), of finite
rank v. Choosing conveniently the set of generators a,b of K/Q, we can always
find a ¢-difference algebra A of the form:

1 1
(32) A:O Q7bu$77u77'“ )
¢ P(z)’ P(ga)
for some P(z) € Oq [a,b, x|, and a ¥ -stable A-lattice M of Mg ,) such that the
restriction of X, to M is invertible. According to the definition in the pair
M = (M,%,) is a ¢-difference module over the ring A.

NoTATION 3.3. For a given g-difference module Mg ) = (Mg (s, Eq) over
K(z), the pair M = (M, X,) will always denote a ¢-difference module over a ring
A as above, such that M @4 K(z) := (M ®4 K(2),%q ®4 0q) = Mg(s). The
notation may appear ambiguous, but it is actually convenient and there will be no
confusion.

DEFINITION 3.4. We say that a ¢-difference module M = (M,X,) over a ¢-
difference Og-algebra A, as above, has zero v-curvature modulo ¢, if the linear
operator

55" MeaA/($) — M s Al(by)

is the identity. By abuse of language we will say that the g¢-difference module
Mg (2) = M ®4 K(x) has zero v-curvature modulo ¢,, if M does.
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REMARK 3.5. First of all, the definition is justified by the fact that ¥7* induces
the identity modulo ¢, if and only if (A,)"", where A, = %, is zero modulo ¢,,.
Therefore the terminology is inspired by the classical termonology for differential
equations, [Kat70].

Secondly, we point out that the quotient Og/(¢,) is not an integral domain
in general. Nonetheless the following implication is always true. If M @4 A/(dy),
equipped with the operator induced by X, is trivial as a ¢-difference module over
A/(¢y), then Ygv induces the identity modulo ¢,. The converse is not true in such
generality (see [DV02], Proposition 2.1.2]).

Notice that the reduction modulo ¢, of 37 is well-defined, for almost all finite
places v of Q. Moreover, given two g¢-difference module M over A and M’ over
A’, such that M ®4 K(z) 2 M’ ® 4 K(x), the reduction modulo ¢, of the first
one has zero v-curvature if and only if also the other does, provided that ¢, is not
invertible in both A and A'.

Our first result is the following:

THEOREM 3.6. A g-difference module M over A has zero v-curvature modulo
bv, for almost all finite places v of Q, if and only if Mgy is trivial.

REMARK 3.7. The theorem above is proved in [DV02] under the assumption
that K is a number field, i.e., that @ = K. Here K is only a finitely generated
extension of Q. Notice the proof below relies crucially on [DV02], but is not a
generalization of the arguments in [DV02].

If the g-difference module M (,) over K (x) is trivial, it is not difficult to show
that M has zero v-curvature modulo ¢,, for almost all finite places v of @, for any
choice of A and M, such that M ® 4 K(x) = Mg(,. So we only have to prove the
inverse implication.

We are actually going to prove a stronger result:

THEOREM 3.8. A g-difference module M over A has zero v-curvature modulo
Oy, for all places v in a set S of finite places of Q of Dirichlet density 1 if and only
if Mg () is trivial.

We recall that a subset S of the set of finite places C of @ has Dirichlet density
1if
ZUGS,M}) p_Sf’u -1

(3.3) lim sup 7 =

s—1t 'UEC,U|pp

where f, is the degree of the residue field of v over ).

3.2. Global nilpotence.

We start proving a result of regularity (see for the definition), inspired by
[Kat70].

DEFINITION 3.9. We say that a ¢-difference module M = (M,%,) over a g¢-
difference Og-algebra A, as above, has nilpotent v-curvature modulo m,, or simply
that it has nilpotent reduction modulo 7,, if the linear operator

Y5t i M®a A/(my) — M @4 A/ ()

is unipotent (or equivalently, if the linear operator induced by Ajv is nilpotent. See
[DV02] §2]).

PROPOSITION 3.10. Let M = (M,X,) be a g-difference module over a g¢-
difference Og-algebra A of the form (3.2)).
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(1) If M has nilpotent v-curvature modulo w,, for infinitely many finite places
v of Q, then the q-difference module M . is regular singular.

(2) If there exists a set S of finite places v of Q of Dirichlet density 1 such
that M has nilpotent v-curvature modulo m,, for all v € S, then Mg ((z))
18 trivial.

The proof of Proposition is almost the same as [DV02, Theorem 6.2.2
and Proposition 6.2.3]. The last sentence of the proof of 1) in loc. cit. needs to
be rectified, so that we prefer to repeat the proof here. We recall the following
key-proposition:

ProrosiTioN 3.11 ([DV02], Proposition 6.1.1]). Let S be a set of finite places
of Q of Dirichlet density equal to 1. If a and b are two non-zero elements of Q, not
roots of unity, such that

(1) for allv € S, the reduction of a et b modulo , is well defined and non-zero;
(2) for allv € S, the reduction modulo m, of b belongs to the cyclic group generated
by the reduction modulo m, of a.

Then b € a”.

ProoF OF ProprosITION B.10l To prove assertion (1), it is enough to prove
that 0 is a regular singular point for M, the proof at co being completely analogous.
In the notation of Corollary we consider the extension L(t) of K(z), the
g-difference module My, ;) obtain by scalar extension and the basis f such that

Yif = [B(t), with B(t) as in . Let @ be the algebraic closure of Q in L and
B C L(t) be a g-difference algebra over the ring of integers (9@ of é, of the same
form as (3.2)), containing the entries of B(t) and the inverse of its determinant. Let
w be a finite place of é and m, € @ be the uniformizer of w. Then there exists a
g-difference module N over B such that N’ ®p L(t) = M), having the following
properties:

1. N has nilpotent w-curvature modulo 7, for infinitely many finite places w of
Q;

2. there exists a basis f of N over B such that S f = fB(t) and B(t) verifies (L.5).

Iterating the operator ¥z we obtain:
Bm
Sp(0) = FBOB@)- B@ ) = f (M " h.o.t.) |

We know that, for infinitely many finite places w of @, the matrix B(t) verifies
(3.4) (B(t)B(gt)--- B(@™'t) — 1)n(w) = 0 mod 7,

where £, is the order ¢ modulo 7, and n(w) is a convenient positive integer.
Suppose that ¢ # 0. Then ngn(w) = 0 modulo 7, , for infinitely many w, and
hence By is a nilpotent matrix, in contradiction with Corollary [I.1I9] So necessarily
£=0.

Finally we have 35(f) = f (Bo + h.o.t). It follows from that By is actually
invertible, which implies that M) is regular singular at 0. Proposition [T.17allows
to end the proof of (1).

Let us prove the second part of Proposition We have already proved that
0 is a regular singularity for M. This means that there exists a basis e of Mg,
over K (z) such that ¥,e = eA(x), with A(z) € GL, (K{[z]]) N GL, (K (x)).

The Frobenius algorithm (cf. [Sau00), §1.1.1]) implies that there exists a shear-
ing transformation S € GL,, (K[z, 1/z]), such that S(gz)A(z)S(z)~! € GL,(K[[z]])N
GL,(K(z)) and that the constant term Ag of S(z) 1 A(x)S(gz) has the following
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properties: if o and 3 are eigenvalues of Ay and af~! € ¢%, then o = 3. So
choosing the basis eS(z) instead of e, we can assume that Ay = A(0) has this last
property.

Always following the Frobenius algorithm (cf. [Sau00], §1.1.3]), one constructs
recursively the entries of a matrix F'(z) € GL, (K[[z]])), with F(0) = 1, such that
we have F(x) ' A(z)F(qz) = Ap. This means that there exists a basis f of M ((z))
such that 3, f = fA,.

The matrix Ay can be written as the product of a semi-simple matrix and a
unipotent matrix. Since M has nilpotent reduction modulo m,, we deduce that the
reduction of Ag” modulo 7, is the identity matrix, for any v € S. First of all, this
implies that A is diagonalisable. Let K be a finite extension of K in which we can
find all the eigenvalues of Ay. Then any eigenvalue o« € K of Ay has the property
that o = 1 modulo 7, for all w finite place of the algebraic closure of @) in K
such that w|v and v € S. In other words, the reduction modulo w of an eigenvalue
«a of Ay belongs to the multiplicative cyclic group generated by the reduction of
g modulo the uniformizer m,, of w. Proposition implies that o € ¢%. We
conclude appling Proposition [1.16) O

3.3. Proof of Theorem [3.6] and [3.8

The proof is divided into steps. We remaind that, if K is finite over Q, the
statement is proved in [DV02].

STEP (0. REDUCTION TO A PURELY TRANSCENDENTAL EXTENSION K/(). Let
a be a transcendence basis of K/Q and b is a primitive element of K/Q(a), so that
K = Q(a,b). By restriction of scalars, the module Mg, is also a g-difference
module of finite rank over Q(a)(z). Since the field K (x) is a trivial ¢-difference
module over Q(a)(x), we have:

e the module Mg,y is trivial over K(z) if and only if it is trivial over

Q(a)(x) (see Corollary [1.12));

e under the present assumptions, there exist an algebra A’ of the form

1 1
3.5 A =0¢g |a,z, ——, ——,....| , with R(z) € Ogla, =],
and a A'-lattice M4 of g-difference module Mg ) over Q(a)(x), such
that M ®a Q(a,r) = Mg(s), as a g-difference module over Q(a,x),
and X5v induces the identity on M4 ®.4: A'/(¢,), for all places v € S.
For this reason, we can actually assume that K is a purely transcendental extension
of Q of degree d > 0 and that A = A’. We fix an immersion of Q < Q, so that we

will think to the transcendental basis a as a set of parameter generically varying in
d

Q. O

STEP 0BIS. INITIAL DATA. Let K = Q(a) and ¢ be a non-zero element of @,
which is not a root of unity. We are given a g-difference module M over a convenient
algebra A as above, such that K(x) is the field of fraction of A and such that /v
induces the identity on M ® 4 A/(¢,), for all finite places v € S. We fix a basis e
of M, such that ¥,e = eA~!(x), with A(z) € GL,(A). We will rather work with
the associated ¢-difference system:

(3.6) Y(qz) = A(2)Y (x).
It follows from Proposition that Mg (,) is regular singular, with no logarithmic

singularities, and that its exponents are in ¢Z (see also Proposition|1.16)). Enlarging
a little bit the algebra A (more precisely replacing the polynomial R by a multiple
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of R), we can suppose that both 0 and oo are not poles of A(z) and that A(0), A(co)
are diagonal matrices with eigenvalues in ¢ (see [Sau00), Theoreme §2.1]). O

STEP 1. CONSTRUCTION OF A FUNDAMENTAL SOLUTION AT 0. We construct
a fundamental matrix of solutions, applying the Frobenius algorithm to this par-
ticular situation. There exists a shearing transformation Sp(z) € GL,(K[z,271])
such that

Sy (q) A(2)So(2) = Ao(2)

and Ao (0) is the identity matrix. In particular, the matrix Sy(z) can be written as a
product of invertible constant matrices and diagonal matrix with integer powers of
2 on the diagonal. Once again, up to a finitely generated extension of the algebra A,
obtained inverting a convenient polynomial, we can suppose that So(z) € GL,(A).

Notice that, since ¢ is not a root of unity, there always exists a norm, non-
necessarily archimedean, on @ such that |g| > 1. We can always extend such a

norm to K, giving an arbitrary value to the elements of a basis of transcendence
(see [Bou64, §2.4]). As in Proposition the system

(3.7) Z(gz) = Ao(2)Z(x)

has a unique convergent solution Zy(x), such that Z,(0) is the identity and Zy(x) is
a germ of a meromorphic function with infinite radius of meromorphy. So we have
the following meromorphic solution of Y (qz) = A(z)Y (x):

Yo(z) = (Ao(qflx)Ao(q*%)Ao(q*%) .. ) So(z).

We remind that this infinite product represents a meromophic fundamental solution
of Y(qz) = A(z)Y (z) for any norm over K such that |g| > 1. O

STEP 2. CONSTRUCTION OF A FUNDAMENTAL SOLUTION AT co. In exactly the
same way, we can construct a solution at oo of the form Yo () = Zoo(2)Se0(2),
where the matrix S, belongs to GL,(K[z,r7!]) N GL,(A) and has the same
form as Sp(x), and Zo(z) is analytic in a neighborhood of oo, with Z(o0) = 1:

Yoo (z) = (Aoo(x)Aoo(qx)Aoo(qu) . ) Seo (). O

STEP 3. THE BIRKHOFF MATRIX. Tosummarize we have constructed two fun-
damental solution matrices, Yy (z) at zero and Yoo (x) at oo, which are meromorphic
over Al \ {0}, for any norm on K such that |q| > 1, and such that their set of
non-zero poles and zeros is contained in the g-orbits of the set of poles at zeros of
A(z) and A(z)~!. The Birkhoff matrix

B(z) = Y5 (2) Yoo (x) = So(x) ™' Zo(2) ™ Zoo (2) So ()

is a meromorphic matrix on AL \ {0} with elliptic entries, i.e., B(qz) = B(z). All
the zeros and poles of B(zx), other than 0 and oo, are contained in the g-orbits of
zeros and poles of the matrices A(x) and A(x)~! (see [Sau00, §2.3.1]). O

STEP 4.RATIONALITY OF THE BIRKHOFF MATRIX. Let us choose a = (a1, ..., a;),
with «; in the algebraic closure Q of @, so that we can specialize a to « in the co-
efficients of A(z), A(x)~1, So(z), Seo(z) and that the specialized matrices are still
invertible. Then we obtain a g¢-difference system with coefficients in Q(«). It fol-
lows from Proposition that for any norm on Q(«a) such that |¢| > 1, we can
specialize Yy(x), Yoo () and, therefore B(x), to matrices with meromorphic entries
on Q(a)*. We will write A (z), YO(Q) (z), etc. for the specialized matrices.

For almost all v, it still makes sense to reduce Ag%) (z) modulo ¢,. Moreover,
since A, (z) is the identity modulo ¢,, the same holds for Ag%) (2). Therefore the
reduced system has zero v-curvature modulo ¢,, for almost all v € S. We know
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from [DV02, Theorem 7.1.1], that Y® (2) and Y% (z) are the germs at zero of
rational functions, and therefore that B(®)(x) is a constant matrix in GL,(Q(a)).

As we have already pointed out, B(x) is g-invariant meromorphic matrix on
PL~{0,00}. The set of its poles and zeros is the union of a finite numbers of g-orbits
of the forms Bq¢%, such that 3 is algebraic over K and is a pole or a zero of A(x) or
A(x)~t. If B is a pole or a zero of an entry b(x) of B(x) and hg(z), ks(z) € Qla, 7]
are the minimal polynomials of 3 and 5! over K, respectively, then we have:

_ )\H'y ano h (¢ ") ano ky(1/q"x)
[1; 1150 he(a @) [1,50 ks(1/qm2)

where A € K and « and § vary in a system of representatives of the g-orbits of the
zeroes and the poles of b(z), respectively. We have proved that there exists a dense

b(x)

subset of Q@ such that the specialization of b(z) at any point of this set is constant.
Since the factorization written above must specialize to a convergent factorization
of the same form of the corresponding element of B(®)(z), we conclude that b(z),
and therefore B(z), a constant. O

The fact that B(z) € GL, (K) implies that the solutions Yy(z) and Yo, (z) glue
to a meromorphic solution on P} and ends the proof of Theorem 3.6






CHAPTER 4

Rationality of solutions when ¢ is transcendental

In this chapter we consider the case of ¢ transcendental over the prime field.

4.1. Statement of the main result

Let us consider the field of rational function k(g) with coefficients in a perfect
field k, of any characteristic. We fix d €]0,1[ and for any irreducible polynomial
v =uv(q) € k[q] we set:

£ (@)} = d?e8a V@ orde @ 1y £ (q) € k[g).

The definition of | |, extends to k(g) by multiplicativity. To this set of norms one
has to add the ¢~!-adic one, defined on k[q] by:

\f(q)|q—1 = d—%941(0)

Once again, this definition extends by multiplicativity to k(g). Then, the product
formula holds:

f(q)

Hvek[q] irred. ’ 9(q)

— X deggv(a) (ordyq) f(a)—ordu(g)9(a))

! dde9qf(a)—deg, 9(q)

i@
9(q)

g1

For any finite extension K of k(q), we consider the family P of ultrametric norms,
that extends the norms defined above, up to equivalence. We suppose that the
norms in P are normalized so that the product formula still holds. We consider the
following partition of P:

e the set P, of places of K such that the associated norms extend, up to
equivalence, either | [, or | [;-1;

o the set Ps of places of K such that the associated norms extend, up to
equivalence, one of the norms | |, for an irreducible v = v(q) € k[q],

v(q) # 4[]

Moreover we consider the set C of places v € Py such that v divides a valuation
of k(q) having as uniformizer a factor of a cyclotomic polynomial, other than ¢ — 1.
Equivalently, C is the set of places v € Py such that ¢ reduces to a root of unity
modulo v of order k, strictly greater than 1. We will call v € C a cyclotomic place.

Sometimes we will write Py, Pk, f, Pk,0c and Ck, to stress out the choice of
the base field.

In the sequel, we will deal with an arithmetic situation, in the following sense.
We consider the ring of integers Ok of K, i.e., the integral closure of k[g] in K, and

IThe notation Py, Poo is only psychological, since all the norms involved here are ultrametric.
Nevertheless, there exists a fundamental difference between the two sets, in fact for any v € Poo
one has |q|y # 1, while for any v € Py the v-adic norm of ¢ is 1. Therefore, from a v-adic analytic
point of view, a g-difference equation has a totally different nature with respect to the norms in
the sets Py or Poo.

31
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a g-difference algebra of the form

11 1
P(z)" P(gz)’ P(¢*z)" |’

for some P(z) € Oklz], such that ¢ € A. Then A is stable by the action of o,
and we can consider a g-difference module M = (M, %) over A. Remember that
Mgy = (Mg = M @4 K(x),5, ® 04) is a g-difference module over K (x) and
that any g¢-difference module over K (z) comes from a g¢-difference module over A,
for a convenient choice of A.

We denote by ¢, the uniformizer of the cyclotomic place of k(¢) induced by
v € Ck. The ring A ®0, Ok /(¢y) is not reduced in general, nevertheless it has a
g-difference algebra structure and the results in [DV02] §2] apply again. Therefore
we set:

(4.1) A =0k |z,

DEFINITION 4.1. A ¢-difference module M over A has zero v-curvature (modulo
¢y) if the operator X+ induces the identity (or equivalently if the operator Afv,

with A, = 517;)11, induces the zero operator) on the module M ® 4 A/(¢,).
Our main result is the following.

THEOREM 4.2. A g-difference module M over A has zero v-curvature modulo
ov, for almost all v € C, if and only if M becomes trivial over K(x).

REMARK 4.3. As proved in [DV02] Proposition 2.1.2], if X7+ is the identity
modulo ¢, then the g-difference module structure induced on M ®4 A/(¢,) is
trivial.

As far as the proof of Theorem [£.2]is regarded, one implication is trivial. We
will come back to the proof of the other implication in §4.3

4.2. Regularity and triviality of the exponents

In this section, we are going to prove that a g¢-difference module is regular
singular and has integral exponents if it has nilpotent reduction for sufficiently
many cyclotomic places. We denote by 7, an uniformizer of v € C.

DEFINITION 4.4. We say that a ¢-difference module M = (M,X,) over a ¢-
difference Ok-algebra A, as above, has nilpotent v-curvature modulo 7, or simply
that it has nilpotent reduction modulo 7,, if the linear operator ¥7v : M ®4
A/(my) — M ®4 A/(m,) is unipotent (or equivalently if Afv is nilpotent. See
[DV02, §2]).

We prove the following result:

PROPOSITION 4.5.

(1) If a q-difference module M over A has nilpotent v-curvature modulo 7,
for infinitely many v € C, then it is regular singular.

(2) Let M be a q-difference module over A. If there exists an infinite set of
positive primes o C Z such that M has nilpotent v-curvature modulo m,,
for all v € C, such that xk, € p, then Mg (()) is trivial.

ProOF. The proof of Proposition [3.10] applies word by word to this case, until
the the argument showing that Ay is diagonalisable. To conclude with Proposition
one has to show that the eigenvalues of Ay are in ¢%. Let K be a finite
extension of K in which we can find all the eigenvalues of Ay. Then any eigenvalue
o € K of Ay has the property that o = 1 modulo w, for all w € Cz, w|v and v
satisfies the assumptions. In other words, the reduction modulo w of an eigenvalue
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a of Ay belongs to the multiplicative cyclic group generated by the reduction of ¢
modulo .
To end the proof, we are reduced to prove the proposition below. O

PROPOSITION 4.6. Let k be a perfect field, K/k(q) be a finite extension and
© C Z be an infinite set of positive primes. For any v € C, let K, be the order of q
modulo ,, as a root of unity.

If « € K is such that o =1 modulo m,, for all v € C such that Kk, € @, then
o€ qZ.

REMARK 4.7. Let K = Q(q), with ¢" = ¢, for some integer r > 1. If § is an
eigenvalue of Ay we would be asking that for infinitely many positive primes ¢ € Z
there exists a primitive root of unity (., of order r¢, which is also a root of unity
of order £. Of course, this cannot be true, unless r = 1.

4.2.1. Proof of Proposition We denote by kg either the field of rational
numbers Q, if the characteristic of & is zero, or the field with p elements F,, if the
characteristic of k is p > 0. First of all, let us suppose that k is a finite perfect
extension of kg of degree d and fix an embedding k < k of k in its algebraic
closure k. In the case of a rational function a = f(q) € k(q), Proposition is a

consequence of the following lemma:

LEMMA 4.8. Let k be a perfect field, [k : ko] = d < oo and let f(q) € k(q) be
non-zero rational function. If there exists an infinite set of positive primes o C Z
with the following property:

for any £ € p there exists a primitive root of unity (; of order ¢
such that f((e) is a root of unity of order ¢,

then f(q) € ¢*.

REMARK 4.9. If k = C and y — f(q) is irreducible in Clg, y], the result can be
deduced from [Lan83|, Chapter 8, Theorem 6.1], whose proof uses Bézout theorem.
We give here a totally elementary proof, that holds also in positive characteristic.

Proposition can be rewritten in the language of rational dynamic. We
denote by e the group of root of unity of order ¢. The following assertions are
equivalent:

(1) f(q) € k(q) satisfies the assumptions of Lemma [4.8

(2) There exist infinitely many ¢ € N such that the group py of roots of unity

of order ¢ verifies f(ug) C pe.

(3) fla) € ¢"

(4) The Julia set of f is the unit circle.
As it was pointed out to us by C. Favre, the equivalence between the last two
assumptions is a particular case of [Zdu97|, while the equivalence between the
second and the fourth assumption can be deduced from [FRLO6] or [Aut01].

Proor. Let f(q) = %, with P = Zi’io a;iq',Q = Zio biq" € k[q] coprime

polynomials of degree less equal to D, and let £ be a prime such that:

o f(Ce) € s

e 2D </ —1.
Moreover, since p is infinite, we can chose ¢ >> 0 so that the extensions k£ and
ko(pe) are linearly disjoint over kq. Since k is perfect, this implies that the minimal
polynomial of the primitive /-th root of unity ¢, over kis x(X) = 1+ X +...+ X1,
Now let k € {0,...,¢ — 1} be such that f({;) = (/, i.e.,

D D
D aigi = bt
=0 =0
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We consider the polynomial H(q) = 32 a,q’ —Zf:’;ﬂ bj_x¢’ and distinguish three
cases:
(1) If D+x < £—1, then H(q) has (; as a zero and has degree strictly inferior
to £ — 1. Necessarily H(q) = 0. Thus we have

ag=a1=..=axk1=bpr1-x=...=bp=0 and a;=b;_, fori=rk,...,D,
which implies f(q) = ¢".

(2) If D+ xk =¢—1 then H(q) is a k-multiple of x(¢) and therefore all the
coefficients of H(q) are all equal. Notice that the inequality D+x > ¢—1
forces k to be strictly bigger than D, in fact otherwise one would have
k+ D < 2D < £ — 1. For this reason the coefficients of H(q) of the
monomials ¢P*1, ... ¢ are all equal to zero. Thus

aozalz...:a[):boz...:bpzo

and therefore f = 0 against the assumptions. So the case D +x =1—-1
cannot occur.
B) fD+x>¢—1,thenk >D>D+k—¥, since k>D and k— £ < 0. In
this case we shall rather consider the polynomial H(q) defined by:
D+rx—¥¢

Zazq _sz nq - Z lerZ nq

Notice that H(C;) = H(¢;) = 0 and that H(q) has degree smaller or equal
than £ — 1. As in the previous case, H(q) is a k-multiple of x(g). We get

bj=0forj=0,..,—-1—k

and
apg — bg_n = ... = QD4 x—0 — bD = ap4+k—t+1 — ... = Ap = 0.
We conclude that f(q) = ¢~ *.
This ends the proof. O

We are going to deduce Proposition £.6] from Lemma [£.§in two steps: first of
all we are going to show that we can drop the assumption that [k : ko] is finite and
then that one can always reduce to the case of a rational function.

LemMmA 4.10. Lemma holds if k/ko is a finitely generated (not necessarily
algebraic) extension.

REMARK 4.11. Since f(q) € k(q), replacing k by the field generated by the
coefficients of f over ko, we can always assume that k/ko is finitely generated.

PROOF. Let k be the algebraic closure of kg in k and let k' be an intermediate
field of k/k, such that f(q) € k'(¢) C k(q) and that k’/k has minimal transcendence
degree «. We suppose that « > 0, to avoid the situation of Lemma [I.8] So let
ai,...,a, be transcendence basis of k'/k and let k” = k(ay,...,a,). If k'/k is
purely transcendental, i.e., if ¥’ = k”, then f(q) = P(q)/Q(q), where P(q) and
Q(g) can be written in the form:

ZZO[()CEJ(] and Q(q ZZ/B a]Qv

with j = (j1,...,4.) € Z%g, a; = aj, -+~ a;, and a(z) B(l)

terms of P and () so that

(q) = Z a;jDj(q) and Q(q Z a;C

€ k. If we reorganize the
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we conclude that the assumption f((s) C e for inﬁnitely many primes ¢ implies
that f; = &= is a rational function with coefficients in k satisfying the assumptions

of Lemma [4.§ . Moreover, since the f;’s take the same values at infinitely many
roots of unity, they are all equal. Finally, we conclude that f;(q) = q¢ for any J

and hence that f = ¢ %Zj = ¢4

Now let us suppose that k' = k" (b) for some primitive element b, algebraic over

k", of degree e. Then once again we write f(q) = P(q)/Q(q), with:
P = XS ouths wmd Qg Zzﬁzhbq»
i h=0 i
with o, Bin € k”. Again we conclude that % (; hq =q¢%forany h=0,...,e—1,
and hence that f(q) = ¢°. O

END OF THE PROOF OF PROPOSITION EL6l Let K = k(q, f) C K. If the char-
acteristic of k is p, replacing f by a p™-th power of f, we can suppose that K/k(q)
is a Galois extension. So we set:

y=" JI ek

PEGal(K /k(q))

For infinitely many v € Cy,) such that x, is a prime, we have f** =1 modulo w,
for any wlv. Since Gal(K/K) acts transitively over the set of places w € Cy such
that w|v, this implies that " = 1 modulo 7,. Then Lemmas and [4.8 allow us
to conclude that y € ¢%. This proves that we are in the following situation: f is an
algebraic function such that |f[, = 1 for any w € Pg ; and that |f|,, # 1 for any

w € Pi - We conclude that f = cq®/" for some non-zero integers s, r and some
constant c in a finite extension of k. Since f** = 1 modulo w, for all w € Cj; such
that k, € p, we finally obtain that r = 1 and ¢ = 1. O

4.3. Proof of Theorem [4.2

Under the assumption of Theorem [£.2] Proposition [£.5] implies that the g¢-
difference module M becomes trivial over K((x)). To conclude we need to show
the following proposition:

ProproOsSITION 4.12. If a g-difference module M over A has zero v-curvature
modulo ¢,, for almost all v € C, then there exists a basis e of M () over K(x) such
that the associated q-difference system has a formal fundamental solution Y (z) €
GL, (K (())), which is the Taylor expansion at 0 of a matriz in GL,(K(x)), i.e.,
M becomes trivial over K(z).

REMARK 4.13. This is the only part of the proof of Theorem [.2] where we need
to suppose that the v-curvature are zero modulo ¢,, for almost all v € C.

PRrOOF. (¢f. [DVO02, Proposition 8.2.1]) Let e be a basis of M over K(x).
Applying a basis change with coefficients in K [ x] we can actually suppose that
Y,e = eA(x), where A(z) € GL, (K (z)) has no pole at 0 and A(0) is the identity
matrix. In the notation of the recursive relation defining the matrices G, ()
implies that they have no pole at 0. This means that Y (z) := > -, G[n)(0)2" is a
fundamental solution of the g-difference system associated to Mg (,) with respect
to the basis e.
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We recall the definition of the Gauss norm associated to an ultrametric norm

veP: _ _
> aat > aat sup |a;|,
for any - € K(x), : = ——.
Z bj‘r] Z bj‘r] v,Gauss sup |bJ |’U
We have:
LEMMA 4.14. Let v € Cx. We assume that |G1(2)|, causs < 1. Then the

following assertions are equivalent:

(1) The module M = (M,%,) has zero v-curvature modulo ¢,.

(2) For any positive integer n, we have !G[n} ‘uGauss <1.

REMARK 4.15. Let k, be the residue field of K modulo v and ¢, the reduction
of ¢ in k,, which is defined for almost all v € C. According to [Har10, §3], the
second assertion of the lemma above can be rewritten as: My, () has a natural
structure of iterated g,-difference module.

ProOF OF LEMMA [£.14l The only non-trivial implication is “1 = 2” whose
proof is quite similar to [DV02], Lemma 5.1.2]. The Leibniz Formula for d, and A,
implies that:

YL Ky—i( gi

G(n+1)ﬁv = Z < ;}) O'qv (dq (Gn”@'v))Gnv_i'
i=0 q

If M has zero v-curvature modulo ¢, then |G,

recursively that |G, |y causs < |¢U|£ﬁ], where we have denoted by [a] the integral

part of a € R, ie., [a] = maz{n € Z : n < a}. Since |[kylglv = |Pv]v and

v,Gauss < |®ulp. One obtains

|[m];|v e |¢v|1[)%], we conclude that:

‘Gm < 1.

(4.2) @

v,Gauss

This ends the proof of the lemma. O

We go back to the proof of Proposition The entries of Y(2) = >, 5o Gpn)(0)2"
verify the following properties:
e For any v € Py, the matrix Y'(x) is analytic at 0 and has infinite v-adic
radius of meromorphy (see Proposition [1.7).
e Since [[n]ql, g4y = 1 for any non-cyclotomic place v € Py, we have
|Gy ()] < 1, for almost all v € Py \ C. For the finitely many

v,Gauss —

v € Py such that |G1(z)|
that |G[m] (.T)’
e For almost all v € C and all positive integer m, |G[m] (:U)‘U Couss =1 (¢f.

Lemma [4.14]), while for the remaining finitely many v € C there exists a

constant C' > 0 such that |G[m] (x)’v Ganss < C™ for any positive integer
m.

This implies that:

v.Gauss > s there exists a constant C' > 0 such

iy o
v.Gauss < C™, for any positive integer m.

1
hsln—il)lop a Z 10g+ |G[m] (x)‘v,Gauss < 00.
veEP
To conclude that Y (z) is the expansion at zero of a matrix with rational entries, we
apply a simplified form of the Borel-Dwork criteria for function fields, which says
exactly that a formal power series having positive radius of convergence for almost
all places and infinite radius of meromorphy at one fixed place is the expansion of a
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rational function. The proof in this case is a slight simplification of [DV 02, Propo-
sition 8.4.1EL which is itself a simplification of the more general criteria [And04l,
Theorem 5.4.3]. We are omitting the details. O

4.4. Link with iterative ¢-difference equations

We denote by k, the residue field of K with respect to a place v € P and by
¢v the image of ¢ in k,, which is defined for all places v € P. For almost all v € Py
we can consider the k,(z)-vector space My, (o) = M ®4 ky(x), with the structure
induced by X,. In this way, for almost all v € P, we obtain a g,-difference module
M, (@) = (M, (), 5q,) over ky(z),

In the framework of iterative g-difference equations [Har10], Theorem is
equivalent to the following statement, which is a g-analogue of the conjecture stated
at the very end of [MvdPO03|:

COROLLARY 4.16. For a g-difference module M over A the following statement
are equivalent:

(1) The q-difference module M over A becomes trivial over K(z);

(2) It induces an iterative q,-difference structure over My, (), for almost all
veC;

(3) Itinduces a trivial iterative q,-difference structure over My, (4, for almost
allv eC.

PROOF. The equivalence 1 < 2 is a consequence of Lemma and Theorem
while the implication 3 = 2 is tautological.

Let us prove that 1 = 3. If the ¢-difference module M becomes trivial over
K (), then there exist an 4-algebra A’, of the form , obtained from A inverting
a polynomial and its g-iterates, and a basis e of M ® 4 A’ over A’, such that the
associated ¢-difference system is 0,(Y) = Y. Therefore, for almost all v € C,
M induces an iterative g,-difference module M;, () whose iterative g,-difference

equations are given by %(Y) = 0 for all n € N (¢f. [HarlO, Proposition
3.17)). ' 0

2The simplification comes from the fact, in this setting, that there are no archimedean norms.






CHAPTER 5

A unified statement

Let K be afield, g € K, g # 0,1 be a fixed element. If follows from Proposition
that we can suppose that K is finitely generated over the prime field. Let
M = (Mg (g, %) be a g-difference module over K(z). We recall the following
notations:

(A) If g is algebraic over Q, but not a root of unity, we are in the following situation.
We call @ the algebraic closure of Q inside K, Og the ring of integer of (), C the set
of finite places v of Q) and 7, € O¢ a v-adic uniformizer. For almost all finite place v
of @, the following are well defined: the order k,, as a root of unity, of the reduction
of ¢ modulo , and the positive integer power ¢, of m,, such that ¢, (1 — ¢"*)
is a unit of Og. The field K has the form Q(a,b), where ¢ = (a1,...,a,) is a
transcendence basis of K/Q and b is a primitive element of the algebraic extension
K/Q(a). Choosing conveniently the set of generators a,b and P(z) € Og [a, b, z],
we can always find a ¢-difference algebra A of the form

1 1
5.1 A=0¢g |a,b,x, ——, ——, ...
o1 @40 Py Plar)
and a ¥,-stable A-lattice M of Mg ,), so that we can consider the A/(¢,)-linear
operator

S s M @aAf(dy) — M @aAl(d),

that we have called the v-curvature of Mg (,y-modulo ¢,. Notice that Og/(¢,) is
not an integral domain in general.

(T) If q is transcendental over the prime field of K, then there exists a subfield k
of K such that K is a finite extension of k(q). We denote by C the set of places of
K that extend the places of k(q), associated to irreducible polynomials ¢, of k[g],
that vanish at roots of unity. Let x, be the order of the roots of ¢,. Let Ox be the
integral closure of k[¢] in K. Choosing conveniently P(z) € Ok|z], we can always
find a g¢-difference algebra A of the form:

1 1
5.2 =0 — -
( ) A K |T, P(I‘)7 P(ql’)’
and a Yg-stable A-lattice M of Mg ,), so that we can consider the A/(¢,)-linear
operator

S M @4 Af(¢y) — M @4 Al(b0),

that we have also called the v-curvature of Mg (,)-modulo ¢,. Notice that, once
again, Ok /(¢,) is not an integral domain in general.
(R) If q is a primitive root of unity of order r, we define C to be the set containing

only the trivial valuation v on K, ¢, = 0 and k, = x. Then there exists a poly-
nomial P(z) € Klz] such that the algebra A = K |, 55y, Bz } is o,-stable
and there exists a X,-stable A-lattice M of Mg ,), so that we can consider the
A/(¢,)-linear operator

EZ“ M @4y A/<¢v> — M ®4 A/(¢v)7
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that we will call the v-curvature of Mg ,)-modulo ¢,. Notice that this is simply
the r-th iterate of ¥y, namely Xy : M — M.

Then the main result of the first part of this work is:

THEOREM 5.1. A g-difference module M,y = (M (), Xq) over K(x) is triv-
ial if and only if there exist an algebra A, as above, and a ¥,-stable A-lattice M of
M () such that the map

E;“ M R4y A/(¢v) — M ®4 A/(¢U>?

is the identity, for any v in a cofinite non-empty subset of C.
In the case (A) we can take C to be a set of finite places of Q of density 1,
depending on Mg .-

PRroor. So the statement above coincide with Proposition [3.1if ¢ is a root of
unity, and with Theorem [3.§]if ¢ is algebraic, but not a root of unity. Finally, to
deduce the third case from Theorem[4.2] it is enough to remark that we can replace
k by its perfect closure. O

Of course, for a given module Mg (,) we can always find a g-difference algebra
A as above and a g-difference module M over A such that M ®4 K (2) & Mg(y)-
Also, if the statement above is true for a choice of A and one g¢-difference module
M over A, then it is true for all choice of A and of M. In the following chapters,
we will use this fact implicitly.
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CHAPTER 6

The intrinsic Galois group

6.1. Arithmetic characterization of the intrinsic Galois group

6.1.1. Definition. Let F be a g-difference field and Mz = (M£,%,) be a
g-difference module of rank v over F, in the sense of Chapter [Il We can consider
the family Constrz(Mzx) of g-difference modules containing M and closed un-
der direct sum, tensor product, dual, symmetric and antisymmetric products (see
§1.1.1). We will denote by Constrz(Mgz) the collection of constructions of linear
algebra of the F-vector space Mx, i.e., the collection of underlying vector spaces
of the family Constrz(Mz). Notice that GL(Mz) acts naturally, by functoriality,
on any element of Constrz(Mz).

DEFINITION 6.1. The intrinsic Galois groulﬂ Gal(Mx,nF) of Mx is the sub-
group of GL(M ) which is the stabilizer of all the g-difference submodules over F
of any object in Constrz(Mzx).

In the definitions above and below, the term “stabilizer” has to be understood
in the functorial sense of [DG70L I1.1.36]. For instance, Gal(Mx,nr) is a functor
from the category of F-algebras to the category of groups, that associates to any
F-algebra S, the subgroup of GL(Mz) ® S that stabilizes Nz ® S, for all the g-
difference submodules Nz over F of any object in Constrz(Mgz). By [DGTO0,
I1.1.36], this functor is representable and thus defines an algebraic group scheme
over F.

Notice that in positive characteristic p, the group Gal(Mz,nx) is not neces-
sarily reduced. An easy example is given by the equation y(qz) = ¢'/Py(x), whose
intrinsic Galois group is p, (cf. [vdPRO7, §7]).

The group Gal(Mx,nz) is a tannakian object. In fact, the full tensor category
(M#)® generated by Mz in Dif f(F,o,) is naturally a tannakian category, when
equipped with the forgetful functor

nF : (Mz)® — {F-vector spaces}.

In the notation of the functor Aut®(nx) corresponds to the algebraic group
Gal(Mz,nF). Moreover, we have the following proposition.

PROPOSITION 6.2. Let w: (M#)® — Vectres be a neutral fiber functor. The
algebraic group schemes Aut®(w) ® F and Gal(Mz,nx), defined over F, are iso-
morphic over the algebraic closure F of F.

PROOF. In the notations of the affine scheme Isom®(£ Qxoq F,mF) is
representable by a non-zero finitely generated F-algebra. Since F is algebraically
closed, the previous algebraic scheme has a point in F. This ends the proof. (|

We will come back on the tannakian point of view in Part [

REMARK 6.3. We recall that the Chevalley theorem, that also holds for non-
reduced groups (c¢f. [DGT0, 11, §2, n.3, Corollary 3.5]), ensures that Gal(Mx,nr)

1n the literature, the intrinsic Galois group is also called the generic Galois group of M £.
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44 6. THE INTRINSIC GALOIS GROUP

can be defined as the stabilizer of a rank one submodule (which is not necessarily a
g-difference module) of a ¢-difference module contained in an algebraic construction
of Mz. Nevertheless, it is possible to find a line that defines Gal(Mx,nF) as
the stabilizer and that is also a g¢-difference module. In fact the noetherianity of
GL(Mz) implies that Gal(Mx,nr) is defined as the stabilizer of a finite family
of ¢-difference submodules WJ(IE) = (W](_-Z)7Eq) contained in some objects Mgf-) of
(M#£)®. Tt follows that the line

Ly = Adm® W5 (@ Wj;')) C Adim @ W3 (e? M}i))

is a g-difference module and defines Gal(M x,nr) as a stabilizer (¢f. [Kat82l proof
of Proposition 9]).

In the sequel, we will use the notation Stab(W}i), 1) to say that a group is the
stabilizer of the set of vector spaces {W](_-z)}l

6.1.2. Main result. From now on we consider the particular case F = K (),
with the notations introduced in Chapter 5] Let G be a closed algebraic subgroup
of GL(Ms)), such that G = Stab(Lg () for some line Ly (,) contained in an
object Wi () of (MK(I)>®. For a g-difference algebra A, a ¥,-stable A-lattice M
of M, determines an A-lattice L of Lg(,) and an A-lattice W of W (,). The
latter is the underlying space of a g-difference module W = (W, X,) over A.

DEFINITION 6.4. Let C be a cofinite non-empty subset of C and (Ay),ce be a
family of A/(¢,)-linear operators acting on M ® 4.A/($,). We say that the algebraic
group G C GL(Mf,)) contains the operators A, modulo ¢, for almost all v € C
if for almost all, and at least one, v € C the operator A, stabilizes L ® 4 A/(¢y)

inside W @ 4 A/(dy):
A, € StabA/(¢v)(L Q@4 A/ ().

REMARK 6.5. First of all, starting from now, we will always use the phrase “for
almost all” to mean “for almost all, and at least one”. In this way the statements
will be correct even in the case (R) (see Chapter [f)).

As in [DV02] 10.1.2], one can prove that the definition above is independent
of the choice of A, M and L ).

The main result of this section is the following;:

THEOREM 6.6. The algebraic group Gal(Mg (z), MK (z)) 5 the smallest closed
algebraic subgroup of GL(M (z)), that contains the operators X5 modulo ¢,, for
almost all v € C.

REMARK 6.7. ¢ The noetherianity of GL(M ) implies that the small-
est closed algebraic subgroup of GL(Mg (,)) that contains the operators
¥5v modulo ¢,, for almost all v € C, is well-defined. Theorem |6.6{has been
proved in [Hen96, Chapter 6] when ¢ is a root of unity and in [DV02]
when ¢ is algebraic and K is a number field.

e Under the assumption (A) (see Chapter [5), the statement above is still
true if we replace C by a set of finite places of @) of density 1. This remark
applies to all statements in this and the next chapter.

A part of Theorem is easy to prove:

LEMMA 6.8. The algebraic group Gal(M g (4, 1k () contains the operators DIl
modulo ¢, for almost all v € C.
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PROOF. The statement follows immediately from the fact that Gal(M g (2), N5 ()
can be defined as the stabilizer of a rank one g-difference module in (Mg (;))®,
which is a fortior: stable by the action of 3f». O

COROLLARY 6.9. Gal(Mg ), MKk ()) = {1} if and only if Mg,y is a trivial
q-difference module.

PROOF. Because of the lemma above, if Gal(M g (4), Mk () = {1} is the triv-
ial group, then ¥%* induces the identity on M ®4 A/(¢y), for almost all v € C.
Therefore Theorem implies that Mg ;) is trivial. On the other hand, if Mg,
is trivial, then it is isomorphic to the ¢-difference module (K" @k K(x),1®0y). It
follows that the intrinsic Galois group Gal(M g (), Nk () is forced to stabilize all
the lines generated by vectors of the type m ® 1, with m € K". Therefore it is the
trivial group. O

Now we are ready to give the proof of Theorem whose main ingredient is
Theorem The argument is inspired by [Kat82l §X].

PROOF OF THEOREM [6.6l Lemma says that Gal(Mg (), Nk () contains
the smallest subgroup G of GL(M[,)), that contains the operator X5 modulo ¢,,
for almost all v € C. Let Lk (,) be a line contained in some object of the category
(Mg (2))®, that defines G as a stabilizer. Then there exists a smaller g-difference
module Wy (,) over K(x) that contains Lk (,y. Let L and W = (W,%;) be the
associated A-modules. Any generator m of L as an A-module is a cyclic vector for
W and the operator X5+ acts on W ®4.A4/(¢,) with respect to the basis induced by
the cyclic basis generated by m via a diagonal matrix. Because of the definition of
the ¢-difference structure on the dual module W* of W, the group G can be define
as the subgroup of GL(Mg,)) that fixes a line L' in W* ® W, i.e., such that %/
acts as the identity on L' ® 4 A/(¢,), for almost all v € C. It follows from Theorem
that the minimal submodule W’ that contains L’ becomes trivial over K(z).
Since the tensor category generated by W}((I) is contained in (Mg (,))®, we have
a functorial surjective group morphism

Gal(M gk (2) MK (z)) — GalWie(4), Nic(2)) = {1}-

We conclude that Gal(M g (z), MK (2)) acts trivially over W}{(w), and therefore that
Gal(Mg (2); MK (z)) i contained in G. O

COROLLARY 6.10. Theorem and Theorem are equivalent.

Proor. We have seen in the proof above that Theorem implies Theorem
Corollary [6.9] gives the opposite implication. O

6.1.3. Finite intrinsic Galois groups. We deduce from Theorem the
following description of a finite intrinsic Galois group:

COROLLARY 6.11. The following facts are equivalent:

(1) There exists a positive integer r such that the q-difference module M =
(M,X,) becomes trivial as a g-difference module over K(q,t), with ¢" = g,
tr = 2.
(2) There ezists a positive integer v such that, for almost all v € C, the mor-
phism 57 induces the identity on M ®4 A/(¢v)-
(3) There exists a q-difference field extension F/K(x) of finite degree such
that M becomes trivial over F.
(4) The (intrinsic) Galois group of M is finite.
In particular, if Gal(Mk (), MK (z)) 5 finite, it is necessarily cyclic (of order r, if
one chooses r minimal in the assertions above).
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PrRoOF. The equivalence “1 < 2” follows from Theorem applied to the
g-difference module (M ® K(q,t),X, ® og), over the field K(q,t).

If the intrinsic Galois group is finite, the reduction modulo ¢, of X¢* must be a
cyclic operator of order dividing the cardinality of Gal(M g (4, MK (z)). So we have
proved that “4 = 2”. On the other hand, assertion 2 implies, by Theorem that
there exists a basis of M ,) such that the representation of Gal(M g (x), MK (2)) 18
given by the group of diagonal matrices, whose diagonal entries are r-th roots of

unity.
Of course, assertion 1 implies assertion 3. The inverse implication follows from
the Corollary applied to a cyclic basis of Mg (y)- O

6.2. Intrinsic Galois group of a ¢-difference module over C(z), for
q#0,1

We deduce from the previous section a curvature characterization of the intrin-
sic Galois group of a g-difference module over C(x), for ¢ € C \ {0, 1}E|

Let Mcz) = (Mc(a), Xq) be a g-difference module over C(x). We can consider
a finitely generated extension K of Q such that there exists a g-difference module
Mk (o) = (MK (), Xq) satisfying Mc(z) = Mk (2) @k (2) C()-

With an abuse of language, Theorem [5.1] can be rephrased as:

THEOREM 6.12. The g-difference module Mg,y = (Mc(a), Xq) is trivial if and
only if there exists a finitely generated extension K of Q, a set of places C as in
Chapter@ and a q-difference module M () such that Mc(y) = M (z) @k (2) C(z)
and Mg ) has zero v-curvature, for almost all v € C.

We can of course define as in the previous sections an intrinsic Galois group
Gal(Mc(zy,Nc(e))- A noetherianity argument, that we have already used several
times, shows the following:

PROPOSITION 6.13. In the notation above we have:
Gal(Mc(z), Nc(z)) C Gal(M g (), Nk (2)) @K () C(T).
Moreover there exists a finitely generated extension K' of K such that
Gal(Mg(2) @k (2) K'(2),1K7(2)) @K (2) C(2) = Gal(Me(a), Mc(a))-

Choosing K large enough, we can assume that K = K’, which we will do
implicitly in the following informal statement. We can deduce from Theorem [6.12

THEOREM 6.14. The intrinsic Galois group Gal(Mcg(z),Nc(z)) is the smallest
algebraic subgroup of GL(Mg(y)) that contains the v-curvature of the q-difference
module Mg (), for K large enough and for almost all v € C.

2All the statements in this subsection remain true if one replace C with any field of charac-
teristic zero.



CHAPTER 7

The parametrized intrinsic Galois group

7.1. Parametrized intrinsic Galois groups

We recall some facts from Chapter 2| Let F be a g-difference-differential field
of characteristic zero, that is, an extension of K(z) equipped with an extension of
the g-difference operator o, and a derivation 0 commuting with ¢,. For instance,
the g-difference-differential field (K(z), 04, 2-L) satisfies these assumptions.

We can define an action of the derivation J on the category Dif f(F, o), twist-
ing the g-difference modules with the right F-module F[0]<; of differential opera-
tors of order less or equal than one. We recall that the structure of right F-module
on F[0]<; is defined via the Leibniz rule, i.e.,

O.X = X0+ 9()), for any A € F.

Let V be an F-vector space. We denote by Fy(V) the tensor product of the right
F-module F[0]<1 with the left F-module V:

Fa(V) := FlOl<1 @% V.

We will write v for 1®@v € Fy(V) and 9(v) for d®@v € Fy(V), so that av+bd(v) :=
(a +b0) @v, for any v € V and a + b0 € F[0]<1. We endow Fy(V) with a left
F-module structure such that if A € F:

A0(v) = d(Av) — (N, for allv € V,

which means that A(0 ® v) = 9 ® A — 1 ® d(A)v. This construction comes out
of the Leibniz rule 9(Av) = Ad(v) + O(A)v, which justifies the notation introduced
above.

DEFINITION 7.1. The prolongation functor Fp is defined on the category of
F-vector spaces as follows. It associates to any object V' the F-vector space Fy(V).
If f:V — W is a morphism of F-vector space then we define

Fa(f): Fa(V) — Fa(W),

setting Fy(f)(9*(v)) = 9*(f(v)), for any i = 0,1 and any v € V (using the conven-
tion that ° is the identity).
The prolongation functor Fj restricts to a functor from the category Dif f(F, o,)
to itself in the following way:
(1) f Mg = (Mr,%,) is an object of Dif f(F,o,) then Fo(My) is the ¢-
difference module, whose underlying F-vector space is Fp(Mr) = F[0]<1®
Mz, as above, equipped with the g-invertible o4-semilinear operator de-
fined by X,(9(m)) := 8"(X,(m)) for i =0, 1.
(2) If f € Hom(Mx,Nx) then Fy(f) is defined in the same way as for F-
vector spaces.

REMARK 7.2. This formal definition comes from a simple and concrete idea.
Let Mx be an object of Dif f(F,o,). We fix a basis ¢ of Mz over F such that

47
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Y,e =eA. Then (e,0(e)) is a basis of Fp(Mxr) and

Yq(e, 0(e)) = (e,0(e)) (’3 8214> .

In other terms, if 0,(Y) = A7'Y is a ¢-difference system associated to Mz with
respect to a fixed basis e, the ¢-difference system associated to Fy(M z) with respect
to the basis e, d(e) is:

0(Z) = (Aol af_f)) Z = <61 af)_lz.

If Y is a solution of 0,(Y) = A7'Y in some g¢-difference-differential extension of F

then we have:
ay Y\ A7 9(A7Y) Yy Y
%\y o)/ \o AL Y 0)°

in fact the commutation of o, and 0 implies:
0,(0Y) =0(0,Y)=0(A'Y) =AY +9(A1) Y.

Let V be a finite dimensional F-vector space. We denote by Constr-(V) the
smallest family of finite dimensional F-vector spaces containing V' and closed with
respect to the constructions of linear algebra (i.e., direct sums, tensor product,
symmetric and antisymmetric product, dual. See and the functor Fy. We
will say that an element Constr?(V) is a construction of differential linear algebra
of V. By functoriality, the linear algebraic group GL(V') operates on Constrd-(V).
For example g € GL(V) acts on Fy(V) through ¢(9*(v)) = 9"(g(v)), for i = 0, 1.

If we start with a g¢-difference module Mz = (Mr,%,) over F, then every
object of Constr%(Myz) has a natural structure of g-difference module (see also
. We will denote Constrd-(Mz) the family of g-difference modules obtained
in this way.

DEFINITION 7.3. We call parametrized intrinsic Galois group of an object
Mz = (Mgr,%,) of Dif f(F,o,) the group defined by

Gal’( Mg, nF) = {g € GL(Mz) : g(Nr) C Nz for all sub-g-difference module
Nz = (Nz,%,) contained in an object of Constr?_-(/\/l;)} C GL(Mg).

Similarly to §6} one has to understand the definition above in a functorial sense.
More precisely, Gal?( Mz, nF) is a functor from the category of 9-F-algebras to the
category of groups, that associates to any F-algebra S, the subgroup of GL(Mx)®S
that stabilizes Nr ® S, for all the g-difference submodules Nz over F of any object
in Constr%(/\/l 7). The proposition below shows that this functor is representable
and thus defines a differential algebraic group over F.

PROPOSITION 7.4. The group Gal® (M x,nz) is a reduced differential JF-subgroup

REMARK 7.5. We recall that in the notations of §2.1.2] the ring of differential
coordinates F {Y, ﬁ}a of GL(Mx) = GL,(F) for some v is defined as follows.
We denote by F{Y }5 the ring of differential polynomials in the 9-differential inde-
terminates Y = {y; ; : 4,5 = 1,...,v}. The differential Hopf-algebra F {Y, -~}
of GL,(F) is obtained from F{Y}s by inverting detY. Now, Proposition
says that the functor Gal®(Mx,nF) is represented by a O-F-algebra, quotient of
F {Y, ﬁ} » Dby some radical 0-ideal.
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ProoF. In the notations of let us denote by D : F-algebras — 0-F-algebras
the left adjoint of the forgetful functor that attach to any J-F-algebras its under-
lying F-algebra. By [DG70, I1.1.36], the functor Gal®(Mz,nx) o D is repre-
sentable by a F-algebra S. Then, D(S) represents Gal?(M z,n7). Moreover, since
Gal®(Mz,nz) is a group functor, D(S) is an Hopf algebra over a field of char-
acteristic zero. Then, D(S) is automatically reduced by Cartier’s theorem (see
[Wat79al §11.4]). O

Following the approach of Chapter [2, we denote by (M#)®:9 the full abelian
tensor subcategory of Dif f(F,o,) generated by Mx and closed under the prolon-
gation functor Fy. Then (Mz)®? is naturally a differential tannakian category,
when equipped with the forgetful functor

nF : (MK(1)>®"9 — {F-vector spaces}.

The functor Aut®?(nz) defined over the category of F-algebras coincides with
Gal®(Mz,nz). Moreover, we have the following result.

PROPOSITION 7.6. Let F be a q-difference differential field and let Mz be a q-
difference module over F. Letw : (Mxz)®? — Vectzoq be a neutral differential fiber
functor. Then, the differential algebraic groups Aut®?(w)® F and Gal®( Mz, nF),
defined over F, are isomorphic over the differential closure F of F.

Proor. By [GGO13| Proposition 4.28], the affine differential scheme I'som®?(w® req
F,nr) is representable by a non-zero differential finitely generated F-algebra. Since

Fis differentially closed, the previous differential algebraic scheme has a point in
F. This ends the proof. O

Once again, we will come back on this point of view in Part [4]

For further reference, we recall (a particular case of) the Ritt-Raudenbush
theorem (c¢f. [Kap57, Theorem 7.1]):

THEOREM 7.7. Let (F,0) be a differential field of characteristic zero. If R is
a reduced finitely generated 0-F-algebra then R is O-noetherian.

This means that any ascending chain of radical differential ideals (i.e., radical
O-stable ideals) is stationary or equivalently that every radical 0-ideal has a finite
set of generators as radical d-ideal (which in general does not mean that it is a
finitely generated ideal). Theorem [7.7] combined with Proposition [7.4] asserts that
the parametrized intrinsic Galois group as well as any GL, (F) are d-noetherian.

The 0-noetherianity of GL, (F) implies the following:

COROLLARY 7.8. The parametrized intrinsic Galois group Gal®(Mx,nF) can
be defined as the stabilizer of a line in a construction of differential algebra of M x.
This line can be chosen so that it is also a g-difference module in the category

(MF)®:9.

PRrOOF. Since GL(Mx) is 0-noetherian, any descending chain of reduced dif-
ferential sub-schemes in GL(Mr) is stationary. Then, let {W(i);i € Ih}h be an as-
cending chain of finite sets of ¢-difference submodules contained in some elements
of Constr?(M K(z)) S0 that any g-difference submodule contained in a construc-
tion of linear differential algebra is contained in some {W(i);i c Ih}. Let G, be
the differential subgroup of GL(Mz) defined as the stabilizer of {W;i € I}.
By Cartier’s theorem, the G, are reduced (see previous proposition). Then, the
descending chain of differential algebraic subgroups G, of GL(My) is stationary.
This proves that Gal?(Mx,nz) is the stabilizer of a finite number of g-difference
submodules W) i € I, contained in some elements of Constra(./\/l K(x))- It follows
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from a standard argument of linear algebra that Gal®(Mz,nz) is the stabilizer of
the maximal exterior power of the direct sum of the W()’s (see Remark . g

Let Gal(Mx,nr) be the intrinsic Galois group defined in the previous chapter.
We have the following inclusion, that we will characterize in a more precise way in
the next pages:

LEMMA 7.9. Let Mz be an object of Dif f(F,o0,). The following inclusion of
differential algebraic groups holds

Ga’la(M]:v 77.7'-) C Ga‘l(M}-v 7].7'-)'

REMARK 7.10. The inclusion above means that, for all 9-F-algebra S, we have
Gal®(Mz,n7)(S) C Gal(Mz,n7)(n(S)), where n(S) is the underlying F-algebra
of S. We would like to underline the fact that differential algebraic groups are not
algebraic groups, while algebraic groups may be considered as differential algebraic
groups (whose defining equations are polynomials-see also . In particular,
the parametrized intrinsic Galois group is not an algebraic subgroup of the intrinsic
Galois group but only a differential algebraic subgroup. Later, for F = K(z), we
will prove that Gal?(Mx,nF) is actually Zariski dense in Gal(Mz,nx).

PROOF. We recall, that the algebraic group Gal(Mx,nx) is defined as the
stabilizer in GL(Mx) of all the subobjects contained in a construction of linear
algebra of M . Because the list of subobjects contained in a construction of
differential linear algebra of M z includes those contained in a construction of linear
algebra of Mz, we get the claimed inclusion. O

7.2. Characterization of the parametrized intrinsic Galois group by
curvatures

From now on we focus on the special case F = K(z), where K is a finitely
generated extension of Q. We endow K (x) with the derivation 0 := x%, that
commutes with o,. We refer to Chapter [5] for notations.

Let Mg (o) = (Mg (2), Xq) be a g-difference module. The differential version of
Chevalley’s theorem (cf. [Cas72], Proposition 14|, [MO10], Theorem 5.1]) implies
that any closed differential subgroup G' of GL(Mg ;) can be defined as the sta-
bilizer of some line Ly (,) contained in an object Wy, of (MK(JD))@"?. Because
the derivation 0 does not modify the set of poles of a rational function, the lattice
M of M () determines a ¥,-stable A-lattice of all the objects of (M (;))®?. In
particular, the A-lattice M of M ,) determines an A-lattice L of Lg(,) and an
A-lattice W of Wk (,). The latter is the underlying space of a g-difference module
W = (W,%,) over A.

DEFINITION 7.11. Let C be a non-empty cofinite subset of C and (Ay),cc be a
family of A/(¢,)-linear operators acting on M@ 4.A/(¢p,). We say that a differential

algebraic group G' = Stab(L g (z)) over K(x) contains the operators A, modulo ¢,,

for almost all v € C, if for almost all (i.e. for almost all and at least one) v € C the
operator A, stabilizes L ® 4 A/(¢,) inside W ® 4 A/(dv):

A, € Stabayg,)(L®a Al(d0)).

REMARK 7.12. The differential Chevalley’s theorem and the d-noetherianity of
GL(Mk () imply that the notions of a differential algebraic group containing the
operators A, modulo ¢,, for almost all v € C, and the smallest closed differential
subgroup of GL(Mk(,) containing the operators A, modulo ¢,, for almost all
v € C, are well defined. In particular they are independent of the choice of A, M
and Ly (y) (See [DV02] 10.1.2] and Remark.
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The main result of this section is the following:

THEOREM 7.13. The differential algebraic group Gala(MK(I),nK(z)) is the
smallest closed differential algebraic subgroup of GL(Mk ) that contains the op-
erators %57 modulo ¢, for almost all v € C.

ProOOF. The lemmas below plus the differential Chevalley theorem allow to
prove Theorem [7.13[in exactly the same way as Theorem O

LEMMA 7.14. The differential algebraic group Gala(MK(z), Nk (z)) contains the
operators X5 modulo ¢, for almost all v € C.

Proor. The statement follows immediately from the fact that Gala(MK(m), NK (z))
can be defined as the stabilizer of a rank one g¢-difference module in (M K(I)>®’8,
which is a fortior: stable under the action of ¥7v.

LEMMA 7.15. Gala(MK(m),nK(I)) = {1} if and only if Mgy is a trivial q-
difference module.

PROOF. The proof is analogous to the proof of Corollary [6.9] It suffices to
replace (Mg (;))® with (Mg (4))®?. O

We obtain the following:

COROLLARY 7.16. The parametrized intrinsic Galois group Gal® (Mg (z), Nk (x))
is a Zariski dense subset of the algebraic intrinsic Galois group Gal(M g (z), Nk (z))-

ProOF. We have seen in Lemma that Gala(MK(z 1K (z)) i a subgroup
of Gal(Mp (), MK (x))- By Theorem [7.13| (resp. Theorem [6.6) we have that the
intrinsic Galois group Gala(MK(m),nK(m)j (resp. Gal(Mg (), MK (z))) is the small-
est closed differential subgroup (resp. closed algebraic group) of GL(Mg,)) that
contains the operators X7 modulo ¢,, for almost all v € C. This immediately
implies the Zariski density. (]

EXAMPLE 7.17. The logarithm is solution both a g-difference and a differential

sten 1 logq 0 1
van= (1 ) v, v (0 1) v

It is easy to verify that the two systems are integrable in the sense that do,Y (z) =
040Y (z) (and therefore that the induced condition on the matrices of the systems
is verified).

By iterating the g-difference system for any n € Z~y we obtain:

Y(g"e) = (é ”kl’gq> Y(2).

This implies that the parametrized intrinsic Galois group is the subgroup of G, ()
defined by the equation dy = 0. This coincides with the group G, x, which is
coherent with the integrability criteria in [HHSO08]. For more precise comparison
results with the theory developed in [HSO08], we refer to Part

7.3. Parametrized intrinsic Galois group of a ¢-difference module over
C(z), for ¢ #0,1

We conclude with some remarks on complex g-difference modules. Let Mc(,) =
(Mc(z), Xq) be a g-difference module over C(z). We can consider a finitely gener-
ated extension of K of Q such that there exists a g-difference module M (,) =
(Mg (z), Xq) satisfying M)y = Mg(@) @k (@) C(x). We can of course define, as
above, two parametrized intrinsic Galois groups, Gala(./\/lK(x), Nk («)) and Gala(/\/lc(z), NC(x))-
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A (differential) noetherianity argument, that we have already used several times,
on the submodules stabilized by those groups shows the following:

ProprOSITION 7.18. In the notations above, we have:

Gal®(Me(a), @) € Gal? (Mg (o), k(@) @k (@) Cla).
Moreover there exists a finitely generated extension K' of K such that
Gal’ (Mg (z) @k (@) K (), 1K () @i () Cla) = Gal® (Me(a) s Nc(a))-
We can informally rephrase Theorem [7.13]in the following way:

THEOREM 7.19. The parametrized intrinsic Galois group Gala(./\/t(c(w),n@(z))
is the smallest differential algebraic subgroup of GL,(Mc(y)) that contains a non-
empty cofinite set of curvatures of the q-difference module My ().

7.4. The example of the Jacobi Theta function

Consider the Jacobi Theta function
@(J?) — Z q—n(n—l)/an’
nez

which is solution of the g-difference equation
O(qz) = qzO(z).

Iterating the equation, one proves that © satisfies y(¢"x) = ¢ TD/2z"y(x), for
any n > 0. Therefore we immediately deduce that the intrinsic Galois group of the
rank one ¢-difference module Mg = (K (2).0,%,), with

Yy K@) — K(z)0

f(@)®  +— f(qw)qx@,

is the whole multiplicative group G,, x(»)- As far as the parametrized intrinsic
Galois group is concerned we have:

PROPOSITION 7.20. The parametrized intrinsic Galois group Gal® (./\/l@, nK(x))
is defined by 0(0(y)/y) = 0.

PrOOF. For almost any v € C, the reduction modulo ¢, of ¢ (e+1)/2grv jg
the monomial v, which satisfies the equation 0 (8;&1) = 0. This means that

parametrized intrinsic Galois group Gal? (M@,nK(:ﬂ)) is a subgroup of the differ-

ential algebraic group defined by 0 (%) = 0. In other words, the logarithmic
derivative
Gm — Gq

, Oy
Y Y

sends Gal? (M@,nK(x)) into a subgroup of the additive group G, k(. defined by
the equation 0z = 0. This is nothing else that G, x, whose proper subgroup is only
{0}. If the image by the logarithmic derivative of Gal? (Me, Nk (.)) were {0}, then
the curvatures should be constant with respect to 0. It is not the case, which ends
the proof. O

Let us consider a norm | | on K such that |¢| # 1. The differential dimension of
the subgroup 0 (%) = 0 is zero. We will show in Partthat this means that © is

differentially algebraic over the field of rational functions C () with coefficients in
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the differential closure C'g of the elliptic function over K*/q”. In fact, the function

© satisfies
o0\ _00 |
()= 5+
which implies that 9 (22) is an elliptic function. Since the Weierstrass function is
differentially algebraic over K (z), the Jacobi Theta function is also differentially
algebraic over K(x).
Notice that, if ¢ is transcendental over Q, the derivation diq naturally comes
into the picture. Since it intertwines with o, in a relatively complicate way, the
study of this situation requires a specific approach. See [DVH11].
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CHAPTER 8

Meromorphic solutions and comparison theorems

In the first section of this chapter, we remind that a ¢-difference system with
coefficients in K (z), where K is a finitely generated extension of Q, together with
a norm [.|, such that |g| # 1, admits a basis of meromorphic solutions with respect
to |.|. These solutions are linearly independent over the field of elliptic functions
over the torus K*/q”, denoted Cg. Letting M (z) be a g-difference module cor-
responding to the initial ¢-difference system, this allows us to construct a neutral
differential fiber functor for (M (,) ® Cg(z))®? (see for notations and def-
initions). The second section of this chapter is devoted to the comparison of the
distinct parametrized Galois groups attached to the g-difference module Mg ().
Corollary together with Proposition proves the differential analogue of
[CHSO08| Theorem 3.1], i.e., that all the differential algebraic group schemes con-
sidered are forms of the same differential algebraic group scheme. As a corollary, we
get that the differential algebraic relations satisfied by the meromorphic solutions
of the g-difference system are encoded in the differential algebraic relations satisfied
by the curvatures (see Corollary 8.13).

8.1. Meromorphic solutions and differential fiber functor

8.1.1. Classical functions as solutions of g-difference equations. For
a fixed complex number ¢, with |g| # 1, Praagman proves in [Pra86]| that every
linear g-difference equation with meromorphic coefficients over C* admits a basis of
solutions, meromorphic over C*, linearly independent over the field C'r of elliptic
functions, i.e., the field of meromorphic functions over the elliptic curve E := C*/¢~.
The reformulation of his theorem in the tannakian language is that the category of
g-difference modules over the field of meromorphic functions on the punctured plane
C* is a neutral tannakian category over Cg, i.e., admits a fiber functor into Vectc,, .
We give below the intrinsic analogue of this theorem for g-difference modules over
K(x) where K is a valued field of characteristic zero.

Let K(z) be a g-difference field, d = x%, | | a norm on K such that |¢| > 1
and C an algebraically closed field extension of K, complete with respect to | |. E|
Here are a few examples to keep in mind:

e K is a subfield of C equipped with the norm induced by C and C = C;

e K is finite extension of a field of rational functions k(q), with % of char-
acteristic 0, equipped with the ¢~ !-adic norm;

e K is a finitely generated extension of Q and ¢ is an algebraic number, nor
a root of unity: in this case there always exists a norm on the algebraic
closure @ of Q in K such that |g| > 1, that can be extended to K. The
field C is equal to C if the norm is archimedean.

IWhat follows is of course valid also for the norms for which lgl < 1 and can be deduced
by transforming the g-difference system o4(Y) = AY in the ¢~ !-difference system o,—1(Y) =

O'q71 (Ail)Y.

q

57



58 8. MEROMORPHIC SOLUTIONS AND COMPARISON THEOREMS

We call holomorphic function over C* a power series f = > a,z"™, with
coefficients in C', that satisfies

lim |a,|p" =0 and lim |a,|p™ =0, for all p > 0.
n—oo n——oo

The holomorphic functions on C* form a ring Hol(C*). Its fraction field Mer(C*)
is the field of meromorphic functions over C*.

PROPOSITION 8.1. Every q-difference system o,(Y) = AY, with A € GL, (K (z))
(and actually also A € GL,(Mer(C*))), admits a fundamental solution matriz with
coefficients in Mer(C*), i.e., an invertible matriz U € GL,(Mer(C*)), such that
oq,(U) = AU.

REMARK 8.2. Notice that the field of o4-constants of Mer(C*) is the field Cg
of elliptic functions over the torus E = C*/¢%. The proposition above is equivalent
to the global triviality of the pull back over C* of the fiber bundles on elliptic curves.
A more explicit construction of meromorphic solutions of g-difference equations has
been given recently by T. Dreyfus [Drel4].

PrOOF. We are only sketching the proof. The Jacobi theta function
Oy(e) = 3 g "D,

nez

is an element of Mer(C*). It is solution of the ¢-difference equation

y(qz) = quy(x).
We follow [Sau00]. Since
e for any ¢ € C*, the meromorphic function O(cz)/O4(x) is solution of
y(qz) = cy(x);
e the meromorphic function 20; (z)/0,(x) is solution of the equation y(qz) =
y(@) +1;
we can write a meromorphic fundamental solution to any regular singular system
at 0, and, more generally, of any system whose Newton polygon has only one slope
(cf. for instance [Sau00], [DVRSZ03] or [Sau04bl §1.2.2]). For the “pieces” of
solutions linked to the Stokes phenomenon, all the techniques of g-summation in the
case q € C, |g| > 1, apply in a straightforward way to our situation (c¢f. [Sau04al
§2, §3]) and give a fundamental solution meromorphic over C*. (]

8.1.2. Differential fiber functors. We consider the ¢-difference-differential
field (C’(x), 04,0 = x%), where C'is a complete algebraically closed normed exten-
sion of (K,| |), with |¢| > 1. Notice that both Hol(C*) and Mer(C*) are stable
under the action of o, and 0. Because o, and 0 commute, the derivation 0 sta-
bilizes Cg inside Mer(C*), so that Cg is naturally endowed with a structure of
g-difference-differential field. Let 513 be a differential closure of Cr with respect
to J (cf. [CS06, §9.1]). We still denote by 0 the derivation of Cr and we extend
the action of o4 to Cp by setting 04lg, = id. Let Cp(x) (resp. Cg(z)) denote the
field C(z)(Cg) (resp. C(z)(Cr)).

Let Mg, be a g-difference module over K (x). As usual, for any g-difference
field extension F/K(x) we will denote by Mr the g-difference module over F
obtained from Mg ;) by scalar extension. Thanks to Proposition [8.1} we are able
to construct a weak parametrized Picard-Vessiot ring for Mc, ;) (see Definition

29).

2Notice that Cpg (resp. Cg) and C(z) are linearly disjoint over C. The field Cg(z) is the
intrinsic analogue of the field G(z) in [HSO8|, p. 340].
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LEMMA 8.3. Let Mc, () be a q-difference module over Cg(x) and let og(Y) =
AY, with A € GL,(Cg(x)), be a g-difference system attached to Mc, (). By
Proposition [8.1], let U € GL,(Mer(C*)) be a fundamental solution matriz. Then,
the ring Rp := Cg(x){U, de%([])}a is a weak parametrized Picard-Vessiot ring for
M, (z) over Ce(x) and an integral domain.

ProOF. Notice that Ry C Mer(C*) and that Cp C R} C Mer(C*)% =
Cg. O

8.2. Constructions of the fiber functors

We remind the notations introduced so far and we refer to for notions on
Picard-Vessiot ring. Let K be a field and | | a norm on K such that |¢| > 1. We
will be dealing with groups defined over the following fields:

C' = smallest algebraically closed and complete extension of the normed field (K, | |);
Cg = field of constants with respect to o of Mer(C*);

Cp = algebraic closure of Cp;

Cg = differential closure of Cg.

We remind that any g-difference system Y (¢z) = A(z)Y (z), with A(z) € GL, (K (z)),
has a fundamental solution in Mer(C*) (cf. Proposition [8.1).

Let Mg (4 be a g-difference module over K (z). By [DVH11], Proposition 1.16],
one can attach to the g-difference module M¢(,), a weak parametrized Picard-
Vessiot ring R, which is also o,-simple and satisfies R’ = C' (This will be crucial
in Corollary 8.9). By Lemmal[8.3] one can also consider the weak parametrized ring
Rp, generated by meromorphic solutions of Mg, (,). Finally, if we denote by Cr
a differential closure of Cr, we can apply the constructions of [HS08], to attach to
the g-difference module M5 () @ parametrized Picard-Vessiot ring R. Since Cg
is differentially closed, R°« = Cg by [HS08| Corollary 6.15].

By Proposition [2.9] each of these weak parametrized Picard-Vessiot rings yields
to a neutral differential fiber functor for (Me())®?, (M) 7, (M@E(z)>®’8.
When restricted to the Tannakian category generated by Mc (), Moy (2) M@E(x),

these differential fiber functors induce neutral fiber functors in the classical sense
of [Del90]. We keep the notations of Proposition

WARNING 8.4. We want to compare the behaviour of the group of differential
tensor automorphisms of a given module Mg (,) with respect to field extensions. In
order to avoid any confusion, we will change a little bit the notation of Chapter [2]
namely we will denote by Aut®?(M,w) what was previously denoted Aut®?(w).

We remind first of all the neutral fiber functors defined above:
(8.1) WR : <Mc(m)>® — Vectc, N = ker(Xy — Id, R Q¢ (z) N);
(8.2) wgy : <MCE(w)>® — Vectco, N — ker(Eq —Id,Rg QCp(z) N);
(83) wg: <M5E(I)>® — Vects, N = ker(X, — Id, R O () N);

and the three neutral differential fiber functors extending them:

(8.4) WR : (Mc(z))‘g”a — Vectco;
WRp : <MCE($)>®’8 — Vectoy;

Wg <M5E(I)>®’a — Vectg, .
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We also have four forgetful functors:

8.7) NK@) : (MK(z)>® — Vectg(a) and its extension to

(Mgc(a))®
(8:8) Mo : (Me)® — Vecto and its extension to <Mc )82
(8. 9)’70E(x) (MCE(1)>® — Vectop () and its extension to (MCE(;CQ
( (

8.10) N, () + (Mg, () — Vectg, and its extension to (Mg, ()% "9.

8.3. Comparison of “classical” Galois groups

The group of tensor automorphisms of wg corresponds to the “classical” Picard-
Vessiot group of a g-difference equation attached to Mg (,), defined in [vdPS97,
§1.2]. It can be identified to the group of ring automorphims of the subring S
of R generated over C(z) by a fundamental solution matrix and the inverse of its
determinant, stabilizing C'(z) and commuting with o4. It is a linear algebraic group
over C and its dimension is equal to the transcendence degree of the total ring of
quotients of S over C(x), i.e., it measures the algebraic relations between the formal
solutions introduced in [DVH11].

The group of tensor automorphisms of wg, corresponds to another Picard-
Vessiot group attached to M (,y. Its dimension as a linear algebraic group is equal
to the transcendence degree of the field F' generated over Cg(x) by an invertible
matrix of meromorphic solutions in GL, (Rg). In other words, Aut®(Mc,(2), Wry)
measures the algebraic relations between the meromorphic solutions, introduced in
One of the main results of [CHS08], §3] is:

THEOREM 8.5. The linear algebraic groups Aut® (Mc(z), wr), Aut®(Mc(2)s WRE )
Aut® (M, (2),wp) become isomorphic over Cg.

REMARK 8.6. In [Sau04b], Sauloy constructs a C-linear fiber functor for ¢-
difference modules over C(x), using a basis of meromorphic solutions. Since C
is algebraically closed, it follows from the classical general theory of tannakian
categories, that such a fiber functor gives rise to a group that is isomorphic to the
Picard-Vessiot group of [vdPS97] over F = C(z). We won’t consider Sauloy’s
point of view in this paper.

8.4. Comparison of parametrized Galois groups

The goal of this section is to compare the differential algebraic groups attached
to the differential fiber functors defined above (see Definition [2.5)). For 0 the trivial
derivation, we retrieve of course the study of [CHSO08] §3] (see §8.3).

In this section, we adapt the techniques of [CHSO08| §2] to a differential frame-
work, in order to compare the distinct parametrized Picard-Vessiot rings, attached
to Mgz over C,Cg and 5E For a model theoretic approach of these questions,
we refer to [PN09].

The following proposition compare formal and meromorphic solutions. It is a
differential analogue of [CHSO08| Proposition 2.4]. We keep the notations of the
previous sections. In particular, let R be the parametrized Picard-Vessiot ring
attached to the system as in [DVH11l Proposition 1.16]. We remind that R can
be written in the form R = C(2){Y, zyy}o/a, where Y is an invertible matrix
satisfying the system o,(Y) := AY and q is not only a maximal (o, 9)-ideal but
also a maximal og-ideal. We have:

PROPOSITION 8.7. Let M (g be a q-difference module over C(x) and let oq(Y) =
AY be a q-difference system attached to Mc(y). Let F be a g- diﬁ‘erence differential
field extension of C(z) such that F = C(x)(F°e). Then, S := F{Y, det(y) Yo/qF is
a parametrized Picard-Vessiot ring for Mz and S°1 = Fa.
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PRrOOF. First note that qF C F{Y, 757 t }a Then, consider the map ¢ :
R®F° — 5. Let JC R® F7 be a o4 1dea1 Slnce R?¢ = (' and R is 04-simple,
[vdPS97, Lemma 1.11] implies that the o4-ideal Jin R®F7¢ is generated by JNR.
Since R is 04-simple, we get that R® F74 is o,-simple and that ¢ injective. Now let
R = ¢(R®F77). Since, for all z € S, there exists a € R’ such that ax € R/, we get
that a o4-ideal J in S is generated by J N R’. This implies that S is o4-simple and
thus (o4, 0)-simple. Then, it is clear that S is a parametrized Picard-Vessiot ring
for Mx. Finally, for any ¢ € S%¢, the set {a € R'|ac € R'} is a non-zero o4-ideal
E|and by og-simplicity of R’, we see that ¢ € R’. We conclude by remarking that
R/%a = Fa, O

As corollary of the previous proposition, we find

COROLLARY 8.8. Let M¢ () be a g-difference module over C(x) and let o(Y) =
AY be a q-difference system attached to Mc(,). Let R, Rg and R be the weak
parametrized Picard- Vessiot rings attached to Mc(x), as in . As above, we
write R = C(x){Y, det(y }a/q Then we have two isomorphisms of Cg(z)-(c4,0)-
algebras:

o §:=Cu(@)Y, z55}0/9Cn(z) — R; N
. S®CE = CE( ){ ) Tet Y)}a/qCE( )®6E—>RE®0E

Proor. By Proposition 7} applied to F = Cg(z) and F = 5]3(33), we find
that S (resp. S) is a parametrized Picard-Vessiot ring for My (@) (resp. MGE(z))
such that S% = Cg (resp. S = éE) Since Cg is differentially closed, [HSO08|
Proposition 6.16] assures that two parametrized Picard-Vessiot ring for the same
¢-difference equation over Cp(x) are isomorphic as Cp(z)-(o4, d)-algebras. The
first isomorphism follows from this fact.

The second isomorphism comes from a parametrized version of [CHSO08|, Propo-
sition 2.7]. Its proof follows line by line the proof in the algebraic case, but we
give it here for sake of completeness. Let us denote by Fg the fraction field
of Rp and let X = (X; ) be a v X v-matrix of differential indeterminates over
Fg. Let § := Cg(x ){X, det(X Yo C Fe{X, det yYo. Define a (0g, 0)-structure
on Fp{X, zrxyto by setting o, (X) := AX, aq(ax) = AOX + 0AX,.... This
induces a (o4, 0)-structure on S. Since S is a parametrized Picard-Vessiot ring for
04(Y) = AY view over Cg(x), we can write S = S/p, where p is a maximal (oy, 0)-
ideal of S. Now, let U € GL,(Rg) be fundamental solution matrix of g4(Y) =
AY. Define Y = (Y; ;) € GL(Fp{X, dpf }3) via Y := U7'X and remark that
0q4(Y) =Y and Fp{X, detl(X to = FE{Y, Tei Y)}3 Define S; := Cg{Y, det(y }3
The ideal p C S C Fp{X

which intersected with S gives a 0-ideal a. Since CE is differentially closed and
Si/ais dn‘ferenually ﬁmtely generated over Cg, we find a differential homomor-
phism &1 ® CE — Sl/a — CE We can extend this homomorphlsm into a (o4, 0)-
morphism Fg{X, det(X }3 Fp®S8 — Fg®cy, CE and restricted to S, we find

, det }3 generates a (o4, 0)-ideal (p) in Fp{X, det(X }8,

a (04, 0)-morphism § — Fg ® C~'E, whose Kernel contains p. By maximality of p,
we have equality and we get an embedding ¢ : S = S/p = Fg ® Ck. Now, if we
denote by V' € GL(S) a fundamental solution matrix of oy (Y") = AY’, we find, since
(Fg ® Cg)°e = Cg, that (V) = UC with C € GL(Cg). Since S (resp. Rg) Rg)
is differentially generated over Cg(z) (resp. Cg(z)) by V (resp U) and the inverse
of its determinant, this allows us to conclude that ¢(S ® 5’E) =Rp®Cp. O

3 It is not a (oq,0)-ideal and here the assumption of og-simplicity is crucial.



62 8. MEROMORPHIC SOLUTIONS AND COMPARISON THEOREMS

The comparison between the group of differential tensor automorphisms at-
tached to the fiber functors defined in follows from the previous corollary. We
refer to Definition for the notations. We obtain the following statement:

COROLLARY 8.9. Let M¢(y), R,Rg and R be as in Corollary Let wgr

(resp. wry,wsx) be the differential fiber functor attached to R (resp Rg, R) as in
Proposition[2.9 Then,

Aut®’a(MC(m),wR)®CéE ~ AUt®’8(MCE(x)aWRE)®CE5E ~ Aut®’8(M5E(x),w§).

ProOF. By Proposition we have Aut®’6(./\/lc($)7w3) ®Cp ~ G% ® CN'E,
Aut®’a(McE(I),wRE) X éE ~ G%E & éE and Aut®’a(M5E(m),@§) ~ G%. We
recall that, for instance, G% denotes the differential group scheme of (o,,9)-C(z)-
automorphism of R. Now, the (o4, 0)-isomorphism of Corollary translates into
functorial isomorphism between G ® 5E>G?%E ® Cp and G% (As in [CHSO0S8,
Corollary 2.5], it is a consequence of Yoneda lemma). O

We have proved that the group of differential tensor automorphisms of fiber
functors attached either to formal solutions, i.e. to wg and wg, or to meromorphic
solutions, i.e. to wg,, are forms of the same differential algebraic group scheme
defined over C.

8.5. Comparison results for intrinsic Galois groups

We are now concerned with the intrinsic Galois groups, algebraic and parametrized.
We first relate them with the Picard-Vessiot groups we have studied previously and
then we investigate how they behave through certain type of base field extensions.

8.5.0.1. Comparison with Picard-Vessiot groups. Let Mg, be a g¢-difference
module defined over K (z). We remind the reader that we have attached to Mg ()
the following groups:

group fiber functor field of definition

Aut® (M (z), WR) WrH(Mc(@)® — Vecte C
Aut®?(Me(z), wr) wrH{Mc ()% — Vecte C

Gal(Mo(z), Ne () No():(Mo@)® — Vecto ) C(z)
Gal®(Me(zy,Mow) | Mo :(Me)®? — Vectow) C(x)
Aut®(Mey (2) WR) WRHMey()® — Vecto, Cg
Aut®?(Mey(2), WRy ) WrE (Mcp@)®? — Vecte, Cg
Gal(Mey(2)s Mo () | N0s) Mop@)® — Vectog (2) Cp(x)
Gal®(Mep(a), s () | M0s ) (Mep @) 0 — Vectop(a) Cg(x)

The comparison between the forgetful functors and their corresponding neutral
fiber functors is a direct consequence of the more general statement Corollary
We have:
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P

PROPOSITION 8.10. Let us denote by C(x) (resp. Cr(x)) a differential closure
of C(x) (resp. Cg(xz)). We have the following isomorphisms of linear algebraic
groups:

— —

(1) Aut®(Mo(r),wr) ®c C(z) = Gal(M, ¢ (x)) @c) C(z);

(2) Aut® Moy (@), wry) @cy Ce() = Gal(Moy @), N0p()) @cp @) Ce(2);
and the following isomorphisms of linear differential algebraic groups:

— —_

(3) AUt®’a(MC(m)awR) ®c C(x) = Gala(Ma 776’(1)) ®C(’I‘) C<x);

(4) Aut®?(Mep (@), wre) ®cp Cp(@) = Gal®(Mceg(a): o) @cs (@) Cr(2)-
Since the dimension of a differential algebraic group as well as the differential

transcendence degree (see Definition [2.1) of a field extension is stable up to field
extension, one obtains the following corollary

COROLLARY 8.11. Let Mgy be a q-difference module defined over K(x). Let
U € GL(Mer(C*)) be a fundamental solution matriz attached to Mc, (z), as in
Proposition |8. 1|

Then, the differential transcendence degree of the differential field Frp gen-
erated over Cg(x) by the entries of U is equal to the differential dimension of

Gal®(Mc(zy, No(z))-

PROOF. By [GGO13, Proposition 4.28|, the functor Isom®?(wr, ®CE(), Ncp(2))
is a reduced differential algebraic scheme over Cg(z), represented by Rg. It

—_—~—

is also a Aut®’a(McE(m),wRE)—torsor. It has thus a Cg(x)-point, which gives,

by triviality of the torsor, a (o, 0)-isomorphism between Cg(z) ®c, ) Re and

Ce(z) ®cy Cp{Aut®?(Mcy, ), wr,)}- Using the discussion on the differential
dimension in we get that the differential dimension of Aut®’8(McE(m),wRE)
equals the differential transcendence degree of Fz over Cr(z). By Proposition
combined with Corollary we find that Aut®’3(McE(w),wRE) is isomorphic to
Gal®(Mc(z), o)) over C(x). We conclude by using one more time the fact that
the differential dimension of a reduced differential algebraic scheme is invariant by
base field extension. O

8.5.0.2. From K(x) to C(z). In [Kat87, Lemma 1.3.2], it is shown that the
group of tensor automorphism of a k-linear neutral fiber functor is invariant up
to algebraic field extension of k. For forgetful functors, this is not true. This
is essentially due to the fact that, unlike to the case of neutral fiber functors, a
vector space stable under the action of the group of tensor automorphism of the
forgetful functor is not necessarily an object of the Tannakian category . For
g-difference modules defined above K(z), we bypass this difficulties and obtain
the following lemma, in which we show that, for any field extension L/K, the
parametrized intrinsic Galois group of M, is equal, up to scalar extension, to the
parametrized intrinsic Galois group of Mg (,), for a convenient finitely generated
extension K'/K, with K’ C L.

LEMMA 8.12. Let L be a field extension of K with o4t = id. There ezists a
finitely generated intermediate field L/K'/K such that

Gal(Mp(z), NL(z)) = Gal(ME 1 (2), K (2) @K' () L(T)
and
Gal®(Mp(z), L) = Gal® (Mg (@), k(@) Ok L(x).

These equalities hold when we replace K' by any subfield extension of L containing
K'.
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PROOF. By definition, Gal?(M (1), n1(z)) is the stabilizer inside GL(M,y))
of all L(z)-vector spaces of the form W, for W object of (M, (;))®9. E| Similarly,
for any field extension L/K'/K, we have

CTYCLZE)(./\/IK/(w)7 7’]Kz($)) = Stab(WK/(I), w object of <MK/(Z)>®’8).

Then,

Gal’ (M) ML) C Gal® (M), i (@) @ L(x).
By noetherianity, the (parametrized) intrinsic Galois group of M, is defined by
a finite family of (differential) polynomial equations, thus we can choose K’, which
contains the coefficients of the defining equations. O

The corollary below summarizes results of this chapter.

COROLLARY 8.13. Let Mgy be a q-difference module defined over K(x). Let
U € GL,(Mer(C*)) be a fundamental matriz of meromorphic solutions of M (z)-
Then,

(1) the dimension of Gal(Mc(xy,Nc(x)) s equal to the transcendence degree of
the field generated by the entries of U over Cg(z), i.e., the algebraic group
Gal(Mc (), Nc(a)) measures the algebraic relations between the meromor-
phic solutions of Mcy(x)-

(2) the O-differential dimension of Gala(./\/lc(z),nc(x)) is equal to the differ-
ential transcendence degree of the differential field generated by the entries
of U over Cg(z), i.e., the differential algebraic group Gal®(Mc(z), Mo (x))
encodes the differential algebraic relations between the meromorphic solu-
tions of Mg (z)-

(3) there exists a finitely generated extension K'/K such that the differential
transcendence degree of the differential field generated by the entries of U
over Cg(x) is equal to the differential dimension of Gala(MK/(w), K (z)),
i.e., it 15 given by an arithmetic characterization.

PRrROOF. The first two statements are proved in Corollary The third one
is Lemma 812 0

40ne has to understand this equality as a functorial equality for differential scheme defined
above L(z).



CHAPTER 9

Specialization of the parameter ¢

In this chapter we consider the situation in which ¢ is a parameter, that we
want to specialize. When we specialize ¢ to ¢qg in a ¢-difference module, we can
obtain both a differential module (if go = 1) or a go-difference module (if go # 1).
Therefore the best framework for studying the reduction of intrinsic Galois groups
is André’s theory of generalized differential rings (¢f. [AndO01l 2.1.2.1]). For the
reader’s convenience, we first recall some definitions and basic facts from [And01]).
Then we deduce some results on the specialization of intrinsic Galois groups and
their differential analogues.

Our purpose is to give a framework where the following result can possibly
be analysed more deeply. In [DV02, Appendix|, the author considers the Heine
hypergeometric series. Let a,b,c,qg be complex numbers, such that ¢ is non-zero
and not a root of unity. The basic ¢-hypergeometric series:

_ (a;¢7 Y )nlbig )y
a7 b’ c;q 171; - xn7
201 ( ) 7%:0 ©a Dnle LD

where (a;¢7 '), = (1 —a)(1 —ag™1)---(1 —ag~ V), is defined if ¢ ¢ ¢?<0 or
if ¢ € ¢%<0 and either a € ¢%<°, ac™ € ¢%>0 or b € ¢%<0, bc™! € ¢#>0. Tt is a
g-analogue of the Gauss hypergeometric series

oF1(a, B,v; 1) = Z Mxn

|
7>0 (7)nn!

)

where (@), = a(a+ 1)+ (o« +n — 1) is the Pochhammer symbol. If 7 is a non-
positive integer, o F (o, 8,7; ) is defined if and only if either o € Z, v < o < 0 or
BeZ,y<B<O.

The series 2¢1 (a, b, c; ¢+

,x) is a solution of the basic hypergeometric ¢-difference

equation
9 (a+b)z— (1+cqg ) r—1

a C - - 1 - O,
(Hap.e) ©ay(z) = Pay(r) + —— = y(z)
which is defined as soon as neither a = ¢ = 0 nor b = ¢ = 0. Rewriting (Hqpc) in

oq—1
teNrrns of the operator d, := =z We find
(Hap.e)
1—¢c (1—a)(l-=0)—(1—abg) (I—-a)(1-0)

—abqx)d? d _—

@(c—abgz)dy (y())+ | 1= rh - x| dq(y(z)) i-q?

By replacing a, b, c by ¢*,¢”,q" and letting ¢ go to 1, one sees that (ﬁa,b,c) tends
to the hypergeometric differential equation:

" y—(a+B8+1z , af -
(Ea,8,7) y'(z) + -z Y (z) — my(fﬂ) =0,

where «, 8, v are complex parameters. Of course, o F(a, 8,7;x) is a solution of
(€a,8,v). The following theorem gives necessary and sufficient conditions for the
rationality of the solutions of (Hep.c)-

65

y(x).
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THEOREM 9.1. Let Z = (Zso X Z<o) U (Z<o X Zso). Then, the following as-
sertions are equivalent
(1) there ewists o, 8,7 € Z, such that a = ¢®, b= ¢%, c = ¢ and
o cither (c,ba+1—v)eZor (8,8+1—7)€Z,
o cither (a,f) € Z or (a+1—7,0+1—7) € Z.
(2) (Hap,c) has a basis of solutions in C(z).

In the differential setting, we know from [G, Ch. III] that:

THEOREM 9.2. The following assertions are equivalent:

(1) (a,8,4) has a basis of solutions in C(x);
(2) a,8,y€Z and |1 —~|, |y —a— | and |a — B| are the lengths of the sides
of a triangle;
(3) the following conditions are satisfied:
o cither (ac,a+1—7v) € Z or (8,8+1—7) € Z,
o cither (a,f) € Z or (a+1—7,80+1—7) € Z.

The Schwartz list for higher order basic hypergeometric equations has been
established by J. Roques (¢f. [Roq09] §8]), and is another example of this phe-
nomenon of confluences of rationality conditions. The framework describe below
could give a better insight on the properties of basic hypergeometric series explained
above.

9.1. Generalized differential rings
In §9.1] and only in §9.1] we adopt the following more general notation.

DEFINITION 9.3 (¢f. [AndO01l, 2.1.2.1]). Let R be a commutative ring with
unit. A generalized differential ring (A4, d) over R is an associative R-algebra A
endowed with an R-derivation d from A into a left A ® g A-module Q', i.e., such
that d(ab) = ad(b) + d(a)b, where the first product concerns the left A-module
structure of Q! and the second product the right A-module structure. The kernel
of d, denoted Const(A), is called the set of constants of A.

EXAMPLE 9.4.

(1) Let k be a field and k(z) be the field of rational functions over k. Let
Q! := dx.k(x) with the k(z)-k(z)-bimodule structure given by A\t = tA,
for all A € k(z) and t € Q. The ring (k(z),d), with

§: k() — Q':=dvk(z)

— dx.o— ’
f S
is a generalized differential ring over k, associated to the derivation :cd%.
. . 1 1 .
(2) Let A be a g-difference ring of the form Ok |z, PGy Pl } with K a

o,-constant field. Let Q! := dx.A with the A-A-bimodule structure given
by At = to,()), for all A € A and t € Q. The ring (A, §,), with
80 A —  Qli=dz.A
oo(f)—f,
(¢—1Dx
is also a generalized differential ring over O, associated to the g-difference
algebra (A, o,).
(3) Let C denote the ring of constants of a generalized differential ring (A, d)
and let J be a non-trivial proper prime ideal of C. Then the ring A5 :=

A® C/7 is endowed with a structure of generalized differential ring (cf.
[And01], 3.2.3.7]). In the notations of the example 2) above and of

f — dzxx
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for almost any place v € P; of K, we obtain in this way a generalized
differential ring of the form (A ®o, kv, dq,)-

DEFINITION 9.5 (cf. [And01] 2.1.2.3]). A morphism of generalized differential
rings (A,d: A QY — (A,d: A Q) is a pair (u = u® u') where u® : A — A
is a morphism of R-algebras and u! is a map from Q! into Q' satisfying

wod=do u?,
ut (awb) = u® (a)u! (w)ul(b), for any a,b € A and any w € Q.

EXAMPLE 9.6. In the notation of the Example [9.4] the canonical projection
p: A~ Ay induces a morphism u of generalized differential rings from (A, d) into
(Aj7 d)

Let B be a generalized differential ring. We denote by Dif fg the category of
B-modules with connections (¢f. [And01], 2.2]), i.e., left projective B-modules M
of finite type equipped with a R-linear operator

VIM—>Q1®AM,

such that V(am) = aV(m) + d(a) ® m. The category Dif fp is abelian, Const(B)-
linear, monoidal symmetric, ¢f. [And01, Theorem 2.4.2.2].

EXAMPLE 9.7. We consider once again the different cases as in Example

(1) If B = (k(x),9) then Dif fp is the category of differential modules over
(2) If B = (A,d,) then Diffp is the category of ¢-difference modules over
A. In fact, in the notation of the previous sections, it is enough to set

V(m) = dz®@Ay(m), where Ay(m) = % foranym e M = (M, %,).

Let B be a generalized differential ring. We denote by ng the forgetful functor
from Dif fp into the category of projective B-modules of finite type. For any
object M of Dif fp, we consider the forgetful functor np induced over the full
subcategory (M)® of Diffp generated by M and the affine B- group-scheme
Gal(M,np) defined over B representing the functor Aut®(np| sye).

DEFINITION 9.8. The group scheme Gal(M,ng) over B is called the intrinsic
Galois group of M.

Let Constrg(M) be the collection of all constructions of linear algebra of M,
i.e., of all the objects of Dif fg deduced from M by the following B-linear algebraic
constructions: direct sums, tensor products, duals, symmetric and antisymmetric
products. Then one can show that Gal(M,np) is nothing else that the intrinsic
Galois group defined in Part [3|in a more restrictive setting (cf. [And01] 3.2.2.2]):

PROPOSITION 9.9. Let B be a generalized differential ring and let M be an
object of Diffg. The affine groups scheme Gal(M,ng) is the stabilizer inside
GL(M) of all submodules with connection of some algebraic constructions of M.

This is not the only Galois group one can define. If we assume the existence
of a fiber functor w from Dif fp into the category of Const(B)-module of finite
type, we can define the Galois group Aut®(w| zye) of an object M as the group
of tensor automorphism of the fiber functor w restricted to (M)® (c¢f. [AndOT]
3.2.1.1]). This group characterizes completely the object M. For further reference,
we recall the following property (cf. [And01] Theorem 3.2.2.6]):

PROPOSITION 9.10. The object M is trivial if and only if Aut®(w|asye) is a
trivial group.
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In certain cases, the category Dif fp can be endowed with a differential struc-
ture. Since Dif fp is not necessarily defined over a field, we say that a category C
is a differential tensor category, if it satisfies all the axioms of [Ovc09] Definition
3] except the assumption that End(1) is a field. We detail below the construction
of the prolongation functor associated to Dif fp in some precise cases:

Semi-classic situation: Let us assume that (B, 0) is a differential subring
of the differential field (L(z),0 := x%). Then Diffg is the category
of differential B-modules, equivalently, of left B[0]-modules M, free and
finitely generated over B. We now define a prolongation functor Fj for
this category as follows. If M = (M,V) is an object of Diffp then
Fy(M) = (MM, V) is the differential module defined by M) = B[9]<; ®
M, where the tensor product rule is the same one as in (i.e., it takes
into account the Leibniz rule). If M is an object of Diffp given by
a differential equation 9(Y) = AY, the object M) is attached to the
differential equation: 9(Z) = 61 81:14 Z.

Mixed situation: Let us assume that B is a generalized differential subring
of some g(resp. g,)-difference differential field (L(z), §4) (resp. (L(zx),dq,)).
The category Dif fp is the category of g-(resp. ¢,-)difference modules.
Applying the same constructions than in §2.2] we have that Dif fg is a
differential tannakian category and we will denote by Fj its prolongation
functor.

In both cases, semi-classic and mixed, we can define, as in Chapter [6] the
parametrized intrinsic Galois group Gal?(M,ng) of an object M of Diffg. If
Constr, denotes the smallest family of objects deduced from M by the construc-
tions of linear algebras and the prolongation functor Fy, then the parametrized
analogue of Proposition says that the differential group scheme Gal?(M,np) is
the stabilizer inside GL(M) of all submodules with connection of some construc-
tions of linear differential algebra of M.

REMARK 9.11. In the semi-classic situation, the parametrized intrinsic Galois
group of a differential module M is nothing else than the intrinsic Galois group of
M. To see this it is enough to notice that there exists a canonical isomorphism:

Gal(Fa(M), 77K(z)) — Gal(/\/l, 77K(m))~

In fact, such an arrow exists since M is canonically isomorphic to a differential
submodule of Fp(M). Since an element B € Gal(M, 1k (s)) acts on Fy(M) via

B 0B
(5 %
be sufficiently compatible with the differential structure, it also stabilizes the dif-
ferential submodules of a construction of Fy(M). This last argument proves the
surjectivity.

), the arrow is injective. Since an element of Gal(M,ng(,)) needs to

The definition below characterizes the morphisms of generalized differential
rings compatible with the differential structure.

DEFINITION 9.12 (¢f. [And01), 2.4.5.1]). Let u = (u°,ut) : (A, d) — (A", d')
be a morphism of generalized differential rings. This morphism induces a tensor-
compatible functor denoted by w* from the category Diffs into the category
Dif far. Moreover, let us assume that Dif f4 (resp. Dif fas) is a differential cate-
gory and let us denote by Fj its prolongation functor. We say that u* is differentially
compatible if it commutes with the prolongation functors, i.e., Fy o u* = u* o Fy.
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9.2. Specialization of the parameter ¢ and localization of the intrinsic
Galois group

We go back to the notation introduced in Chapter [5] in the case where ¢ is
transcendent over the base field. So we consider a field K, which is a finite exten-
sion of a rational function field k(q). We recall that when speaking of differential
algebraic groups, we implicitly require that & is of characteristic zero.

We denote by Py the set of places of K such that the associated norms extend,
up to equivalence, one of the norms of k(q) attached to an irreducible polynomial
v(q) € klg],v(q) # g, by k, the residue field of K with respect to a place v and by
¢» the image of ¢ in k,.

Let M = (M,%,) be a g-difference module over an algebra A of the form

Ok [a:, %, %,... . For almost all finite place v € Py, we can consider the
ky(z)-module My, (,) = M ® 4 ky(x) with the structure induced by ¥,. In this way,
for almost all v € Py, we obtain a g,-difference module My, () = (My, (2, 2q, )-
If we can specialize M modulo ¢ — 1, then we get a differential module, whose
connection is induced by the action of the operator A, = % on M. We call
the module My, (o) = (My, (), Xq,) the specialization of M at v. It is naturally
equipped with an intrinsic Galois group Gal(My, (2), Mk, (x)), associated to the for-
getful functor 7, (,). Then, we can ask how the intrinsic Galois group of the
specialization My, (. is related to the specialization at the place v of the equa-
tions of the intrinsic Galois group of M. For v € C, Theorem [7.13] proves that
one may recover Gal(Mg (), Nk (x)) from the knowledge of almost all of intrinsic
Galois groups of its reduction at ¢,. In general, for v € Py, the specialization of
the intrinsic Galois group gives only an upper bound for the intrinsic Galois group
of the specialized equation (see Proposition [9.15)).

These problems have been studied by Y. André in [And01] where he shows,
among other things, that the groups of tensor automorphism of neutral fiber func-
tors have a nice behaviour with respect to the specialization.The results of this
chapter (see Proposition for instance) are nothing more than an adaptation of
the results of André to our framework. Moreover, we want to underline the fact
that, unlike the neutral fiber functors considered by André, the forgetful functor is
automatically compatible with the base change. So that we are, in fact, in a much
easier situation than in [AndO01]. However, for sake of completeness, we detail
all the statements (since they are not exactly contained in [And01]) and proofs.
Moreover, we want to emphasize that considering intrinsic Galois group instead
of neutral Tannakian groups, allows us to give a description via curvatures of the
intrinsic Galois group of a differential equation (see Corollary [9.18)).

The following lemma of localization relates the intrinsic (parametrized) Galois
group of a g-difference module over K(z). This lemma is a version of [And01]
Lemma 3.2.3.6] for (parametrized) intrinsic Galois groups.

PROPOSITION 9.13. Let M be a q-difference module over K(x). Let A =
Ok [:m %, %, ...| be a q-difference sub-algebra of K(x) such that M is defined
over A. Let v € Py and let A, := ARo, ky,. We have,

(2) Gal®?(M,na) ® K () ~ Gal® (Mg (2): Nk (2))
(3) Gal(M ®4 Ay,na,) @ ky(z) ~ Gal(My, (2), Mk, (2))-
(4) Ga'la(M XA -Ava 77./41;) ® k’u(x) = Gala(Mkv(:r)a nku(z))

REMARK 9.14. In the previous section, we have given a description of the intrin-

sic Galois group Gal(Mg (z), Nk (z)) via the reduction modulo ¢, of the operators
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¥5v. We are unable to give a similar description of Gal (M, n.4), essentially because
Chevalley theorem holds only for algebraic groups over a field.

PRrROOF. We give the proof in the parametrized situation. The algebraic one
follows easily. First remark that A and A, are O-algebras. Moreover, (A, d,)
(resp. (Av,dq,)) is a simple differential ring, i.e., it has no non-trivial J, (resp.
g, )-ideals. It comes from the fact that for a polynomial Q(x) of degree d, the
polynomials §,(Q), d,, (Q) have degree strictly inferior to d. However, one has
to pay attention that, even if A is d,-simple, it is not a o,-simple : the ideal
zA is a o4-ideal. Moreover, Q'(A) (resp. Q!(A,)) is a projective A (resp. A,)
module of rank 1 (see Example . In that conditions, the functor of localization
Loc: Dif fa — Dif fx(z), N = N®K(z) (resp. Loc, : Dif fa, = Dif fr,(2), N —
N ® ky(x)) is full and faithful by [And01], 2.5.1.2 and 2.5.2.1]. Moreover, the
localization functors commute with the prolongation and forgetful functors so that
one can consider their restriction to the differential Tannakian category generated

by M (resp M ®4 A,). Then, the localization Loc : <M>®’a — <MK(w)>®’8

(resp. Loc, : (M R4 Av>®’a — <M;€v (w)>®’a) is an equivalence of differential tensor
category. The essential surjectivity comes from the fact that if N’ is a sub-object
of some @M%m) ® M*K(x)@ ® Fé(/\/l?}?m) ® M}(x)@’s) then NV = N @4 K(x)
where N := N/ N (P M @ M*® @ FL(M® @ M*®*) is an object of Diff4.
The same reasoning yield modulo v. Finally, we get the isomorphism between the
intrinsic Galois groups from these equivalence of differential tensor categories and
the fact that they commute with the forgetful functor. O

Finally, we investigate the compatibility of the intrinsic Galois groups with
respect to the specialization at the place v. This proposition relies on [And01]
§3.3]

PROPOSITION 9.15. Let (A, d,) be the generalized differential ring as in Propo-
sition[9.13 Let v be a finite place of K. For any M object of Dif fa, we have

Gal(M @4 Ay,na,) C Gal(M,na) ® A,

and
Gal®’(M @4 Ay,ma,) C Gal?(M,n4) @ A,.

PROOF. Once again, we do the proof only in the parametrized case. First, we
can remark that since k, is a quotient of Ok, we have k, ®¢o, k, is isomorphic
to k,. Thus, we are in the situation studied in [And01] 3.2.3.4]. Moreover, since
ky Qo kv = ky, the constructions of differential linear algebra of M commutes
with the base change — ®o, ky :

(B M® @ M*®T @ FLME @ M*®%)) @4 A,

=DM @4 AN @ (M4 A @ F(M@a A @ (M4 A) ).

By definition, Gal?(M ®4 Av,14,) = Aut®?(n4, |(me.a,)e) is the stabilizer
inside GL(M ®4 A,) = GL(M) ® 4 A, of the sub-objects W of a construction of
differential linear algebra of M® 4A, = M®o, k,. The group Gal?(M,n.4) admits
a similar description. Thus, we deduce the inclusion between the intrinsic Galois
groups from the compatibility of the construction of differential linear algebra with
respect to the base change and from the definition of the parametrized intrinsic
Galois group in terms of stabilizer of objects inside the constructions of differential
linear algebra . (|

REMARK 9.16. Similar results hold for differential equations (cf. [Kat90l, §2.4]
and [And01l §3.3]). In general one cannot hope for a semicontinuity result. In
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fact, the differential equation % = %, with A complex parameter, has differential
Galois group equal to C*. When one specializes the parameter A on a rational value
Ao, one gets an equation whose differential Galois group is a cyclic group of order
the denominator of A\g. For all other values of the parameter, the Galois group is
C*.

The situation appears to be more rigid for g-difference equations when ¢ is a
parameter. In fact, we can consider the ¢-difference equation y(qz) = P(q)y(z),
with P(q) € k(q). If we specialize ¢ to a root of unity and we find a finite intrinsic
Galois group “too often”, we can conclude using Theorem that P(q) € ¢,
for some positive integer r, and therefore that the intrinsic Galois group of y(gx) =
P(q)y(z) over K(x) is finite.

9.3. Upper bounds for the intrinsic Galois group of a differential
equation

Let us consider a g-difference module M = (M,%,) over A that admits a
reduction modulo the (¢ — 1)-adic place of K, i.e., such that we can specialize the
parameter ¢ to 1. To simplify notation, let us denote by k; the residue field of K
modulo ¢ — 1.

In this case the specialized module My, () = (My, (4, A1) is a differential
module. We can deduce from the results above that:

COROLLARY 9.17.
Ga’l(Mkl(w)a nkl(w)) - GGZ(M, 77A) ® ky (1‘)
and
Gala(Mkl(m)7 77161(1)) - Ga’la(M7 UA) ® kl (l‘)
PROOF. Proposition [9.15] says that:
GalM®4 A/(q—1),m4/(4-1)) C Gal(M,n4) @ A/(q — 1),
and
Gal’(M &4 A/(q—1),m4/(q-1)) C Gal®(M,ns) @ A/(q—1),
We conclude applying Proposition [9.13}
Gal(M @4 A/(q—1),04/(q-1)) DA/ (q—1) F1(2) = Gal(My, (2), Mk, (2))s

and

Gal’(M®a A/(q—1),047(-1) Baj(g—1) k1(z) = Gal® (M, (0), iy () -
O

On the other hand, given a k(z)/k-differential module M = (M, V), we can fix

a basis e of M such that
V(e) = eG(x),
where we have identified V with V (<L), The horizontal vectors for V are solutions
of the system Y'(z) = —G(z)Y (x). Then, if K/k(q) is a finite extension, we can
define a natural ¢-difference module structure over Mg,y = M ®j(,) K (z) setting
Yq(e) =e(1+ (¢ — zG(x)),

and extending the action of ¥, to M (,) by semi-linearity. The definition of ¥,
depends on the choice of e, so that we should rather write E((f), which we avoid to
not complicate the notation. Thus, starting from a differential module M we can
find a g-difference module M g,y such that M is the specialization of Mg, at

the place of K defined by ¢ = 1. The g-deformation we have considered here is
somehow trivial and does not correspond, for instance, to the process used to deform
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a hypergeometric differential equation into a ¢-hypergeometric equation. Anyway,
we just want to show that a g-deformation combined with our results gives an
arithmetic description of the intrinsic Galois group of a differential equation. This
description depends obviously of the process of g-deformation and its refinement is
strongly related to the sharpness of the g-deformation used.

Using the “trivial“ g-deformation, we have the following description

COROLLARY 9.18. The intrinsic Galois group of M = (M,V) is contained
in the “specialization at q¢ = 17 of the smallest algebraic subgroup of GL(Mg ()
containing the reduction modulo ¢, of X3 :

Ky—1
Sire=e H (1 + (¢ — 1)qsz(q’x)) ,
i=0
for almost all v € Ck.

COROLLARY 9.19. Suppose that k is algebraically closed. Then a differential
module (M, V) is trivial over k(z) if and only if there exists a basis e such that
V(e) = eG(z) and for almost all primitive roots of unity ¢ in a fized algebraic
closure k of k we have:
n—1
H (1+(q— 1)qixG(qix)) = identity matriz,
=0 a=¢

where n is the order of C.

PRrROOF. If the identity above is verified, then the Galois group of (M,V) is
trivial, which implies that (M, V) is trivial over k(x). On the other hand, if (M, V)
is trivial over k(z), there exists a basis e of M over k(x) such that V(e) = 0. This
ends the proof. O
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CHAPTER 10

Preface to Part 5. The Galois D-groupoid of a
g-difference system, by Anne Granier

We recall here the definition of the Galois D-groupoid of a ¢-difference system,
and how to recover groups from it in the case of a linear g-difference system. This
appendix thus consists in a summary of Chapter 3 of [Gra09].

10.1. Definitions

We need to recall first Malgrange’s definition of D-groupoids, following [Mal01]
but specializing it to the base space P& x C¥ as in [Gra09] and [Gral, and to ex-
plain how it allows to define a Galois D-groupoid for ¢-difference systems.

Fix v € N*, and denote by M the analytic complex variety P& x C”. We call
local diffeomorphism of M any biholomorphism between two open sets of M, and
we denote by Aut(M) the set of germs of local diffeomorphisms of M. Essentially,
a D-groupoid is a subgroupoid of Aut(M) defined by a system of partial differential
equations.

Let us precise what is the object which represents the system of partial differ-
ential equations in this rough definition.

A germ of a local diffeomorphism of M is determined by the coordinates de-
noted by (z,X) = (z,X3,...,X,) of its source point, the coordinates denoted
by (z,X) = (z,X1,...,X,) of its target point, and the coordinates denoted by
%, 6%?1 e 88221 ey %, ... which represent its partial derivatives evaluated at
the source point. We also denote by § the polynomial in the coordinates above,
which represents the Jacobian of a germ evaluated at the source point. We will

allow us abbreviations for some sets of these coordinates, as for example % to

; 80X, v : 0X; 90X, 9Xi
represeint all the coordinates e and 0X for all the coordinates 9w, 05,0 OX,

X, "

We denote by r any positive integer. We call partial differential equation,
or only equation, of order < r any fonction E(z,X,z,X,0z,0X,...,0"%,0"X)
which locally and holomorphically depends on the source and target coordinates,
and polynomially on 6~ and on the partial derivative coordinates of order < 7.
These equations are endowed with a sheaf structure on M x M which we denote
by Oj-(a,ar)- We then denote by O - (arar) the sheaf of all the equations, that is
the direct limit of the sheaves O;-(arar)- It is endowed with natural derivations

of the equations with respect to the source coordinates. For example, one has:
D aX; _ 9%*X,
T 9X; . 0wdX, "
We will consider the pseudo-coherent (in the sense of [Mal01]) and differen-
tial ideal E| T of Oy, as the systems of partial differential equations in the

and

Iywe will say everywhere differential ideal for sheaf of differential ideal.

75
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definition of D-groupoid. A solution of such an ideal Z is a germ of a local dif-
feomorphism ¢ : (M,a) — (M, g(a)) such that, for any equation E of the fiber
T(a,9(a))> the function defined by (z, X) — E((z, X),g(x, X),dg(x, X),...) is null
in a neighbourhood of a in M. The solutions of Z is denoted by sol(Z) and forms
a set groupoid.

The set Aut(M) is endowed with a groupoid structure for the composition ¢
and the inversion ¢ of the germs of local diffeomorphisms of M. We thus have to
characterize, with the comorphisms ¢* and * defined on O;-(ys 1), the systems
of partial differential equations Z C O j«(ar,ar) Whose set of solutions sol(Z) is a
subgroupoid of Aut(M).

We call groupoid of order r on M the subvariety of the space of invertible jets
of order r defined by a coherent ideal Z,. C O j«(ar,ar) such that (3): all the germs of
the identity map of M are solutions of Z,., such that (ii): ¢*(Z,) C Z, @ O g+ (a1, 01) +
O+ m,m) ® I, and such that (4i1): +*(Z,.) C Z.. The solutions of such an ideal Z,
form a subgroupoid of Aut(M).

DEFINITION 10.1. According to [Mal01], a D-groupoid G on M is a subvariety
of the space (M2, 0. (M) of invertible jets defined by a reduced, pseudo-coherent
and differential ideal Zg C Oy« (ar,ar) such that

(i’) all the germs of the identity map of M are solutions of Zg,

(#3’) for any relatively compact open set U of M, there exists a closed complex
analytic subvariety Z of U of codimension > 1, and a positive integer
ro € N such that, for all » > 7o and denoting by Zg , = Zg N O (ar,n1)s
one has, above (U \ Z)?: ¢*(Zg,,) C Zg,r @ O s ar,ary + O (a1,01) @ Lg ey

(iii’) *(Zg) C Ig.

The ideal Zg totally determines the D-groupoid G, so we will rather focus on
the ideal Zg than its solution sol(Zg) in Aut(M). Thanks to the analytic continu-
ation theorem, sol(Zg) is a subgroupoid of Aut(M).

The flexibility introduced by Malgrange in his definition of D-groupoid allows
him to obtain two main results. Theorem 4.4.1 of [Mal01] states that the reduced
differential ideal of O ;- (s ar) generated by a coherent ideal Z, C Oy« (ar,ar) Which
satisfies the previous conditions (), (i), and (i7i) defines a D-groupoid on M. The-
orem 4.5.1 of [Mal01] states that for any family of D-groupoids on M defined by a
family of ideals {G'};c1, the ideal 1/ G defines a D-groupoid on M called intersec-
tion. The terminology is legitimated by the equality: sol(y/>. G') = Niersol(G?).
This last result allows to define the notion of D-envelope of any subgroupoid of

Aut(M).

Fix ¢ € C*, and let Y (¢qz) = F(x,Y (z)) be a (non-linear) ¢-difference system,
with F(z,X) € C(z,X)”. Consider the set subgroupoid of Aut(M) generated by
the germs of the application (z, X) — (g, F(z, X)) at any point of M where it is
well defined and invertible, and denote it by Dyn(F'). The Galois D-groupoid of
the ¢-difference system Y (qz) = F(z,Y (z)) is the D-enveloppe of Dyn(F'), that is
the intersection of the D-groupoids on M whose set of solutions contains Dyn(F).

10.2. A bound for the Galois D-groupoid of a linear g-difference system

For all the following, consider a rational linear ¢-difference system Y (qz) =
A(z)Y (x), with A(z) € GL,(C(x)). We denote by Gal(A(x)) the Galois D-groupoid
of this system as defined at the end of the previous section [10.1] we denote by
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Tgai(A(x)) its defining ideal of equations, and by sol(Gal(A(z))) its groupoid of so-
lutions.

The elements of the dynamics Dyn(A(z)) of Y (gz) = A(z)Y (x) are the germs
of the local diffeomorphisms of M of the form (z, X) + (¢*x, Ap(z)X), with:

Id, if k=0,
Ap(x) = TIE2) A(giz)  if k e N¥,

1,2, A(gz)~" if k € —N*.
The first component of these diffeomorphisms is independent on the variables X and
depends linearly on the variable x, and the second component depends linearly on
the variables X. These properties can be expressed in terms of partial differential
equations. This gives an upper bound for the Galois D-groupoid Gal(A(x)) which
is defined in the following proposition.

PRroproOSITION 10.2. The coherent ideal:
or 9x ., 0X o O’X
<ax’aaf”_x’a ax~ ~Xoxe
satisfies the conditions (i), (i), and (i) of. Hence, thanks to Theorem 4.4.1 of

[Mal01], the reduced differential ideal Zr;, it generates defines a D-groupoid Lin.
Its solutions sol(Lin) are the germs of the local diffeomorphisms of M of the form:

(2, X) = (az, B(x)X),
with o € C* and locally, B(x) € GL,(C) for all x.
They contain Dyn(A(x)), and therefore, given the definition of Gal(A(z)), one has
the inclusion
Gal(A(x)) C Lin,
which means that:
Trin C Igaiaw)) and sol(Gal(A(x))) C sol(Lin).
PROOF. ¢f proof of Proposition 3.2.1 of [Gra09] for more details. O

REMARK 10.3. Given their shape, the solutions of Lin are naturally defined
in neighborhoods of transversals {z,} x C” of M. Actually, consider a particu-
lar element of sol(Lin), that is precisely a germ at a point (x4, X,) € M of a
local diffeomorphism g of M of the form (x, X) — (az,3(x)X). Consider then a
neighborhood A of x, in P*C where the matrix 8(z) is well defined and invertible,
consider the “cylinders” Ty = A x C¥ and T; = aA x C¥ of M, and the diffeomor-
phism g : Ty — T} well defined by (z, X) — (az, 8(x)X). Therefore, according to
the previous Proposition all the germs of g at the points of Ty are in sol(Lin)
too.

The defining ideal Z;;, of the bound Lin is generated by very simple equa-
tions. This allows to reduce modulo Zr;, the equations of Zg4(4(»)) and obtain
some simpler representative equations, in the sense that they only depend on some
variables.

PROPOSITION 10.4. Let r > 2. For any equation E € Zg,i(a(z)) of order r,
there exists an invertible element u € O j-(ar, ), an equation L € Lrgy, of order r,
and an equation E1 € Lgqia(x)) of order r only depending on the variables written
below, such that:

or 90X X X
ub =L+ Ey <I’X’ O’ 90X’ 0xdX’ " 8957'—18)() ’
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PROOF. The invertible element u is a convenient power of §. The proof consists
then in performing the divisions of the equation uF, and then its succesive remain-
ders, by the generators of Z,;,. More details are given in the proof of Proposition
3.2.3 of [Gra09]. O

10.3. Groups from the Galois D-groupoid of a linear g-difference system

We are going to prove that the solutions of the Galois D-groupoid Gal(A(x))
are, like the solutions of the bound Lin, naturally defined in neighbourhoods
of transversals of M. This property, together with the groupoid structure of
sol(Gal(A(z))), allows to exhibit groups from the solutions of Gal(A(z)) which
fix the transversals.

According to Proposition [10.2] an element of sol(Gal(A(z))) is also an element
of sol(Lin). Therefore, it is a germ at a point a = (x4, X,) € M of a local
diffeomorphism g : (M,a) — (M,g(a)) of the form (z,X) — (az,B(z)X), such
that, for any equation E € Zgq(a(z)), one has E((z, X), g(z, X),dg(z, X),...) =0
in a neighbourhood of a in M.

Consider an open connected neighbourhood A of z, in P{ on which the matrix
B is well-defined and invertible, that is where § can be prolongated in a matrix
B € GL,(O(A)). Consider the “cylinders” Ts = A x C¥ and T; = aA x C¥ of M,
and the diffeomorphism § : Ts — T} defined by (z, X) — (az, 8(z)X).

PrOPOSITION 10.5. The germs at all points of Ty of the diffeomorphism g are
elements of sol(Gal(A(x))).

Proor. For all r € N, the ideal (Igal(A(w)))r = Igal(A(a:)) N OJ:(M7M) is coher-
ent. Thus, for any point (yo, 7o) € M?, there exists an open neighbourhood € of
(vo,%o) in M?, and equations E{, ..., ElQ of (Zgai(a(x)))r defined on the open set
Q such that:

(Zgara@n)r) g = (Os:aan) g BY + -+ (Oszaan) 1 B

Let ay € Ts = A x C”. Let 7 : [0,1] = T be a path in Ty such that v(0) = a and
~v(1) = a1. Let {Qo,...,Qn} be a finite covering of the path v([0,1]) x g(~([0,1]))
in T x Ty by connected open sets Q C (Ts x T;) like above, and such that the origin
(7(0),9(~(0))) = (a, g(a)) belongs to .

The germ of g at the point a is an element of sol(Gal(A(x))). Therefore, one has
E¥((z, X),g(x, X),dg(x, X),...) = 0 in a neighbourhood of a, for all 1 <1 < k.
Moreover, by analytic continuation, one has also E,?O (z, X,9(x, X), 0¢(z, X),...) =
0 on the source projection of 3¢ in M. It means that the germs of g at any point
of the source projection of €y are solutions of (Zgai(a(x)))r-

Then, step by step, one gets that the germs of g at any point of the source projection
of Q4. are solutions of (Zgi(a(z)))r and, in particular, the germ of g at the point a;
is also a solution of (Zgai(a(x)))r- O

This Proposition means that any solution of the Galois D-groupoid Gal(A(z))
is naturally defined in a neighbourhood of a transversal of M, above.

REMARK 10.6. In some sense, the “equations” counterpart of this proposition
is Lemma [11.12

The solutions of Gal(A(x)) which fix the transversals of M can be interpreted
as solutions of a sub-D-groupoid of Gal(A(x)), partly because this property can
be interpreted in terms of partial differential equations. Actually, a germ of a
diffeomorphism of M fix the transversals of M if and only if it is a solution of the
equation T — x.
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The ideal of O« (ar,ar) generated by the equation z — z satisfies the conditions
(i), (i), and (i) of Hence, thanks to Theorem 4.4.1 of [Mal01], the reduced
differential ideal it generates defines a D-groupoid:

DEFINITION 10.7. We call Trv the D-groupoid generated by the equation Z—z.

Its solutions, sol(7rv), are the germs of the local diffeomorphisms of M of the
form: (z,X) — (x, X(x, X)).

DEFINITION 10.8. We call gam)) the intersection D-groupoid Gal(A(z))N
Trv, in the sense of Theorem 4.5.1 of [Mal01], whose defining ideal of equations

Igam)) is generated by Zga(A(x)) and Zrpy.

The solutions of sol(Gal(A(z))) coincide with sol(Gal(A(x))) N sol(Trv), that
are exactly the solutions of Gal(A(z)) of the form (z, X) — (z,8(x)X). They are
also naturally defined in neighbourhoods of transversals of M.

PROPOSITION 10.9. Let xg € P{. The set of solutions of Gal(A(x)) defined in
a neighbourhood of the transversal {xo} x C¥ of M can be identified with a subgroup
of GL,(C{zx — x0}).

Proor. The solutions of the D-groupoid Gal(A(z)) defined in a neighbour-
hood of the transversal {zo} x C” can be considered, without loosing any infor-
mation, only in a neighbourhood of the stable point (xg,0) € M. At this point,

the groupoid structure of sol(Gal(A(x))) is in fact a group structure because the
source and target points are always (z9,0). Thus, considering the matrices 3(z)

—~—

in the solutions (z, X) — (z, 8(z)X) of Gal(A(z))) defined in a neighbourhood of
{zo} x C”, one gets a subgroup of GL,(C{x — z¢}). More details are given in the
proof of Proposition 3.3.2 of [Gra09]. O

In the particular case of a constant linear g¢-difference system, that is with
A(z) = A € GL,(C), the solutions of the Galois D-groupoid Gal(A) are in fact
global diffeomorphisms of M, and the set of those that fix the transversals of M
can be identified with an algebraic subgroup of GL,(C). This can be shown using
a better bound than Lin for the Galois D-groupoid of a constant linear ¢-difference
system (cf Proposition 3.4.2 of [Gra09]), or computing the D-groupoid Gal(A)
directly (¢f Theorem 2.1 of [Gral| or Theorem 4.2.7 of [Gra09]). Moreover, the
explicit computation allows to observe that this subgroup corresponds to the usual
g-difference Galois group as described in [Sau04b] of the constant linear ¢-difference
system X (qz) = AX(x) (¢f. Theorem 4.4.2 of [Gra09] or Theorem 2.4 of [Gral).






CHAPTER 11

Comparison of the parametrized intrinsic Galois
group with the Galois D-groupoid

A. Granier has defined a D-groupoid for non-linear ¢-difference equations, in
analogy with Malgrange D-groupoid for non-linear differential equations (see the
previous chapter). Roughly, this D-groupoid corresponds to the largest sheaf of
analytic differential equations that kill the dynamics of the non-linear ¢-difference
equation.

In this section we prove that the Malgrange-Granier D-groupoid, in the special
case of a linear g-difference equation, essentially “coincides” with the parametrized
intrinsic Galois group of the equation. This result, which is Corollary [I1.10} is not a
priori straightforward because one has to compare a D-groupoid defined as a sheaf
of differential ideal over an analytic variety and a differential algebraic group d la
Kolchin. This answers a question of Malgrange ([Mal09l page 2]).

Our proof is divided in three main steps. The first one relies on Theorem [7.13]
and allows us to compare the parametrized intrinsic Galois group with the smallest
differential algebraic variety that contains the dynamic, namely its Kolchin closure.
Then, we sheafify the defining equations of the Kolchin closure in order to get an
algebraic D-groupoid, which is defined by the largest set of algebraic differential
equations that kill the dynamic. Finally thanks to GAGA arguments, we show
that the defining equations of the Malgrange-Granier D-groupoid are global and
algebraic and thus coincide with the ones of our algebraic D-groupoid. In the
differential case, the problem of the algebraicity of the D-groupoid has been tackled
in more recent works by B. Malgrange himself.

In the special case of a linear differential equation, Malgrange proves that his
D-groupoid, allows to recover the Picard-Vessiot Galois group (see [Mal01]). The
foliation associated to the solutions of the non-linear differential equation, which
exists due to the Cauchy theorem, plays a central role in his proof, and actually in
the whole theory. There is a true hindrance to prove a Cauchy theorem and define
a foliation over C attached to a g¢-difference system. First of all, the solutions of a
g-difference equation must be defined over a g-invariant domain and they usually
have an essential singularity at 0 and at co. This fact prevents the existence of a
local solution on a compact domain and therefore a transposition of the Cauchy
theorem. To overcome the lack of local solutions, we use Theorem [7.13]as a crucial
ingredient of our proof. However, some steps of our proof are similar to Malgrange
theorem (c¢f. [Mal01]) and Granier’s proof in the case of ¢-difference system with
constant coefficients (see [Gral §2.1]). In below, we show how in Malgrange
or Granier’s former comparison results, a parametrized intrinsic Galois group is
hidden and why the parametrized structure is inherent to Malgrange’s D-groupoid
constructions.

Our results shall give some hints to compare the algebraic definitions of Morikawa
of the Galois group of a non-linear g-difference equation and the analytic definitions
of A.Granier (¢f. [Mor09], [MUQ9], [Umel0]).
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11.1. The Kolchin closure of the Dynamics and the Malgrange-Granier
groupoid

Let ¢ € C* be not a root of unity and let A(x) € GL,(C(x)). We consider the
linear ¢-difference system

(11.1) Y(gz) = A(2)Y (x).
We set:
x) = A(¢"'z) ... A(qx) A(z) for all k € Z, k > 0;

(
A()(.’E) = Id,/
Ap(x) == A(¢*2) T A(¢* o). A(gle) L forall k € Z, k < 0,

so that Y (¢*z) = Ag(x)Y (2), for any k € Z. Following Chapter we denote by
M the analytic complex variety Pl x C”, by Gal(A(z)) the Galois D-groupoid of
the system ([11.1)), i.e., the D-envelop of the dynamics

(11.2) Dyn(A(z)) = {(z,X) — (¢"z, Ax(2)X) : k € Z}

in the space of jets J*(M,M). We keep the notation of Chapter which is
preliminary to the content of this section.

Warning. Following Malgrange and the convention in Chapter [10] we say that a
D-groupoid H is contained in a D-groupoid G if the groupoid of solutions of H
is contained in the groupoid of solutions of G. We will write sol(H) C sol(G) or
equivalently Zg C Z4;, where Zg and Ty, are the (sheaves of) ideals of definition of
G and H, respectively.

Notation. In this section we introduce many tools that we use to get the proof of
our main result Corollary [I1.10] For the reader convenience we make a list of them

here, with the reference for their definitions:
Dyn(A(zx)), 11.2);

Gal(A(x)), §10.2 Gal(A(z)), Definition |10.8
Gal*9(A(z)), Definition [11.1 Gal*9(A(z)), Definition [11.6

(
Kol(A(x)),  Definition[11.1  Kol(A(z)),  Definition [11.3
Lin, Proposition 10.2|; Trv, Definition [10.7|

11.2. The groupoid Gal™9(A(z))

Let C(x) {T, qotz } 5, With T = (Ti; : 4,5 = 0,1,...,v), be the algebra of dif-
ferential rational functions over GL,11(C(z)). We consider the following morphism
of 0-CJz]-algebras

T Clal{T, 757 } 5 — H(M xc M, O+ (a,a1))
- - 9% 0% oT
00 Lo 0w 9z 0X: Xy
T 0
— : =
. : 90X
: (Ti,5)ij : (axj)m.
Tl/,O @
ox
from Clz] {T, o7}, to the global sections H(M x¢ M, O (ar,n1)) of O (ar,01)5

that can be thought as the algebra of global partial differential equations over
M x M. The image by 7 of the differential ideal

ZT=(Toa,--»Tou:T10,---,T00,0(T0y0)),
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that defines the differential algebraic group

{diag(a, B(x)) = ((0)‘ 3&)> . where o € C* and f(z) € GLZ,(C(x))} ,

is contained in the ideal Z.;,, defining the D-groupoid Lin (cf. Proposition [10.2).

DEFINITION 11.1. We call Kol(A(z)) the smallest differential subvariety of
GL,+1(C(x)), defined over C(x), which contains

. k qk 0
{dzag(q yAp(x)) = (O Ak(z)> ke Z},
and has the following property: if we call Ix,a(2)) the differential ideal defin-
ing Kol(A(x)) and Iy awy) = Ikoia@) N Cla] {T, iz} 5 then the (sheaf of)
differential ideal (Zrin,7(Ijpa(r)))) generates a D-groupoid, that we will call
Gal®9(A(x)), in the space of jets J*(M, M).

REMARK 11.2. The definition above requires some explanations:

e The phrase “smallest differential subvariety of GL,41(C(z))” must be un-
derstood in the following way. The ideal of definition of Kol(A(x)) is
the largest differential ideal of C(z) {7, =} 5 Which admits the matri-
ces diag(q®, Ax(x)) as solutions for any k € Z and verifies the second
requirement of the definition. Then i a(s)) is radical and the Ritt-
Raudenbush theorem (¢f. Theorem above) implies that Ixia(a)) is
finitely 0-generated. Of course, the C(x)-rational points of Kol(A(x)) may
give very poor information on its structure, so we would rather speak of
solutions in a differential closure of C(z).

e The structure of D-groupoid has the following consequence on the points
of Kol(A(z)): if diag(w, B(x)) and diag(y,d(z)) are two matrices with
entries in a differential extension of C(z) that belong to KCol(A(z)) then
the matrix diag(avy, (yz)d(z)) belongs to Kol(A(x)). In other words,
the set of local diffeomorphisms (z,X) — (ax,8(x)X) of M x M such
that diag(c, 8(z)) belongs to Kol(A(x)) forms a set theoretic groupoid.
We could have supposed only that Kol(A(x)) is a differential variety and
the solutions of Kol(A(x)) form a groupoid in the sense above, but this
wouldn’t have been enough. In fact, it is not known if a sheaf of differential
ideals of J*(M, M) whose solutions forms a groupoid is actually a D-
groupoid (¢f. Definition and in particular conditions (ii’) and (iii’)).
B. Malgrange told us that he can only prove this statement for a Lie
algebra.

The differential variety Kol(A(x)) is going to be a bridge between the parametrized
intrinsic Galois group and the Galois D-groupoid Gal(A(x)) defined in the previous
chapter, via the following theorem.

DEFINITION 11.3. Let M((c?i) = (C(x)", %y : X — A7'0,(X)) be the ¢-
difference module over C(z) associated to the system Y (qx) = A(x)Y (z), where
04(X) is defined componentwise. We call Kol(A(z)) the differential group over
C(x) defined by the differential ideal (Iicoy(a(2)), To,0 — 1) in C(2) {T, 157 } »-

Notice that, as for the Zariski closure, the Kolchin closure does not commute

with the intersection, therefore Kol(A(z)) is not the Kolchin closure of {A(z)} .
Then we have:

e~

THEOREM 11.4. Gala(./\/lé?;),n«;(x)) >~ Kol(A(x)).
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REMARK 11.5. One can define in exactly the same way an algebraic subvariety
Zar(A) of GL,4+1(C(z)) containing the dynamics of the system and such that

{(2, X) = (aw, B(x) X) : diag(a, () € Zar(A)}
is a subgroupoid of the groupoid of diffeomorphisms of M x M. Then one proves

in the same way that Zar(A) coincide with the intrinsic Galois group, introduced
in Chapter [6]

ProOF OF THEOREM [IT.4l Let N = constr?(M) be a construction of differ-
ential algebra of M. We can consider:

e The basis denoted by constr?(e) of N built from the canonical basis e of
C(x)¥, applying the same constructions of linear differential algebra.

e For any 8 € GL,(C ( )), the matrix constr?(j3) acting on N with respect
to the basis constr?(e), obtained from 3 by functoriality. Its coefficients
lies in C(x)[5,0(p), -..]

e Any ¢ = (o, 8) € C* x GL,(C(x)) acts semilinearly on A in the following
way: e = (constr?(8))"te and ¢(f(z)n) = f(ax)n, for any f(x) € C(z)
and n € N. In particular, (¢*, Ax(z)) € C* x GL,(C(z)) acts as E’q“ on
N.

A sub-g-difference module £ of A correspond to an invertible matrix F' € GL, (C(z))
such that

(11.3) F(q"z) Yconstr?(Ay)F(z) = (; i) , for any k£ € Z.
Now, (1,8) € C* x GL,(C(z)) stabilizes £ if and only if
(11.4) F(x) Yconstr?(B)F(x) = (; I) .

Equation (11.3) corresponds to a differential polynomial L(TO’O, (T,5)i,5>1) belong-
ing to (C(a:)?detT} and having the property that L(¢"*, (Ax)) = 0, for all k € Z.
On the other hand 4) corresponds to L(1, (T; ;). ]>1)) It means that the solu-
tions of the differential ideal (IcorA(e))> To.o—1) € C(2) {T, o7 |, stabilize all the
sub-g-difference modules of all the constructions of dlfferentlal algebra, and hence
that
’COZ(A( ) C Gal®(Me(a), ne(a))-

Let us prove the inverse inclusion. In the notation of Theorem there exists a
finitely generated extension K of Q and a o,-stable subalgebra A of K(z) of the
forms considered in §7.2 such that:

1 € GL A), so that it defines a g-difference module MY over K ( ;
K(z)
( ) Gala(/\/l K ()’ 77K(a:)) QK (z) C( ) Gala(Mc(x)v nC(z))

(3) Kol(A(x))is defined over A, i.e., there exists a differential ideal [ in the dif-
ferential ring A{T, det(T) to such that I generates Ixcoi(a(z)) in C(x {T, det 7 }8‘

For any element L of the defining ideal of Kol(A(z)) over A, there exists

1
L(Too;Tisvij=1,....,0) €I C ALT, ——— b
(To.0; TogorJ v) A{ det(T)}a

such that L € Zixoa(e)) and L= L(1;T;;,i,j = 1,...,v). If ¢ is an algebraic
number, other than a root of unity, or if ¢ is transcendental, then, for almost all
places v € C, we have

L(A. )= L(1,A.) = L(¢"", A.,) = 0 modulo ¢,.
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This shows that Kol(A(x)) is a differential subgroup of GL, (C(z)) which contains
a non-empty cofinite set of v-curvatures, in the sense of Theorem [7.19] Therefore,

Kol(A(x)) contains the parametrized intrinsic Galois group of M((C?i). O

P

DEFINITION 11.6. We call Gal®!9(A(z)) the intersection of Gal®9(A(x)) and
Tro.
It follows from the definition that the D-groupoid Gal®9(A(z)) is generated by

its global equations, i.e., by Lin and the image of the equations of Kol(A(z)) by
the morphism 7. Therefore we deduce from Theorem the following statement:

COROLLARY 11.7. As a D-groupoid, Gal®'9(A(x)) is generated by its global sec-
tions, namely the D-groupoid Lin and the image of the equations ofGala(Mg(li), NC(x))
via the morphism T.

REMARK 11.8. The corollary above says Eg\t/only that a germ of diffeomorphism
(z,X) — (z,8(x)X) of M is solution of Gal*9(A(z)) if and only if 3(z) is solution
of the differential equations defining the parametrized intrinsic Galois group of
Mg(‘g)v) = (C(z)",X ~ A(z)"to,(X)), but also that the two differential defining
ideals “coincide”.

The D-groupoid Gal*9(A(z)) is a differential analog of the D-groupoid gener-
ated by an algebraic group introduced in [Mal01l Proposition 5.3.2] by B. Mal-
grange.

11.3. The Galois D-groupoid Gal(A(z)) vs the intrinsic parametrized
Galois group
Since Dyn(A(x)) is contained in the solutions of Gal®9(A(x)), we have
sol(Gal(A(z))) C sol(Gal™9 (A(x)))

and

—_~—

sol(Gal(A(z))) C sol(gal‘;;\(Z(x))).
as already mentioned, the solution are to be found in some differential closure of

(C(x),9).

THEOREM 11.9. The solutions of the D-groupoid gam)) (resp. Gal(A(z)))
coincide with the solutions of Gal®'9(A(z)) (resp. Gal™I(A(x))).

Combining the theorem above with Corollary [11.7] we immediately obtain:

COROLLARY 11.10. The solutions of the D-groupoid Gal(A(x)) are germs of
diffeomorphisms of the form (x,X) — (z, 8(x)X), such that B(x) is a solution of
the differential equations defining Gala(./\/l((c’?;), Nc(e)), and vice versa.

REMARK 11.11. The corollary above says that the solutions of Gal(A(x)) in
a neighborhood of a transversal {zo} x C” (cf. Proposition below), rational
over a differential extension F of C(z), correspond one-to-one with the solutions
B(x) € GL,(F) of the differential equations defining the parametrized intrinsic
Galois group.

It does not say that the two defining differential ideals can be compared. We
actually don’t prove that Gal(A(x)) is an “algebraic D-groupoid” and therefore that
Gal™I(A(x)) and Gal(A(z)) coincide as D-groupoids.
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Proor oF THEOREM [I1.9l Let Z be the differential ideal of Gal(A(z)) in
Oju,my and let Z,. be the sub-ideal of Z of order < r. We consider the mor-
phism of analytic varieties given by

L IP’}CXIP’}C — MxcM

(z,7) +— (2,0,7,0)

and the inverse image J, := t7'Z, (resp. J := 1~ 'Z) of the sheaf Z, (resp. Z) over
PL x PL. We consider similarly to [Mal01, Lemma 5.3.3], the evaluation ev(t~'Z)

at X = X = %15 = 0 of the equations of :71Z and we denote by ev(Z) the direct
image by ¢ of the sheaf ev(:~17).

The following lemma is crucial in the proof of the Theorem [IT1.9

LeEmMA 11.12. A germ of local diffeomorphism (x,X) — (ax, 8(x)X) of M is
solution of T if and only if it is solution of ev(ZT).

PRrOOF. First of all, we notice that Z is contained in Lin. Moreover the so-
lutions of Z, that are diffeomorphisms mapping a neighborhood of (z¢, Xo) € M
to a neighborhood of (Zy, X), can be naturally continued to diffeomorphisms of a
neighborhood of xy x C” to a neighborhood of Ty x C”. Therefore it follows from
the particular structure of the solutions of Lin, that they are also solutions of ev (Z)
(¢f. Proposition .

Conversely, let the germ of diffeomorphism (x, X) — (az, 8 (z) X) be a solution
of ev(Z) and E € Z,. It follows from Proposition that there exists F; € T of
order r, only depending on the variables m,X,%, %, afa)gf s Oy;?iian’ such that
(z,X) — (azx, B (x) X) is solution of E if and only if it is solution of E;. So we will
focus on equations on the form F; and, to simplify notation, we will write E for
E;.

By assumption (z, X) — (ax, 8 (z) X) is solution of

. (96 o 0X X 0% )
"7 0x’ 0XN 020X 919X
and we have to show that (z, X) — (az,(z) X) is a solution of E. We consider
the Taylor expansion of E:

o 89X 02X X N
E(m’X’c’h’aX’E)an"”éﬂ18X> _%:E“ (w, X) 9%,

. . . . T X 2 ¥ T X .
where 0% is a monomial in the coordinates %, %, aié);, . ax?*{(aX' Developing

the E, (z, X) with respect to X = (Xi,...,X,) we obtain:
OEE, o) vk
E=>Y" (2&: < an) (x,0)0 )X,
with k € (Z>¢)”. If we show that for any k the germ (z, X) — (az, 5 (x) X) verifies

the equation
OLE, N
By = Z ( axk) (2,0)0

we can conclude. For k = (0, ...,0), there is nothing to prove since By = ev (E).
Let Dx, be the derivation of Z corresponding to BL)Q’ The differential equation

Dx, (E) =) (gf{ﬁ (2, X) 0%+ Y Eo(z,X) Dx, (0%)
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is still in Z, since Z is a differential ideal. Therefore by assumption (z,X) —
(azx, B (x) X) is a solution of

ev(Dx,E) =Y <g§“> (2,0)0% + Y Eq (x,0) Dx, (0%).

Since Dy, (0%) € Lin and (z,X) — (az, f (x) X) is a solution of Lin, we conclude
that (z, X) — (az, 8 (z) X) is a solution of

Xa: (%%) (2,0)9°

and therefore of B;. Iterating the argument, one deduce that (z, X) — (az, 8 (x) X)
is solution of By, for any k € (Z>()”, which ends the proof of the lemma. O

We go back to the proof of Theorem [T1.9] Lemma [IT.12] proves that the solu-
tions of Gal(A (x)) coincide with those of the D-groupoid I' generated by Lin and
ev (T), defined on the open neighborhoods of any zyp x C¥ € M. By intersection

with the equation 77w, the same holds for the transversal groupoids Gal(A (z)) and
T.

Since P{ x PE and M x¢ M are locally compact and Z, is a coherent sheaf over
M x¢ M, the sheaf 7, is an analytic coherent sheaf over P{. xP{ and so is its quotient
ev(t7Y1(Z,)). By [Ser56l Theorem 3|, there exists an algebraic coherent sheaf J,.
over the projective variety ]P’(lC X ]P’é such that the analyzation of J, coincides with
ev(t71(Z,)). This implies that ev (Z) is generated by algebraic differential equations
which by definition have the dynamics for solutions.

We thus have that the sol(I") = sol(Gal(A(x))) C sol(Gal®9(A(x))). Since both
I and Gal®9(A(z)) are algebraic, the minimality of the variety Kol(A(x)) implies
that sol(Gal™(A(x))) C sol(T'). We conclude that the solutions of Gal(A(x)) coin-

cide with those Gal®9(A(z)). The same hold for Gal(A(z)), T' and Qalm(m))).
This concludes the proof. O

11.4. Comparison with known results

In [Mal01], B. Malgrange proves that the Galois-D-groupoid of a linear differ-
ential equation allows to recover, in the special case of a linear differential equation,
the Picard-Vessiot Galois group over C. This is not in contradiction with the result
above, since:

e due to the fact that local solutions of a linear differential equation form
a C-vector space (rather than a vector space on the field of elliptic func-
tions!), [Kat82, Proposition 4.1] shows that the intrinsic Galois group
and the Picard-Vessiot Galois group in the differential setting become iso-
morphic above a certain extension of the local ring. For more details on
the relation between the intrinsic Galois group and the usual Galois group
see [Pil02], Corollary 3.3].

e it is not difficult to prove that, in the differential setting, the Picard-
Vessiot Galois group and parametrized Galois group with respect to %
coincide. See Remark 0.111

Therefore B. Malgrange actually finds a parametrized intrinsic Galois group, which
is hidden in his construction. The steps of the proof above are the same as in his
proof, apart that, to compensate the lack of good local solutions, we are obliged
to use Theorem [7.13] Anyway, the application of Theorem [7.13] appears to be
very natural, if one considers how close the definition of the dynamics of a linear
g-difference system and the definition of the curvatures are.
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In [Gral, A. Granier shows that in the case of a ¢-difference system with con-
stant coefficients the groupoid that fixes the transversals in Gal(A(x)) is the Picard-
Vessiot Galois group, i.e., an algebraic group defined over C. Once again, this is not
in contradiction with our results. In fact, under this assumption, it is not difficult
to show that the parametrized intrinsic Galois group is defined over C. Moreover
the parametrized intrinsic Galois groups and the intrinsic Galois group coincide, in
fact if M is a g-difference module over C(x) associated with a constant ¢-difference
system, it is easy to prove that the prolongation functor Fj acts trivially on M,
namely Fy(M) =2 M @ M. Finally, to conclude that the intrinsic Galois group
coincide with the usual one, it is enough to notice that they are associated with the
same fiber functor, or equivalently that they stabilize exactly the same objects.

Because of these results, G. Casale and J. Roques have conjectured that “for
linear (q-)difference systems, the action of Malgrange groupoid on the fibers gives
the classical Galois groups” (¢f. [CROS8|). In loc. cit., they give two proofs of
their main integrability result: one of them relies on their conjecture. Here we
have proved that the Galois-D-groupoid allows to recover exactly the parametrized
intrinsic Galois group. By taking the Zariski closure one can also recover the
algebraic intrinsic Galois group. The comparison theorems in Part (4] imply that
we can also recover the Picard-Vessiot Galois group (cf. [vdPS97|, [Sau04b]),
performing a Zariski closure and a convenient field extension, and the parametrized
Galois group (c¢f. [HSO08]), performing a field extension.
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