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Introduction

The Galois theory of di�erence equations has witnessed a major evolution in the
last two decades. In the particular case of q-di�erence equations, authors have in-
troduced several di�erent Galois theories. In this memoir we consider an arithmetic
approach to the Galois theory of q-di�erence equations and we use it to establish
the relations among the di�erent theories in the literature.

Let q be a non-zero element of the �eld C of complex numbers. A (linear)
q-di�erence system is a functional equation of the form

(0.1) Y (qx) = A(x)Y (x), with A(x) ∈ GLν(C(x)).

The leitmotif of the paper, which is sometimes hidden, sometimes openly used,
is the Galoisian properties of the so-called dynamics of the system (0.1), namely
the set of maps obtained by iteration of the maps (x,X) 7−→ (qx,A(x)X) and
(x,X) 7−→ (q−1x,A(q−1x)−1X), both de�ned over U × Cν , where U is an open
subset of P1

C, and with values in P1
C×Cν . The latter is deduced from the functional

system Y (q−1x) = A(q−1x)−1Y (x), which is equivalent to (0.1).
An early Galois theory for q-di�erence equations, which we may call the �clas-

sical� Picard-Vessiot theory, is based on the construction of abstract solutions (see
[vdPS97]) and the Galois group is de�ned as the group of C(x)-automorphisms
of the Picard-Vessiot ring, i.e., the �minimal� C(x)-algebra generated by the ab-
stract solutions. A key-point of this approach is that the �eld of constants C =
{c ∈ C(x)|σq(c) = c} is algebraically closed. This assumption allows, among other
things, to consider only the C-points of the Galois group, without being obliged to
have a schematic point of view.

Other approaches are based on the remark that the system (0.1) determines a
�ber bundle over the torus E := C∗/qZ. The fact that its pull back on C∗ is trivial
means that (0.1) has an invertible solution matrix, with entries meromorphic on C∗.
See [Pra86]. Two Galois theories are based on the existence of these meromorphic
solutions. The �rst one, initiated by Sauloy and Ramis (see [Sau04b]), is more
analytic, uses the Tannakian formalism and describes the Galois group as a linear
algebraic group de�ned over C. The second one, introduced in [CHS08, De�nition
2.1], provides a Galois group for (0.1), which is a linear algebraic group scheme
de�ned over the �eld CE of meromorphic functions over E. It acts functorially
as the group of CE(x)-automorphisms of the �weak� Picard-Vessiot ring, i.e., the
CE(x)-algebra generated by the meromorphic solutions of the system.

In all the theories described above, the structure of the Galois group is a mirror
of the algebraic relations satis�ed by the entries of an invertible solution matrix of
(0.1), over the base �eld. In [CHS08], these approaches are compared and proved
to coincide up to some �eld extensions.

In 2008, Hardouin and Singer have developed a Galois theory for parameterized
functional equations. Consider a �eld K of characteristic 0 and an element q ∈ K,
q 6= 0, 1, not a root of unity. We equip K(x) with a derivation, for instance with
the derivation ∂ = x d

dx . Given a linear q-di�erence system with coe�cients in
K(x), the purpose of a parmeterized Galois theory is to produce a group that gives

vii



viii INTRODUCTION

information about the di�erential algebraic relations between the solutions of the
q-di�erence system, i.e., the algebraic relations satis�ed by the solutions and their
successive derivatives with respect to ∂. The prototype of the possible applications
of a parameterized Galois theory is a Galoisian proof of Holder's theorem, saying
that the classical Gamma function cannot be solution of a di�erential equation with
rational coe�cients.

In [HS08], the authors attached to such a q-di�erence system a linear di�er-
ential algebraic group à la Kolchin, de�ned over K. This is a group of matrices
de�ned as the set of zeros of a �nite number of algebraic di�erential equations.
In analogy with the constructions of [vdPS97], the solutions are abstract and the
theory of Hardouin-Singer requires that the �eld of σq-constants is di�erentially
closed with respect to ∂. Other approaches are possible: There are as many pa-
rameterized theories as classical theories and, if one considers the trivial derivation,
one recovers their classical counterpart.

In this work, we consider the parameterized Galois theories in the special case of
q-di�erence equations and from an arithmetic point of view. Relying on the di�er-
ential Tannakian formalism (see [Ovc09] for instance), we attach to a q-di�erence
system Y (qx) = A(x)Y (x) with A(x) ∈ GLn(K(x)) a di�erential algebraic group
scheme, that we call parameterized intrinsic Galois group. Roughly, this di�erential
algebraic group scheme is linked to the di�erential algebraic relations satis�ed by
the entries of A(x), in the sense that it only relies on di�erential algebraic construc-
tions of the associated q-di�erence module, and therefore on the associated matrix
constructions of A(x) and its dynamics. The advantages of considering this group
are its intrinsic nature and its arithmetic description (see Chapter 7), which is an
analogue of the conjectural description obtained by Katz in [Kat90] for the Lie
algebra of the intrinsic Galois group of a linear di�erential system.

Theorem 7.13 below exhibits an arithmetic set of generators of the parameter-
ized intrinsic Galois group. These generators are called the curvatures of the system
and are intrinsically de�ned, since they are obtained specializing conveniently cer-
tain sub-sequences of the dynamics

(
A(qn−1x) . . . A(x)

)
n∈N. The proof of Theorem

7.13 relies on a rationality criteria for the solutions of a q-di�erence system. It ex-
tends the main result of [DV02], in which the assumption that K is a number �eld,
and hence that q is algebraic, is crucial. Here we only assume K to be a �nitely
generated Q-algebra and q can be any number, algebraic or transcendental. We
state here Theorem 6.12 in the particular case K = Q(q) and under the assumption
that q is a transcendental number:

Theorem 1. Let A(x) ∈ GLν(Q(q, x)). The q-di�erence system Y (qx) =
A(x)Y (x) admits a full set of solutions in Q(q, x) if and only for almost all n ∈ N
there exists an n-th primitive root of unity ζn such that A(qn−1x) . . . A(x) specializes
to the identity matrix at q = ζn.

Unlike the case of linear di�erential systems, the computation of the curvatures
of a q-di�erence system relies only on matrix multiplication. Thus, one may hope to
develop fast algorithms to compute the curvatures and perhaps also the parameter-
ized intrinsic Galois group in terms of di�erential polynomial equations annihilated
by the curvatures. See [BS09] in the di�erential case. Notice that the arithmetic
description of the parameterized intrinsic Galois group provides an arithmetic an-
swer to problem of the rationality of the solutions of the q-di�erence systems as well
as the control of their di�erential dependencies with respect to parameters (see for
instance [AR13] for some algorithms that tackle these questions).

In Part 4 we compare the parameterized intrinsic Galois group with all the Ga-
lois groups detailed above (see Proposition 8.10), proving that all these di�erential
algebraic groups become isomorphic over a suitable �eld extension. This result has
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many consequences. First of all, it shows that the theory of [HS08] descends to
the �eld of coe�cients of the initial q-di�erence system, without any assumption
on the �eld of σq-constants (see [Wib12b] or [DVH11] for a descent over an alge-
braically closed �eld of σq-constants). Secondly, the di�erential algebraic relations
satis�ed by meromorphic solutions are encoded by the curvatures of the system (see
Corollary 8.13). In fact the group of [HS08] acts on some abstract solutions of the
q-di�erence system and one cannot apply the results to special solutions, without
some preliminary work. Knowing that all the groups in the literature are forms of
the same group allows to encompass this di�culty.

Inspired by the work of André ([And01]), we study the behavior of the pa-
rameterized intrinsic Galois group when q varies and especially when q goes to 1.
We prove that the specialization of the parameterized intrinsic Galois group of a
q-di�erence equation Y (qx) = A(q, x)Y (x) with coe�cients in a �eld k(q, x) such
that [k : Q] < ∞ at q = a for any a in the algebraic closure of k, contains the
parameterized intrinsic Galois group of the specialized equation. If k is a number
�eld, this holds also if we reduce the equations in positive characteristic, so that
q reduces to a parameter in positive characteristic. So if we have a q-di�erence
equation Y (qx) = A(q, x)Y (x), we can either reduce it in positive characteristic
and then specialize q, or specialize q and then reduce in positive characteristic. In
particular, for q = 1 we obtain from

Y (qx)− Y (x)

(q − 1)x
=
A(q, x)− 1

(q − 1)x
Y (x)

a di�erential system. The phenomenon is explicitly described in the case of hyper-
geometric functions (see Chapter 9 and, in particular, Corollary 9.18).

Finally, the description of the parameterized intrinsic Galois group in terms
of curvatures allows us to understand the link between the linear and non-linear
Galois theory of q-di�erence systems. In [Gra], A. Granier introduces a Galois
D-groupoid for non-linear q-di�erence equations, in the spirit of Malgrange's work.
In Corollary 11.10, we show, using once more the curvature characterization of the
parameterized intrinsic Galois group, that the Malgrange-Granier D-groupoid gen-
eralizes the parameterized intrinsic Galois group to the non-linear case. Thanks to
our comparison results, we are able to compare the Malgrange-Granier D-groupoid
to the di�erential Galois group of Hardouin-Singer. This answers a question of
Malgrange ([Mal09, page 2]) on the relation among D-groupoids and Kolchin's
di�erential algebraic groups.

Description of the main results

The paper being relatively long, we give here a quite detailed description of
the content. Part 1 is an introduction to q-di�erence equations and explains some
preliminaries results.

Grothendieck conjecture for q-di�erence equations

In [DV02], the �rst author proved a q-di�erence analogue of the Grothendieck
conjecture on p-curvatures, under the assumption that q is an algebraic number
and that the �eld of constants is a number �eld. In this paper, we generalize this
result in two di�erent directions.

Consider a �eld of rational functions K(x), a transcendental element q ∈ K,
such that K is itself a �eld of rational functions in q of the form k(q), and a
q-di�erence system Y (qx) = A(x)Y (x), with A(x) ∈ GL(K(x)). We prove the
following result (see Theorem 4.2 for a more general and intrinsic result):
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Theorem 2. A q-di�erence system Y (qx) = A(x)Y (x), with A(x) ∈ GLν(K(x)),
has a solution matrix in GLν(K(x)) if and only if for almost all positive integer n
there exists a primitive n-th root of unity ζn such that[

A(qn−1x) · · ·A(qx)A(x)
]
q=ζn

= identity matrix.

In the present article we work under more general assumptions. Namely, we
assume that k is a perfect �eld, of any characteristic, and thatK is a �nite extension
of k(q). Replacing k by its perfect closure, the theorem above covers all the possible
cases in which q is transcendental over the prime �eld.

Suppose now that q is algebraic over the prime �eld, and that the characteristic
of K is zero. We consider again the q-di�erence system Y (qx) = A(x)Y (x), with
A(x) ∈ GL(K(x)). We can always suppose that K is actually �nitely generated
over Q. For the sake of simplicity, we assume in this introduction that K = Q(α)
is a purely transcendental extension and that q ∈ Q, q 6= 0, 1,−1. For almost all
rational primes p the image of q in Fp is well de�ned and non-zero, so that there
exists a minimal positive number κp such that qκp ≡ 1 modulo p. Let `p be a
positive integer such that 1 − qκp = p`p hg , with h, g ∈ Z prime to p. We have (see
Theorem 3.6):

Theorem 3. A q-di�erence system Y (qx) = A(x)Y (x), with A(x) ∈ GLν(K(x)),
has a solution matrix in GLν(K(x)) if and only if for almost all prime p we have

A(qκp−1x) · · ·A(qx)A(x) ≡ identity matrix modulo p`p .

The statement above is a little bit imprecise, since we should have introduced a
Z-algebra contained in K(x) that would have given a precise sense to the reduction
modulo p`p , for almost all p. The reader will �nd a more formal statement in Part
2, where the result above is proved under the assumption that K is any �nitely
generated extension of Q and that q is an algebraic number, not a root of unity. As
already pointed out, the �rst author proves in [DV02, Thm.7.1.1] the statement
above under the assumption that K is a number �eld. Our proof relies on [DV02,
Thm.7.1.1], in the sense that we consider a transcendence basis of K over Q as a
set of parameters varying in the algebraic closure of Q and therefore we make a
non-trivial reduction to the situation considered in [DV02], for su�ciently many
special values of the parameters.

Notice that if one starts with a q-di�erence system over C(x) and a complex
number q, which is not a root of unity, then it is always possible to reduce to one
of the two situations above.

Intrinsic Galois groups

Once again, let K be a �eld of characteristic zero and q a non-zero element
of K, which is not a root of unity. We will denote by σq the q-di�erence operator
f(x) 7→ f(qx). A q-di�erence moduleMK(x) = (MK(x),Σq) over K(x) is a K(x)-
vector space of �nite dimension ν equipped with a σq-semilinear bijective operator
Σq:

Σq(fm) = σq(f)Σq(m), for any m ∈M and f ∈ K(x).

The coordinates of a vector �xed by Σq with respect to a given basis are solution
of a linear q-di�erence system of the form

(Sq) Y (qx) = A(x)Y (x), with A(x) ∈ GLν(K(x)).

We consider the collection Constr(MK(x)) ofK(x)-linear algebraic constructions of
MK(x) (direct sums, tensor product, symmetric and antisymmetric product, dual).
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The operator Σq induces a q-di�erence operator on every element of Constr(MK(x)),
that we will still call Σq. Then the intrinsic Galois group ofMK(x) is de�ned as:

Gal(MK(x), ηK(x)) = {ϕ ∈ GL(MK(x)) : ϕ stabilizes

every subset stabilized by Σq, in any construction}.

Of course, one can give a Tannakian description of Gal(MK(x), ηK(x)). As in
[Kat82], Theorem 2 and Theorem 3 are equivalent to the the following descriptions
of the intrinsic Galois group:

Theorem 4. In the notation of Theorem 2 (resp. Theorem 3), the intrinsic
Galois group Gal(MK(x), ηK(x)) is the smallest algebraic subgroup of GL(MK(x)),
whose specialization at ζn contains the specialization of the operator Σnq at ζn, for
almost all positive integer n and for a choice of a primitive n-th root of unity
ζn (resp. whose reduction modulo p`p contains the reduction of the operator Σ

κp
q

modulo p`p , for almost all prime p).

The statement is a little bit informal. The reader will �nd a precise statement
in Chapter 6.

As the notion of intrinsic Galois group is deeply related to the notion of tan-
nakian category, the notion of di�erential intrinsic Galois group is related to the
notion of di�erential tannakian category developed by A. Ovchinnikov in [Ovc09].
We show in this paper how the category of q-di�erence modules over K(x) may
be endowed with a prolongation functor F and thus turns out to be a di�erential
tannakian category. Intuitively, if M is a q-di�erence module, associated with a
q-di�erence system σq(Y ) = AY , the q-di�erence module F (M) is attached to the
q-di�erence system

σq(Z) =

(
A ∂A
0 A

)
Z.

Notice that if Y veri�es σq(Y ) = AY , then Z =

(
Y ∂(Y )
0 Y

)
is solution of the

system above. We consider the family Constr∂(MK(x)) of constructions of di�er-
ential algebra of MK(x), that is the smallest family containing MK(x) and closed
with respect to all algebraic constructions (direct sums, tensor product, symmet-
ric and antisymmetric product, dual) plus the prolongation functor F . Then the
di�erential intrinsic Galois group ofMK(x) is de�ned as:

Gal∂(MK(x), ηK(x)) = {ϕ ∈ GL(MK(x)) : ϕ stabilizes every Σq-stable subset

in any construction of di�erential algebra}.

The group Gal∂(MK(x), ηK(x)) is endowed with a structure of linear di�erential
algebraic group (cf. [Kol73]). Theorem 2 and Theorem 3 are equivalent to the the
following descriptions of the intrinsic Galois group:

Theorem 5. In the notation of Theorem 2 (resp. Theorem 3), the parameter-
ized intrinsic Galois group Gal∂(MK(x), ηK(x)) is the smallest di�erential subgroup
of GL(MK(x)), whose specialization at ζn contains the specialization of the operator
Σnq at ζn, for almost all positive integer n and for a choice of a primitive n-th root

of unity ζn (resp. whose reduction modulo p`p contains the reduction of the operator
Σ
κp
q modulo p`p , for almost all prime p).

This implies, for instance, (cf. Theorem 4 above and Corollary 7.16 in the text
below):
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Corollary 6. The di�erential intrinsic Galois group Gal∂(MK(x), ηK(x)) is
a Zariski dense subset of the algebraic intrinsic Galois group Gal(MK(x), ηK(x)).

Comparisons with the other Galois theories for linear di�erential

equations

In Part 4, we relate the intrinsic Galois groups, both algebraic and di�erential,
with the more classical notions of Galois groups. In Corollary 8.13, we prove that
the di�erential dimension of Gal∂(MK(x), ηK(x)) as a di�erential algebraic group
is equal to the di�erential transcendence degree of the �eld generated by the mero-
morphic solutions of Y (qx) = A(x)Y (x) over the di�erential closure of the �eld of
elliptic functions. This means that the di�erential relations among the solutions
can already be determined from the curvatures.

To study the specializations of the intrinsic Galois groups, di�erential and alge-
braic, we use the language of generalized di�erential rings and modules, introduced
by Y. André (cf. [And01]), that allows to treat di�erential and di�erence modules
in the same setting. It is therefore adapted to our situation where the reductions
of MK(x) can be either q-di�erence modules or di�erential modules. We prove
that, for all �nite places v of K, the specialization of Gal(MK(x), ηK(x)) (resp.
Gal∂(MK(x), ηK(x))) at v gives an upper bound for the intrinsic (resp. di�erential)
Galois group of the reduction ofMK(x) modulo v. Here we are considering the case
K = k(q), with q transcendental.

When we specialize q to 1, we �nd a di�erential module. Going backwards, i.e.,
deforming a di�erential module, we can deduce from the results above a description
of an upper bound of its intrinsic Galois group, de�ned in [Kat82]. In fact, given
a k(x)/k-di�erential module (M,∇), we can �x a basis e of M such that

∇(e) = eG(x),

so that the horizontal vectors of ∇ are solutions of the system Y ′(x) = −G(x)Y (x).
ThenMk(q,x) := M⊗k(x)k(q, x) has a natural structure of q-di�erence module de�ne
by Σqe = e(1 + (q − 1)xG(x)). This the most naïve q-deformation of a di�erential
module and more sophisticated choices are possible. We have (see Corollary 9.18):

Corollary 7. The intrinsic Galois group of (M,∇) is contained in the �spe-
cialization at q = 1� of the smallest algebraic subgroup G of GL(Mk(q,x)) that con-
tains almost all the specialization of the operators Λn : Mk(q,x) → Mk(q,x), de�ned
by:

Λne = e
n−1∏
i=0

(
1 + (q − 1)qixG(qix)

)
,

at a primitive n-th root of unity ζn, for almost all integer n.

Comparisons with Malgrange-Granier Galois theory for non-linear

di�erential equations

A. Granier has de�ned a GaloisD-groupoid for nonlinear q-di�erence equations,
in the wake of Malgrange's work. In the particular case of a linear system Y (qx) =
A(x)Y (x), with A(x) ∈ GLν(C(x)), the Malgrange-Granier D-groupoid is the D-
envelop of the dynamics, i.e., it encodes all the partial di�erential equations over
P1
C × Cν with analytic coe�cients, satis�ed by local di�eomorphisms of the form

(x,X) 7→ (qkx,Ak(x)X) for all k ∈ Z, where Ak(x) ∈ GLν(C(x)) is the matrix
obtained by iterating the system Y (qx) = A(x)Y (x) so that:

Y (qkx) = Ak(x)Y (x).
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Notice that:
Ak(x) := A(qk−1x) . . . A(qx)A(x) for all k ∈ Z, k > 0;
A0(x) = Idν ;
Ak(x) := A(qkx)−1A(qk+1x)−1 . . . A(q−1x)−1 for all k ∈ Z, k < 0.

Using Theorem 10, we relate this analytic D-groupoid with the more algebraic
notion of di�erential intrinsic Galois group. We prove that the solutions in a neigh-
borhood of {x0}×Cν of the sub-D-groupoid of the Malgrange-Garnier D-groupoid,
which �xes the transversals, are precisely the points of the di�erential intrinsic Ga-
lois group in the ring C{x− x0} of germs of analytic functions at x0.

For systems with constant coe�cients, we retrieve the result of A. Granier (cf.
[Gra, Thm. 2.4]), i.e., the evaluation in x = x0 of the solutions of the transversalD-
groupoid is the usual Galois group. Notice that in this case algebraic and di�erential
Galois groups coincide. The analogous result for di�erential equations is proved in
[Mal01]. B. Malgrange, in the di�erential case, and A. Granier, in the q-di�erence
constant case, establish a link between the Galois D-groupoid and the usual Galois
group: This is compatible with our results since in those cases the algebraic intrinsic
and di�erential Galois groups, as well as the usual Galois groups, coincide (cf. �11.4
below).





Part 1

Introduction to q-di�erence
equations and their Galois theory





CHAPTER 1

Generalities on q-di�erence modules

We quickly recall some notations and a few basic results about q-di�erence
algebras and q-di�erence modules. For a more detailed introduction to q-di�erence
modules see [vdPS97, Chapter 12], [DV02, Part I] or [DVRSZ03].

1.1. Basic de�nitions

Let K be a �eld and q 6= 0, 1 be a �xed element of K. The �eld K(x) is
naturally a q-di�erence �eld, i.e., it is equipped with the q-di�erence operator

σq : K(x) −→ K(x)
f(x) 7−→ f(qx)

.

We can associate to σq a non-commutative derivation, that we will call q-derivation,
de�ned by

dq(f)(x) =
f(qx)− f(x)

(q − 1)x
,

and satisfying a q-Leibniz formula:

dq(fg)(x) = f(qx)dq(g)(x) + dq(f)(x)g(x), for any f, g ∈ K(x).

Notice that, if we set [n]q = qn−1
q−1 , [n]!q = [n]q[n−1]q · · · [1]q, for any n ≥ 1, [0]!q = 1,

then

dsqx
n =

[n]!q
[n− s]!q

xn−s, for any pair of positive integers s, n, such that n ≥ s.

Therefore we de�ne the q-binomial
(
n
s

)
q

=
[n]!q

[n−s]!q [s]!q
, so that

dsq
[s]!q

xn =
(
n
s

)
q
xn−s.

When q is a root of unity of order κ, dκq and all its iterations are equal to 0.

Nonetheless, the q-binomials
(
n
sκ

)
q
and the operators

dsκq
[sκ]!q

are well de�ned and

non-zero for every positive integer s.

More generally, we will consider a q-di�erence extension F of K(x), i.e., a �eld
extension F of K(x) equipped with a �eld automorphism extending the action of
σq, which we will also call q-di�erence operator and denote σq. Of course, F is also
equipped with the skew derivation dq :=

σq−1
(q−1)x . We denote by Fσq the �eld of

constant of F , i.e., the sub�eld of F of all elements �xed by σq.
Typical examples of q-di�erence extensions of K(x) are the �elds K((x)) or

K(x1/r), for r ∈ Z>1. In the latter case, one sets σq(x1/r) = q̃x1/r, for a given r-th
root q̃ of q. If K = C, one can naturally consider also the �elds of meromorphic
functions over C, over C∗ = Cr {0} or over any domain invariant under the action
of σq.

Definition 1.1. A q-di�erence moduleMF = (MF ,Σq) (of rank ν) over F is a
�nite dimensional F-vector space MF (of dimension ν) equipped with an invertible
σq-semilinear operator Σq : MF → MF , i.e., a bijective additive map from MF to
itself such that

Σq(fm) = σq(f)Σq(m), for any f ∈ F and m ∈MF .

3
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We will call Σq a q-di�erence operator overMF or the q-di�erence operator ofMF .
A morphism of q-di�erence modules (over F) is a morphism of F-vector spaces,

commuting with the q-di�erence operators. We denote byDiff(F , σq) the category
of q-di�erence modules over F .

1.1.1. Construction of linear algebra. LetMF = (MF ,Σq,M ) and NF =
(NF ,Σq,N ) be two q-di�erence modules over F . The direct sumMF ⊕NF ofMF
and NF is the q-di�erence module such that:

• the underline F-vector space is MF ⊕NF ;
• the q-di�erence operator is a σq-semilinear bijection de�ned by m⊕ n 7→

Σq,M (m)⊕ Σq,N (n).

The tensor productMF ⊗F NF ofMF and NF over F is the q-di�erence module
such that:

• the underline F-vector space is MF ⊗F NF ;
• the q-di�erence operator is a σq-semilinear bijection de�ned by m⊗ n 7→

Σq,M (m)⊗ Σq,N (n).

The dual q-di�erence moduleM∗F = (M∗F ,Σ
∗
q,M ) ofMF is the q-di�erence module

de�ned as follows:

• the underline F-vector space M∗F is the dual F-vector space of MF ;
• Σ∗q,M : ϕ 7→ σ−1

q ◦ ϕ ◦ Σq,M , i.e., for any m ∈ MF and any ϕ ∈ M∗F we
have 〈Σ∗q,M (ϕ),m〉 = σ−1

q 〈ϕ,Σq,M (m)〉.
We say that a q-di�erence module NF over F is a construction of linear algebra
of MF if NF can be deduced from MF by direct sums, duals, tensor products,
symmetric and antisymmetric products. The latter constructions can be deduce
from the ones de�ned above in the usual way.

1.1.2. Basis. Let MF = (MF ,Σq) be a q-di�erence module over F of rank
ν. We �x a basis e of MF over F . Let A ∈ GLν(F) be such that:

Σqe = eA.

If f is another basis of MF , such that f = eF , with F ∈ GLν(F), then Σqf = fB,
with B = F−1Aσq(F ).

Proposition 1.2. Let K be a �eld as above, MK(x) a q-di�erence module
over K(x) and let k = Q or Fp, according that the �eld K has characteristic zero
or p > 0, respectively. For any q-di�erence module MK(x) there exists a �nite

generated extension K̃ ⊂ K of k, containing q, and a q-di�erence module MK̃(x)

such thatMK(x) =MK̃(x) ⊗K̃(x) K(x).

Proof. To prove the lemma, it su�ces to �x a basis e ofMF and to consider
a �eld K̃ generated over k by q and all the entries of the matrix of Σq with respect
to the basis e. �

Remark 1.3. We will always denote with the same letter, but with di�erent
subscripts, q-di�erence modules that become isomorphic after an extension of the
base �eld, as in the statement above.

1.1.3. Horizontal vectors. A horizontal vector of MF is an element m ∈
MF such that Σq(m) = m. We denote by MΣq

F the set of horizontal vectors of

MF . One proves easily that it is a Fσq -vector space. The dimension of MΣq
F is

invariant by extension of the constants:

Proposition 1.4. Let F be a q-di�erence �eld and with K = Fσq and let K ′

be a σq-constant �eld extension of K. LetMF be a q-di�erence module over F and
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MF(K′) = MF ⊗F F(K ′) the q-di�erence module over F(K ′) obtained by scalar

extension. Then
(
MF(K′)

)Σq
=MΣq

F ⊗K K ′.

Proof. First of all notice that F(K ′)σq = K ′. We have a natural injective
map

K ′ ⊗KM
Σq
F −→

(
MF(K′)

)Σq
.

We have to show that it is also surjective. Let e be a basis of MF over F such that
Σqe = eA, with A ∈ GLν(F). Let z ∈

(
MF(K′)

)Σq and let us write z = eZ, where
Z ∈ F(K ′)ν . The set

a := {r ∈ K ′ ⊗K F s.t. rZ ∈ (K ′ ⊗K F)ν}

is a non-zero ideal ofK ′⊗KF stable by σq. Indeed, if r ∈ a then Σq(rz) = eAσq(rZ)
and Aσq(rZ) ∈ (K ′ ⊗K F)ν . Since σq(r)z = Σq(rz), we �nd that σq(r) ∈ a. By
[vdPS97, Lemma 1.11], the algebra K ′⊗K F has no non trivial ideal stable under
σq. Thus 1 belongs to the ideal a, which implies that Z ∈ (K ′ ⊗K F)ν .

Let {λi}i ⊂ K ′ be a (maybe, in�nite) basis of K ′/K. We can write z =∑
i λi ⊗ e~yi, for some ~yi ∈ Fν , not all zero. Since Σq(z) = z, we obtain:∑

i

λi ⊗ e~yi =
∑
i

λi ⊗ eAσq(~yi),

where σq acts on vectors componentwise. We conclude that ~yi = Aσq(~yi) for all i

and therefore that e~yi ∈M
Σq
F , for all i. This ends the proof. �

1.1.4. q-di�erence modules over a ring. In the sequel, we will deal with
q-di�erence modules over rings. We do not want to be too formal on this point,
since notations and de�nitions are quite intuitive.

Let O be a subring of K containing q. Then O[x] is stable by σq and therefore
is a q-di�erence algebra. Let A be a q-di�erence algebra over O[x], meaning an
algebra over O[x], stable by a natural extension of σq. For instance, we will consider
algebras of the form

O
[
x,

1

P (x)
,

1

P (qx)
,

1

P (q2x)
, . . .

]
,

for some P (x) ∈ O[x].
A q-di�erence module M = (M,Σq) over A will be a free A-module M of

�nite rank, equipped with a semilinear invertible operator1 Σq. All the notions
introduced above generalize intuitively to this case.

If A is a domain and F is the fraction �eld of A, then

MF = (MF := M ⊗A F ,Σq ⊗ σq)

is a q-di�erence module over F . Notice that any q-di�erence module over F comes
from a q-di�erence module over A, for a convenient choice of A ⊂ F .

1.2. q-di�erence modules, systems and equations

LetMF = (MF ,Σq) be a q-di�erence module of rank ν over a q-di�erence �eld
F . We �x a basis e of MF over F , such that:

Σqe = eA,

with A ∈ GLν(F).

1We could have asked that Σq is only injective, but then, enlarging the scalars to a q-di�erence
algebraA′/A, constructed inverting some elements, we would have obtained an invertible operator.
For our purpose, the assumption that Σq is invertible is not restrictive.
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Definition 1.5. We call

(1.1) σq(Y ) = A−1Y,

the (q-di�erence) system (of order ν) associated toMF , with respect to the basis
e.

If ~y ∈ Fν are the coordinates of a horizontal vector m ∈ MF with respect to
the basis e, then ~y veri�es Σq(e~y) = e~y, i.e., ~y = Aσq(~y). This means that ~y is
a solution vector of the q-di�erence system (1.1). On the other hand, a solution
vector of (1.1) always represents a horizontal vector ofMF in the basis e.

Two systems are said to be equivalent by gauge transformation if they are
associated to the same q-di�erence module, with respect to two di�erent basis. Of
course, one associates a q-di�erence module, with underlying F-vector space Fν ,
to any q-di�erence system of order ν.

To a given linear q-di�erence equation

(1.2) a0y + a1σqy + · · ·+ aνσ
ν
q y = 0, with a1, . . . , aν ∈ F and a0aν 6= 0,

one naturally associates a linear q-di�erence system

(1.3) σq(Y ) =


0
...
0

−a0/aν

1 0
. . .

0 1
−a1/aν . . . −aν−1/aν

Y.

If z is a solution of (1.2) in some q-di�erence extension of F , then the vector
t(z, σq(z), . . . , σ

ν−1
q (z)) is a solution column of (1.3). The equation (1.2) has at

most ν solutions in a q-di�erence extension G of F , which are linearly independent
over the �eld Gσq of σq-invariant elements of G. If z1, . . . , zν are those solutions,
then the q-analog of the Wronskian Lemma says that the matrix

z1 . . . zν
σq(z1) . . . σq(zν)

... . . .
...

σν−1
q (z1) . . . σν−1

q (zν)


is an invertible solution of (1.3).

Given a q-di�erence module (MF ,Σq) of rank ν over F , such that q is not a
root of unity of order smaller than ν, the Cyclic Vector Lemma (see for instance
[DV02, �1.3]) allows to �nd an element m of MF , called cyclic element, such that
m,Σq(m), . . . ,Σν−1

q (m) is a basis of MF .

1.3. Some remarks on solutions

Let σq(Y ) = BY be a q-di�erence system, with B ∈ GLν(F).

Definition 1.6. Let G be a q-di�erence �eld extension of F . A fundamental
solution matrix of σq(Y ) = BY in G is an invertible matrix F , with entries in G,
such that σq(F ) = BF .

Recursively, we obtain from σq(Y ) = BY a family of higher order q-di�erence
systems:

σnq (Y ) = BnY and dnq Y = GnY,

with Bn ∈ GLν(F) and Gn ∈ Mν(F), for any positive integer n. Notice that
B1 := B and:

Bn+1 = σq(Bn)B1, G1 =
B1 − 1

(q − 1)x
and Gn+1 = σq(Gn)G1(x) + dqGn.
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It is convenient to set B0 = G0 = 1 and G[n] = Gn
[n]!q

for any n ≥ 0. Notice that G[n]

is well de�ned even if q is a root of unity.

Proposition 1.7. Let F = K(x) and suppose that the matrix G1 does not have
a pole at 0 (or equivalently that B does not have a pole at 0 and that B(0) is the
identity matrix), then W (x) =

∑
n≥0G[n](0)xn is a fundamental solution matrix

(in K((x))) of the system σq(Y ) = BY . Moreover, it is the only fundamental
solution matrix with coe�cients in K[[x]], whose constant term is the identity.

If K is a �eld equipped with a norm such that |q| 6= 1, then
∑
n≥0G[n](0)xn has

a non-zero radius of convergence and, hence, an in�nite radius of meromorphy.2

The proof of the proposition above is similar to the proof of the resolvent in
the di�erential case. Proposition 1.7 has a multiplicative avatar:

Proposition 1.8. Let K be a �eld, | | a norm (archimedean or ultrametric)
over K and q an element of K, such that |q| > 1. We consider a q-di�erence system
Y (qx) = B(x)Y (x) such that B(x) ∈ GLν(K(x)), zero is not a pole of B(x) and
such that B(0) is the identity matrix. Then the in�nite product

Z(x) =
(
B(q−1x)B(q−2x)B(q−3x) . . .

)
is the germ of the analytic fundamental solution matrix at zero such that Z(0) is
the identity, and has in�nite radius of meromorphy.

Proof. If |q| > 1, the in�nite product de�ning Z(x) is convergent in the
neighborhood of zero and it is a solution of Y (qx) = B(x)Y (x), such that Z(0) is the
identity matrix. The fact that Z(x) is a meromorphic function with in�nite radius of
meromorphy follows from the fact that the functional equation Y (qx) = B(x)Y (x)
�propagates� meromorphy. �

Remark 1.9. Notice that, independently of the characteristic of K, if q is not
a root of unity, then we can always �nd a norm over K such that |q| > 1. Of course,
the norm does not need to be archimedean.

Moreover, in Proposition 1.8, if |q| < 1 then one has to consider the product∏
n≥0B(qnx)−1.

1.4. Trivial q-di�erence modules

The purpose of the second part of this work is to give an arithmetic character-
ization of trivial q-di�erence modules, where trivial means:

Definition 1.10. We say that the q-di�erence module M = (M,Σq) of rank
ν over a q-di�erence algebra A is trivial if there exists a basis f of M over F such
that Σqf = f .

The de�nition applies in particular to the case of a q-di�erence module over a
�eld. For further reference, we state some properties of trivial q-di�erence modules.

Proposition 1.11. Let F be a q-di�erence �eld as above and MF be a q-
di�erence module over F . The following statements are equivalent:

(1) The q-di�erence moduleMF is trivial.
(2) There exists a basis e ofMF such that the q-di�erence system associated

to MF with respect to the basis e has an invertible solution matrix in
GLν(F).

(3) For any basis e of MF , the q-di�erence system associated to MF with
respect to the basis e has an invertible solution matrix in GLν(F).

2In the sense that its entries are quotient of two entire analytic functions with respect to | |.
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(4) dimFσqM
Σq
F = dimFMF .

Proof. Let e be a basis ofMF , such that Σqe = eA(x), and f be a basis of
MF , such that f = eF (x), with F (x) ∈ GLν(F). Then Σqf = f if and only if

f = Σq(eF (x)) = eA(x)F (qx) = fF (x)−1A(x)F (qx),

therefore if and only if F (qx) = A(x)−1F (x). This proves the equivalence among
(1), (2) and (3). The equivalence between (1) and (4) follows from the fact that f

is both a basis of MF over F and ofMΣq
F over Fσq . �

The following statement is a corollary of the proposition above and of Propo-
sition 1.4:

Corollary 1.12. Let K be a �eld, q 6= 0, 1 be an elementof K, andMK(x) be
a q-di�erence module over K(x). Let K ′ be an extension of K, on which σq acts as
the identity, and let MK′(x) =MK(x) ⊗K(x) K

′(x). Then MK(x) is trivial if and
only ifMK′(x) is trivial.

Proof. It follows from Proposition 1.4 thatMΣq
K′(x) =MΣq

K(x) ⊗K K ′. �

Finally we consider the case of a q-di�erence module whose associated system
has a algebraic solution over the base �eld K(x).

Proposition 1.13. Let K be a �eld and q be an element of K which is not a
root of unity. We suppose that there exists a norm | | over K, such that |q| 6= 1,
and we consider a linear q-di�erence equation

(1.4) aν(x)y(qνx) + aν−1(x)y(qν−1x) + · · ·+ a0(x)y(x) = 0

with coe�cients in K(x). If there exists an algebraic q-di�erence extension F of
K(x) containing a solution f of (1.4), then f is contained in an extension of K(x)
isomorphic to L(q̃, t), with q̃r = q,tr = x and L|K is a �nite �eld extension.

Proof. Let us look at (1.4) as an equation with coe�cients in K((x)). Then
the algebraic solution f of (1.4) can be identi�ed to a Laurent series in K((t)),
where K is the algebraic closure of K and tr = x, for a convenient positive integer
r. Let q̃ be an element of K such that q̃r = q and that σq(f) = f(q̃t). We can look
at (1.4) as a q̃-di�erence equation with coe�cients in K(q̃, t). Then the recurrence
relation induced by (1.4) over the coe�cients of a formal solution shows that there
exist f1, . . . , fs solutions of (1.4) in K(q̃)((t)) such that f ∈

∑
iKfi. It follows that

there exists a �nite extension K̃ of K(q̃) such that f ∈ K̃((t)).
We �x an extension of | | to K̃, that we still call | |. Since f is algebraic, it is

a germ of meromorphic function at 0. Since |q̃| 6= 1, the functional equation (1.4)
itself allows to show that f is actually a meromorphic function with in�nite radius
of meromorphy. Finally, if we chosen r big enough, f can have at worst a pole at
t =∞, since it is an algebraic function, which actually implies that f is the Laurent
expansion of a rational function in K̃(q̃, t). �

We recall the following properties of q-di�erence �elds (see [CS12, Lemma A.4]
for the case of characteristic zero):

Corollary 1.14. Let K be a �eld, q ∈ K be not a root of unity andMK(x) a
q-di�erence module over K(x). If there exists a �nite q-di�erence extension F of
K(x) such thatMF =MK(x)⊗K(x)F is trivial, then there exists a positive integer

r such that F ⊂ L(x1/r), where L|K is a �nite σq-constant �eld extension.

Proof. It is enough to apply the previous proposition to the entries of a fun-
damental solution matrix of the q-di�erence system associated to a cyclic basis of
MK(x). �
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1.5. Regularity

Let A be a sub-q-di�erence algebra of K((x)). We recall the following basic
de�nition (see for instance [vdPS97] or [Sau00]).

Definition 1.15. A q-di�erence module (M,Σq) over A is said to be regular
singular at 0 , if there exists a basis e of (M ⊗AK((x)),Σq ⊗ σq) over K((x)) such
that the action of Σq ⊗ σq over e is represented by a constant matrix A ∈ GLν(K).

It follows from the Frobenius algorithm3, that a q-di�erence moduleMK(x) over
K(x) is regular singular if and only if there exists a basis e such that Σqe = eA(x)
with A(x) ∈ GLν(K(x)) ∩ GLn(K[[x]]). The eigenvalues of A(0) are called the
exponents of M at 0. They are well de�ned modulo qZ. The q-di�erence module
M is said to be regular singular tout court if it is regular singular both at 0 and at
∞, i.e., after a variable change of the form x = 1/t.

For further reference, we explicitly state the following lemma, which is a con-
sequence of the Frobenius algorithm:

Proposition 1.16. Let M = (M,Σq) be a q-di�erence module over a sub-q-
di�erence ring A of K((x)). We suppose that q is not a root of unity. The following
statements are equivalent:

(1) There exists a basis e such that Σqe = eA(x), with A(x) ∈ GLν(K(x)) ∩
GLn(K[[x]]), and such that A(0) is a diagonal matrix with eigenvalues in
qZ (i.e.,M has a regular singularity at 0, with integral exponents and no
logarithmic singularity at 0).

(2) The q-di�erence moduleMK((x)) is trivial.

Singular regularity can be characterized with the help of a Newton polygon.
Namely, regular singular q-di�erence modules are the ones whose Newton polygon
has only one �nite slope equal to 0 (see [Sau04c, Page 200]). We are not going to
de�ne or to list the properties of Newton polygons. We only point out that they
are the keys to the proof of the statements below.

Let MK(x) be a q-di�erence module of rank ν and let r ∈ N be a positive
integer. We consider a �nite extension L of K containing an element q̃ such that
q̃ r = q. We consider the �eld extension K(x) ↪→ L(t), x 7→ tr. The �eld L(t) has a
natural structure of q̃-di�erence �eld extending the q-di�erence structure of K(x).
If follows from [Sau04c, �1.1.4] that:

Proposition 1.17. The q-di�erence module M is regular singular at x = 0 if
and only if the q̃-di�erence moduleML(t) := (M ⊗A L(t),Σq̃ := Σq ⊗σq̃) over L(t)
is regular singular at t = 0.

1.6. Irregularity

Next statement gives the structure of general q-di�erence modules. It can be
deduced from the formal classi�cation of q-di�erence modules (see [Pra83, Corol-
lary 9 and �9, 3)], [Sau04c, Theorem 3.1.6]):

Proposition 1.18. We suppose that q is not a root of unity. Let MK(x) be a
q-di�erence module of rank ν over K(x). Then there exists a positive integer r and
a �nite extension L(t) of K(x), with tr = x, r|ν!, and q̃ ∈ L, with (q̃)r = q such
that MK(x) ⊗ L((t)) is a direct sum of q̃-di�erence modules Ni. For any i there

exists a basis ei of Ni and a positive integer ri such that Σq̃ei = ei
Bi
tri , with Bi an

invertible matrix with coe�cients in L.

3cf. [vdPS97] or [Sau00, �1.1]. The algorithm is brie�y summarized also in [Sau04b,
�1.2.2] and [DVRSZ03].
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Corollary 1.19. There exist an extension L(t)/K(x) as above, a basis f
of the q̃-di�erence module ML(t) and an integer ` such that Σq̃f = fB(t), with
B(t) ∈ GLν(L(t)) of the following form:

(1.5)

{
B(t) =

B`
t`

+
B`−1

t`−1
+ . . . , as an element of GLν(L((t)));

B` is a constant non-nilpotent matrix.



CHAPTER 2

Di�erential tannakian formalism

This chapter is preliminary to Part 4. It may give a better insight on Part 3,
that uses some notions introduced below in a few very speci�c points.

In [HS08], the authors developed a parametrized Galois theory of q-di�erence
systems, that takes into account the action of an auxiliary derivation. In this
Galois theory, the groups are linear di�erential algebraic groups in the sense of
Kolchin ([Kol73]), that is, zero sets of di�erential algebraic equations. The theory
of [HS08] is part of a more general framework, known as di�erential Tannakian
formalism. Initially developed in [Ovc09] and [Kam10], it is nowadays general-
ized to encompass any kind of auxiliary operators (see [Kam12]). The di�erential
Tannakian formalism extends the natural ideas of the classical Tannakian formal-
ism in the following sense. A Tannakian category is equivalent to the category of
representations of an a�ne group scheme, in other terms, to the category of comod-
ules over the coordinate ring of an a�ne group scheme. By Morita equivalence, any
morphism on the coordinate ring gives birth to a natural transformation on the cat-
egory and vice versa (for instance, the existence of tensor products in the category
corresponds to the multiplication law in the coordinate ring whereas the existence
of dual objects corresponds to the inversion map in the Hopf algebra structure of
the coordinate ring). Through this dictionary, one should be able to understand the
action of an auxiliary operator on the coordinate ring. For instance, a derivation
on the coordinate ring corresponds to what we call prolongation functor in �2.2.

After an introduction to some notions of di�erential algebra and to some basic
facts about di�erential Tannakian categories, we introduce the parametrized Galois
theory, following [HS08], and explain its connection with the di�erential Tannakian
formalism.

2.1. Di�erential algebra

In this section, we quickly recall some basic facts of di�erential algebra as well
as some very basic notions of di�erential algebraic geometry, mainly in the a�ne
case. We largely use standard notations of di�erential algebra as can be found in
[Kol73].

2.1.1. Di�erential algebra. A di�erential ring (or ∂-ring for short) is a ring
R together with a derivation ∂ : R → R, i.e., a map ∂ : R → R satisfying the
Leibniz rule ∂(ab) = ∂(a)b+ a∂(b), for all (a, b) ∈ R2. The ring of ∂-constants of R
is R∂ = {r ∈ R| ∂(r) = 0}. All rings considered in this work are commutative with
identity and all di�erential rings contain the ring of integer numbers. In particular,
all �elds are of characteristic zero.

Given two ∂-rings (R, ∂) and (R′, ∂′), a morphism ψ : R → R′ of ∂-rings is a
morphism of rings such that ψ∂ = ∂′ψ.

A ∂-ideal I of a ∂-ring R is an ideal of R that is invariant under the action
of ∂. A ∂-ring R is said to be ∂-simple if it does not contain any non-zero proper
∂-ideals.

11
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A ∂-�eld k is a �eld that is also a ∂-ring. A ∂-k-algebra R is a k-algebra and
a ∂-ring such that the morphism k → R is a morphism of ∂-rings. Given two ∂-k-
algebras (R, ∂) and (R′, ∂′), a morphism ψ : R→ R′ of ∂-k-algebras is a morphism
of k-algebras such that ψ∂ = ∂′ψ. If, moreover, R is a ∂-�eld and a ∂-k-algebra,
we say that R|k is a ∂-�eld extension.

Let k be a ∂-�eld and R a ∂-k-algebra. If B is a subset of R, then k{B}∂ denotes
the smallest ∂-k-subalgebra of R that contains B. If R = k{B}∂ for some �nite
subset B of R, we say that R is �nitely ∂-generated over k. If K|k is an extension of
∂-�elds and B ⊂ K, then k 〈B〉∂ denotes the smallest ∂-�eld extension of k inside
K that contains B. The ∂-k-algebra k{x}∂ = k{x1, . . . , xn}∂ of ∂-polynomials over
k in the ∂-variables x1, . . . , xn is the polynomial ring over k in the countable set of
algebraically independent variables x1, . . . , xn, ∂(x1), . . . , ∂(xn), . . . , with an action
of ∂ as suggested by the names of the variables. Of course, for any ∂-�eld extension
L|k and any f := (f1, . . . , fn) ∈ Ln, one has a ∂-k-morphism k{x}∂ to L, which
assigns xi to fi, for all i = 1, . . . , n. We say that f is a solution of the di�erential
algebraic equation P (x) = 0, for some P ∈ k{x}∂ , if P lies in the kernel of the
specialization morphism above.

The di�erential closure of a ∂-�eld k is a ∂-�eld extension k̃ of k, with the
property that any system of di�erential algebraic equations with coe�cients in k,
having a solution in some di�erential �eld extension of k, has a solution in k̃. If k
coincides with its di�erential closure, it is said to be di�erentially closed or ∂-closed,
for short.

Definition 2.1. Let L|K be a ∂-�eld extension. Elements a1, . . . , an ∈ L
are called di�erentially (or ∂-algebraically) independent over K if the elements
a1, . . . , an, ∂(a1), . . . , ∂(an), . . . are algebraically independent over K. Otherwise,
they are called di�erentially dependent over K. A ∂-transcendence basis of L over
K is a maximal di�erentially independent set over K, subset of L. Any two ∂-
transcendence basis of L|K have the same cardinality and so we can de�ne the
∂-transcendence degree of L|K (or di�erential transcendence degree of L|K, when
the choice of ∂ is clear, or also ∂-trdeg(L|K), for short) as the cardinality of any
∂-transcendence basis of L over K.

Finally, we introduce the notion of (σq, ∂)-algebra. As in �1, let K be a �eld
and q 6= 0, 1 be a �xed element of K. We endow K(x) with the q-di�erence operator
σq(x) := qx. Let F be a q-di�erence �eld extension of K(x). We assume moreover
that F is a q-di�erence di�erential �eld, i.e., a q-di�erence �eld endowed with a
derivation ∂ that commutes with σq. For instance, endowed with the derivation
∂ := x d

dx , the �eld K(x) is a (σq, ∂)-�eld. Since we don't want to bother the
reader with many similar de�nitions, we recall the basic conventions: Algebraic
attributes always refer to the underlying ring whereas the operator su�x means
that the algebraic attributes commutes with the operator. For instance, a σq-ideal
is an ideal stable by σq, a (σq, ∂)-morphism is a ring morphism which commutes
with σq and ∂.

2.1.2. Di�erential algebraic geometry. In this paper, we work with the
formalism of a�ne di�erential group schemes, as can be found in [Kov02]. In this
section, we �x a ∂-�eld k of characteristic zero, not necessarily ∂-closed. We de�ne
an a�ne di�erential k-scheme as follows:

Definition 2.2. An a�ne ∂-k-scheme (or ∂-scheme over k) is a (covariant)
functor from the category of ∂-k-algebras to the category of sets which is repre-
sentable.
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The de�nition above means that a functor X from the category of ∂-k-algebras
to the category of sets is a ∂-k-scheme if and only if there exists a ∂-k-algebra
k{X} and an isomorphism of functors X ' Alg∂k(k{X},−), where Alg∂k stands for
morphism of ∂-k-algebras. By the Yoneda lemma, the ∂-k-algebra k{X} is uniquely
determined up to unique ∂-k-isomorphisms. We call it the ring of ∂-coordinates
of X. A ∂-k-scheme X is called ∂-algebraic (over k) if k{X} is �nitely ∂-generated
over k. We say that a ∂-k-scheme X is reduced if k{X} has no non-zero nilpotent
elements.

Let X be a ∂-k-scheme. By a closed ∂-k-subscheme Y ⊂ X we mean a sub-
functor Y of X which is represented by k{X}/I(Y ) for some ∂-ideal I(Y ) of k{X}.
The ideal I(Y ) of k{X} is uniquely determined by Y and vice versa. We call it the
vanishing ideal of Y in X.

A morphism of ∂-k-schemes is a morphism of functors. If φ : X → Y is
a morphism of ∂-k-schemes, we denote the dual morphism of ∂-k-algebras with
φ∗ : k{Y } → k{X}.

If a functor (resp. ∂-algebraic functor)X factors through the category of group,
we say that X is a di�erential (resp. di�erential algebraic) group k-scheme. By a
∂-subgroup H of G, we mean a group ∂-k-subscheme H of G. We call H normal
if H(S) is a normal subgroup of G(S) for every ∂-k-algebra S. As in the classical
setting, Yoneda lemma implies that, for a di�erential group k-scheme G, the algebra
k{G} is a ∂-k-Hopf algebra, i.e., a ∂-k-algebra equipped with the structure of a Hopf
algebra over k such that the Hopf algebra structure maps are morphisms of ∂-rings.
It also follows immediately that the category of di�erential group k-schemes is anti-
equivalent to the category of ∂-k-Hopf algebras. Then, since Hopf algebras over
�elds of characteristic zero are reduced by [Wat79b, Cartier's Theorem in �11.4],
we get that any di�erential group k-scheme is automatically reduced. Reduced
di�erential schemes correspond to di�erential varieties in the sense of Kolchin (see
for instance [Kol73]), for whom it su�ces to focus on the solution set of a system
of di�erential equations with value in a su�ciently big �eld, i.e., a ∂-closed �eld.

The di�erential schemes considered in this paper are all reduced. Thus, we
only de�ne the di�erential dimension of a reduced di�erential scheme. So let V
be a reduced di�erential algebraic scheme de�ned over k. We can write k{V } =
k{x1, . . . , xn}∂/q for some positive integer n and some radical ∂-ideal q ⊂ k{x1, . . . , xn}∂ .
Since q is radical, by [Kap57, Theorem 7.5] there exists �nitely many prime ∂-ideals
pi such that q = ∩pi. Now, we can de�ne the di�erential dimension of V over k,
denoted by ∂-dim(V |k) as the maximum of the ∂-trdeg(Li|k) where Li denotes the
fraction �eld of k{x1, . . . , xn}∂/pi. In [Kol73, III.�6.Proposition 3], Kolchin proved
that if k ⊂ k′ is an extension of ∂-�eld and if V is a reduced di�erential algebraic
scheme de�ned k, then ∂-dim(V |k) = ∂-dim(Vk′ |k′), where Vk′ is the base extension
of V to k′.

Let V be an a�ne k-scheme, i.e., a (covariant) functor from the category of k-
algebras to the category of sets which is representable by a k-algebra k[V ]. We call
k[V ] the ring of coordinates of V . In [Gil02], the author shows that the forgetful
functor

η : ∂-k-algebras → k-algebras,

that associates to any ∂-k-algebra its underlying k-algebra, has a left adjoint de-
noted by D. This implies that the functor V from the category of ∂-k-algebras to
the category of Sets, de�ned by the composition of V with the forgetful functor η
is a di�erential k-scheme, whose ring of ∂-coordinates is precisely D(k[V ]). We call
V, the di�erential scheme attached to V . The simple idea behind this construc-
tion is that polynomial equations are ∂-polynomials. More precisely if V ⊂ An

k , the
a�ne space of dimension n over k, and if I(V ) ⊂ k[x1, . . . , xn] is the vanishing ideal
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of V as subscheme of An
k then the vanishing ideal of V as ∂-subscheme of An

k is
nothing else than the ∂-ideal generated by I(V ) in k{x1, . . . , xn}∂ . Finally, Kolchin
irreducibility theorem states that if k[V ] is a �nitely generated integral k-algebra,
then D(k[V ]) is a �nitely ∂-generated integral ∂-k-algebra and the dimension of V
as a�ne scheme coincides with the ∂-dimension of V ([Gil02, �2]).

Conversely, given a ∂-subscheme V of some An
k , we can attach to V an a�ne

subscheme of An
k as follows. Let I(V) ⊂ k{x1, . . . , xn}∂ be the vanishing ideal

of V in An
k . Let VZ be the a�ne subscheme of An

k de�ned by the ideal I(V ) ∩
k[x1, . . . , xn]. We say that VZ is the Zariski closure of V inside An

k . The idea is
simply to throw away all the di�erential algebraic equations of V that contain a
derivation and keep the polynomial ones.

2.2. Fiber and forgetful functor

The di�erential formalism was simultaneously developed in [Ovc09] and [Kam10]
and later generalized by Kamensky (see [Kam12]) to include all type of auxiliary
action on the Tannakian category. In this section, we apply this formalism to the
category of q-di�erence modules over a q-di�erence di�erential �eld (F , σq, ∂). As
detailed for instance in [Sau04b], the category Diff(F , σq) is a Tannakian cate-
gory in the sense of [DMOS82]. Up to certain �eld extension k of Fσq , we know
by usual Tannakian equivalence that this category is equivalent to the category of
comodules over the coordinate ring k[G] of an a�ne group k-scheme. We show in
the sequel how Diff(F , σq) can be endowed with an endofunctor, called prolonga-
tion functor, that will translate, by Morita equivalence, into a derivation on k[G].
This derivation will give to G the structure of a ∂-group scheme over k.

So, let (F , σq, ∂) be a (σq, ∂)-�eld and let Diff(F , σq) be the category of q-
di�erence module over F . This category is a tensor category and we denote by
1 = (F , σq) the unit object for the tensor product. Diff(F , σq) is a rigid category,
i.e., it posses internal Homs and each object is canonically isomorphic to its bidual.

We de�ne below the prolongation functor in the general framework of projective
modules over a ∂-k-algebra. In Chapter 7, we will give a more explicit description
of this notion in the case of the category Diff(F , σq) of q-di�erence modules, using
the associated q-di�erence system. Let (k, ∂) be a ∂-�eld and S be a ∂-k-algebra.
We can endow the category ProjS of �nitely generated projective modules over S
with an endofunctor F∂ , called prolongation functor, as follows. For M an object
of ProjS , we de�ne F∂(M) := S[∂]≤1 ⊗S M where S[∂]≤1 is the set of di�erential
operators of order less than or equal to 1. In agreement with the Leibniz rule,
the right S-module structure of S[∂] is given by ∂.a = a.∂ + ∂(a). Then, the
left S-module structure of F∂(M) satis�es λ∂ ⊗ v = ∂ ⊗ λv − ∂(λ) ⊗ v, for all
λ ∈ S and v ∈ M . If f ∈ Hom(M,N), we de�ne F∂(f) : F∂(M) → F∂(N) as
F∂(f)(∂i⊗m) = ∂i⊗f(m), for i = 0, 1, where we have used the convention that ∂0

is the identity map. One can remark that, if ∂ is the trivial derivation, then F∂(M)
coincides with the direct sumM⊕M . Now, if we see Diff(F , σq) as a subcategory
of ProjF , we point out that, given an objectMF = (MF ,Σq), we are able to extend
the action of Σq to F∂(MF ) via Σq(∂

i(m)) := ∂i(Σq(m)), for i = 0, 1 and m ∈MF .
This shows that F∂ restricts to an endofunctor of Diff(F , σq). Together with this
additional structure, (Diff(F , σq), F∂) is a di�erential Tannakian category over
Fσq as de�ned in [GGO13, �4.4], i.e., a Fσq -linear, tensor, rigid category together
with a prolongation functor, satisfying precise commutative diagrams.

Now, following [GGO13, De�nition 4.9], we de�ne the notion of di�erential
�ber functors as follows:

Definition 2.3. Let S be a ∂-Fσq -algebra. We say that a functor ω : Diff(F , σq)→
ProjS is a di�erential �ber functor over S if it is
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• exact,
• faithful,
• Fσq -linear,
• tensor-compatible

and it commutes to F∂ , i.e., F∂ ◦ω = ω ◦F∂ . 1 We say moreover that ω is a neutral
di�erential �ber functor if S = Fσq .

Remark 2.4. • If ∂ is the trivial derivation, a di�erential �ber functor is a
�ber functor in the sense of the classical Tannakian theory [DMOS82, p. 148].
• The forgetful functor ηF : Diff(F , σq) → V ectF , which assigns to any q-
di�erence module its underlying F-vector space, is a di�erential �ber functor over
F .

Since one of our main purposes is to compare distinct �ber functors, we in-
troduce the functor of di�erential tensor morphisms between two di�erential �ber
functors.

Definition 2.5. Let ω1, ω2 : Diff(F , σq) → ProjS be two di�erential �ber
functors. For any S-algebra R, we de�ne Hom⊗(ω1, ω2)(R) as the set of all se-
quences of the form

{λXF |XF object of Diff(F , σq)} ,

such that

• λXF is an R-linear homomorphism from ω1(XF )⊗R to ω2(XF )⊗R,
• λ1 is the identity on 1⊗R,
• for every α ∈ Hom(XF ,YF ), we have

λYF ◦ (α⊗ idR) = (α⊗ idR) ◦ λXF ,

• λXF ⊗ λYF = λXF⊗YF .

ForR a ∂-S-algebra, we de�neHom⊗,∂(ω1, ω2)(R) as the subset ofHom⊗(ω1, ω2)(R)
of all sequences such that:

• F∂(λXF ) = λF∂(XF ).
2

The functor Hom⊗,∂(ω1, ω2) is a subfunctor of Hom⊗(ω1, ω2), composed with
the forgetful functor from ∂-S-algebras to S-algebras. If ∂ is the trivial deriva-
tion, these two functors coincides and Hom⊗(ω1, ω2) is representable by an a�ne
F-scheme (see [DMOS82, p.117]). Since morphisms of tensor functors are iso-
morphisms, by [DMOS82, Proposition 1.13], the same holds for di�erential mor-
phisms of di�erential tensor functors. Thus, we will now write Isom⊗,∂(ω1, ω2)
(resp. Isom⊗(ω1, ω2)) instead of Hom⊗,∂(ω1, ω2) (resp. Hom⊗(ω1, ω2)) and, when
ω1 = ω2 = ω, we write Aut⊗,∂(ω) (resp. Aut⊗(ω)). In that special case, it occurs
that the functor Aut⊗,∂(ω) (resp. Aut⊗(ω)) is a group functor, where the compo-
sition is given by the composition of morphisms.

Finally, [GGO13, Proposition 4.25] gives in our context:

Proposition 2.6. Let S be a ∂-Fσq -algebra and let ω : Diff(F , σq)→ ProjS
be a di�erential �ber functor. Let A be the S-Hopf algebra that represents the
functor Aut⊗(ω) (see [Del90, Proposition 6.6]). Then, A has a canonical structure
of ∂-S-Hopf algebra and represents the functor Aut⊗,∂(ω).

1This last equality has to be understood as a natural isomorphism.
2The �rst prolongation is to be understood inside ProjR whereas the second one is the

prolongation in Diff(F , σq).
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This paper is concerned with the Galois group of a given q-di�erence module
rather than with the di�erential a�ne group scheme attached to the whole category
Diff(F , σq). Thus, from now on, we will restrict ourselves to the strictly full
di�erential Tannakian subcategory generated inside Diff(F , σq) by a single q-
di�erence moduleMF . To do this, we need to introduce some notations. Given a
q-di�erence module NF , we consider the following categories:

• 〈NF 〉⊕ the strictly full subcategory of Diff(F , σq) formed by the subquo-
tients of �nite direct sums of copies of NF , i.e., the abelian subcategory
generated by NF ,
• 〈NF 〉⊗ the strictly full Tannakian category generated by NF ,
• 〈NF 〉⊗,∂ the strictly full di�erential Tannakian category generated by NF .

The di�erential Tannakian category generated by a single q-di�erence moduleMF
admits a very simple description. We consider the constructions of linear (resp.
linear di�erential) algebra ofMF , i.e., the list of q-di�erence modules⊕

M⊗iF ⊗M
∗
F
⊗j

(
resp.

⊕
M⊗iF ⊗M

∗
F
⊗j ⊗ F l∂(M⊗rF ⊗M

∗
F
⊗s)
)
,

where i, j (resp. i, j, l, r) are non-negative integers andM∗F denotes the dual ofMF
(resp. M∗F denotes the dual of MF and F l∂ the l-th iterate of the prolongation
functor). If we order the sub-objects of the constructions of linear (resp. linear
di�erential) algebra of MF by the relation �be a direct summand� then 〈MF 〉⊗
(resp. 〈MF 〉⊗,∂) is the �ltering union of the abelian categories 〈NF 〉⊕, where NF
runs through the sub-objects of a construction of linear (resp. linear di�erential)
algebra of MF . These inductive description allows to see Tannakian as well as
di�erential Tannakian equivalence as an inductive limit of Morita equivalences (see
[DMOS82, Lemma 2.13]).

Now, we restrict ourselves to 〈MF 〉⊗,∂ . Let ω : 〈MF 〉⊗,∂ → V ectFσq be a
neutral di�erential �ber functor. We denote, once again, by ηF : 〈MF 〉⊗,∂ →
V ectF the forgetful functor. As a direct application of Proposition 2.6, we �nd
that Aut⊗,∂(ω) (resp. Aut⊗,∂(ηF )) is a di�erential algebraic group de�ned over
Fσq (resp. F). Moreover, Aut⊗,∂(ηF ) coincides with the parameterized intrinsic
Galois group Gal∂(MF , ηF ), as de�ned in De�nition 7.3. See Proposition 6.2 and
Proposition 7.6 below.

2.3. Fiber functor and parametrized Picard-Vessiot extensions

There is a one to one correspondence between the neutral �ber functors on a
category of di�erential (resp. di�erence) modules and and the Picard-Vessiot exten-
sions, which are sort of �minimal rings of solutions�. (See [Del90, �9] for di�erential
equations and [And01, �3.4] for a larger class of functional equations.) In [GGO13,
Theorem 5.5] following the ideas of Deligne, the authors proved among other things
that this correspondence still holds for di�erential equations with di�erential pa-
rameters. We have no doubt that the correspondence established by Deligne holds
for arbitrary di�erential Tannakian categories and especially for q-di�erence mod-
ules with a di�erential parameter. Anyway this result appear nowhere and we have
decided to avoid this point, which is not necessary to our exposition.

In this section, we introduce some of the several known notions of parametrized
Picard-Vessiot rings attached to a q-di�erence equation. We show in Proposition 2.9
how they yield to neutral di�erential �ber functors. Let (F , σq, ∂) be a q-di�erence
di�erential �eld and

(2.1) σq(Y ) = AY,

with A ∈ GLν(F), a q-di�erence system. In [HS08], the authors de�ne the notion
of minimal ∂-F-algebra containing the solutions of (2.1) as follows:
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Definition 2.7. A (σq, ∂)-F-algebra R is a parametrized Picard-Vessiot ring
for equations (2.1) if

(1) R is a simple (σq, ∂)-F-algebra, i.e., there are no non-trivial ideal stable
under σq and ∂,

(2) there exists a Z ∈ GLν(R) such that σq(Z) = AZ and
(3) R = k{Z, 1

detA}∂ , that is R is generated a ∂-ring by the entries of Z and
the inverse of the determinant of Z.

Such a ring always exists. A basic construction is to consider the ring of di�er-
ential polynomials S = F{Y, 1

detY }∂ , where Y is a matrix of di�erential indetermi-
nates over F of order ν , and to endow it with a q-di�erence operator compatible
with the di�erential structure, i.e., such that

σq(Y ) = AY, σq(∂Y ) = A∂Y + ∂AY, . . . .

Any quotient of the ring S by a maximal (σq, ∂)-ideal is a (σq, ∂)-Picard-Vessiot ring.
By [HS08, Lemma 6.8], a parametrized Picard-Vessiot ring and more generally
any simple (σq, ∂)-F-algebra R, �nitely di�erentially generated over F , posses the
following structure. There exist a positive integer t and e0, . . . , et−1 idempotents of
R such that

(1) R = R0 ⊕ . . . Rt−1, Ri = eiR,
(2) σq permutes transitively the set {R0, . . . , Rt−1} and σtq leaves each Ri

invariant, and
(3) each Ri is a domain and a simple (σtq, ∂)-F-algebra.

Following [Wib12a], we call (σq, ∂)-F-pseudoalgebras, the (σq, ∂)-F-algebras hav-
ing the above structure.

Now, we introduce the notion of weak parametrized Picard-Vessiot ring. It is
the parametrized analogue of [CHS08, De�nition 2.1].

Definition 2.8. Let R be a (σq, ∂)-F-pseudoalgebra. We say that R is a weak
parametrized Picard-Vessiot ring for (2.1) if

(1) R = F{Z, 1
det(Z)}∂ where Z ∈ GLν(R) and σq(Z) = AZ,

(2) Rσq = Fσq .
In [HS08, Proposition 6.14], the authors shows that if one assume Fσq to

be a ∂-closed �eld, then the σq-constants of any parametrized Picard-Vessiot ring
coincide with Fσq . In other words, they show that, starting with a di�erential closed
�eld of σq-constants, a parametrized Picard-Vessiot ring is a weak parametrized
Picard-Vessiot ring. Following an idea of M. Wibmer, one can show that, if Fσq is
algebraically closed, there exists a weak Picard-Vessiot ring, which is moreover σq-
simple, i.e., has no non-trivial σq-ideals (see [Wib12b] and [DVH11]). However,
unicity is assured only if one extends the constants to the di�erential closure of
Fσq .

Proposition 2.9. LetMF be a q-di�erence module over F and let R be a weak
parametrized Picard-Vessiot ring for a q-di�erence system σq(Y ) = AY attached to
MF . Then,

ωR : 〈MF 〉⊗,∂ → V ectFσq ,
NF 7→ Ker(Σq − id,NF ⊗F R)

is a neutral di�erential �ber functor.

Proof. Let i be a positive integer. Since R = F{Z, 1
det(Z)}∂ , where Z ∈

GLν(R) and σq(Z) = AZ, the prolongation of order i of MF is trivialized by R,
i.e., possess a fundamental solution matrix with coe�cients in R. Indeed, a q-

di�erence system attached to F∂(MF ) is given by σq(Y ) =

(
A ∂(A)
0 A

)
Y and a
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fundamental matrix is

(
Z ∂(Z)
0 Z

)
. Then R trivializes any construction NF of lin-

ear di�erential algebra ofMF . This comes from the fact that a q-di�erence system
(resp. fundamental solution matrix) attached to XF is obtained from A (resp. Z)
by the same construction of linear di�erential algebra. Then, it is clear that any
sub-object NF of XF possess a fundamental solution matrix with coe�cients in R.
Thereby, for any object NF in 〈MF 〉⊗,∂ , we �nd a functorial isomorphism between
NF ⊗F R and ωR(NF ) ⊗Fσq R. We deduce from this fact that ωR is a faithful,
exact, Fσq -linear tensor functor. It is neutral because Rσq = Fσq The fact that
ωR intertwines with F∂ corresponds exactly to the fact that a fundamental solution
matrix attached to F∂(MF ) is given by the prolongation of a fundamental solution
matrix attached toMF , as explained above. �

To conclude this chapter, we choose to introduce the di�erential algebraic group
attached to a weak parametrized Picard-Vessiot ring R, i.e., the group of functorial
(σq, ∂)-F-automorphism of R. Then, we show that this latter group scheme corre-
sponds to the group of di�erential tensor automorphism of the neutral di�erential
�ber functor ωR, corresponding to R by Proposition 2.9. This incarnates the di�er-
ential Tannakian group of a q-di�erence module, as the group of automorphisms of
the solutions preserving the di�erential algebraic relations between the solutions.

Definition 2.10. LetMF be a q-di�erence module over F . Let R be a weak
parametrized Picard-Vessiot ring for a q-di�erence system attached to MF . We
de�ne the functor of (σq, ∂)-automorphisms of R as follows

G∂R : {∂-Fσq -algebras} → {Groups}
S 7→ Aut

(σq,∂)
F⊗S (R⊗ S),

where Aut(σq,∂)
F⊗S (R⊗S) stands for the group of (σq, ∂)-F⊗S-automorphism of R⊗S.

Remark 2.11. If ∂ is the trivial derivation, this group corresponds to the group
GR as de�ned in [CHS08, Proposition 2.2].

Proposition 2.12. LetMF be a q-di�erence module over F . Let R be a weak
parametrized Picard-Vessiot ring for a q-di�erence system attached toMF . Then,
G∂R is representable by a linear di�erential algebraic group de�ned over Fσq .

Proof. We omit this proof which is a straightforward di�erential analogous
of [CHS08, Proposition 2.2]. �

Proposition 2.13. LetMF be a q-di�erence module over F . Let R be a weak
parametrized Picard-Vessiot ring for a q-di�erence system attached toMF . Then,
the linear di�erential algebraic groups Aut⊗,∂(ωR) and G∂R are isomorphic over
Fσq .

Remark 2.14. The statement above is the parameterized anologue of [vdPS97,
Theorem 1.32.2)].

Proof. Let S be a ∂-Fσq -algebra. An element γS ∈ Aut⊗,∂(ωR)(S) acts by
S-linearity on the linear forms on the di�erential symmetric algebra of ω(MF )ν ⊗
S. Thus, γS de�nes an S-automorphism on the di�erential polynomial algebra
F{X, 1

det(X)}∂⊗S := F{(Xi,j)1≤i,j≤ν ,
1

det(X)}∂⊗S. If we let σq acts on F{X,
1

det(X)}∂
with σq(X) = AX then γS commutes with σq and ∂. This a consequence of the
fact that γS is a di�erential tensor automorphism of ω. Now, γS stabilizes every
ω(NF ) ⊗ S for any q-di�erence module NF contained in a di�erential algebraic
construction ofMF . It follows that γS stabilizes in F{X, 1

det(X)}∂ the ideal of dif-
ferential algebraic relations I satis�ed by a fundamental solution matrix Z over F .
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Indeed, a di�erential algebraic relation for Z can be seen as a F-linear form that an-
nihilates on a construction NF of linear di�erential algebra ofMF . Since the set of
F-linear forms that annihilate on NF is a q-di�erence submodule of N ∗F , it must be
stabilized by γ. This proves that γS acts S-linearly on F{X, 1

det(X)}∂/I⊗S = R⊗S.
This gives an embedding of Aut⊗,∂(ωR) in G∂R.

Conversely, any τS ∈ G∂R(S) acts on NF⊗R⊗S via id⊗τ , for any NF contained
in a construction of linear di�erential algebra ofMF . Since this action commutes
with Σq, we �nd an action of τS on ω(NF )⊗S. This gives us the inverse embedding
of G∂R into Aut⊗,∂(ωR). �





Part 2

Triviality of q-di�erence equations
with rational coe�cients





CHAPTER 3

Rationality of solutions, when q is an algebraic

number

Let K be a �eld and q 6= 0, 1 be an element of K. We are concerned with
the problem of �nding a necessary and su�cient condition for a q-di�erence mod-
ule MK(x) = (MK(x),Σq) over K(x) to be trivial (see De�nition 1.10). This is
equivalent to the problem of �nding a necessary and su�cient condition for a linear
q-di�erence system with coe�cients in K(x) to have a fundamental solution matrix
with entries in K(x).

Notice that we are not making any assumption on the characteristic of K. We
have to consider the following cases:

(1) q is a root of unity;
(2) q is algebraic over the prime �eld, but is not a root of unity;
(3) q is transcendental over the prime �eld.

These six cases (three cases for the characteristic zero, and three cases for the
positive one) actually boil down to three. In fact, we will �rst consider the (trivial)
situation in which q is a root of unity: If K has positive characteristic this includes
both (1) and (2) above. Then we will consider the case in whichK has characteristic
zero and q is algebraic over Q. Finally, in the next chapter, we will consider the
case in which q is transcendental over the prime �eld, Q or Fp, regardless of the
characteristic.

It is not di�cult to prove that:

Proposition 3.1 ([Hen96] or [DV02, Proposition 2.1.2]). If q is a primitive
root of unity of order κ, a q-di�erence module MK(x) over K(x) is trivial if and
only if Σκq is the identity.

The proposition above completes the study of the triviality of q-di�erence mod-
ules when q is a root of unity, at least as far as the problem we are considering here
is regarded. We refer to [Har10] for a more sophisticated approach.

3.1. The case of q algebraic, not a root of unity

If q is algebraic, but not a root of unity, we are necessarily in characteristic
zero. The example below gives the guidelines for the whole chapter.

Example 3.2. Let K = Q(a) be a purely transcendental extension of degree 1
and let q ∈ Qr{0, 1,−1}. We consider a q-di�erence moduleMK(x) = (MK(x),Σq)
over K(x). Let us choose a basis e of MK(x) and let Y (qx) = B(a, x)Y (x) be the
associated q-di�erence system. One can construct by hand a Z-algebra stable by
σq, of the form:

A = Z
[
a, x,

1

P (x)
,

1

P (qx)
, ...

]
,

for a convenient choice of P (x) ∈ Z[a, x], such that q ∈ A and B(a, x) and B(a, x)−1

are both matrices with coe�cients inA. For almost all primes p in Z, one can reduce
both q and A modulo p, and hence the coe�cients of B(a, x). In particular, for all

23
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such p's there exist a minimal positive integer κp and a positive integer `p, such
that qκp ≡ 1 modulo p and qκp − 1 = p`p rs , with r, s prime to p. The main result of
this chapter (see Theorem 3.6 below) is that the system Y (qx) = B(a, x)Y (x) has
a fundamental solution with coe�cients in K(x) if and only if for almost all p we
have

(3.1) B(a, qκp−1x)B(a, qκp−2x) · · ·B(a, x) ≡ 1 modulo p`p , i.e., in A/p`pA.

This last condition is equivalent to the fact that the reduction modulo p`p of the
operator Σ

κp
q is the identity, and is veri�ed, in particular, if the reduction of the

system Y (qx) = B(a, x)Y (x) modulo p`p has a fundamental solution matrix with
coe�cients in A/p`pA. We will proceed as follows: We will �rst prove that the
system Y (qx) = B(a, x)Y (x) has a fundamental solution with coe�cients in K(x)
if and only if, for all α in a dense subset of the algebraic closure Q of Q, the system
Y (qx) = B(α, x)Y (x) has a fundamental solution with coe�cients in Q(x). As
a consequence of [DV02, Theorem 7.1.1], we will show that this last condition,
holding for all α in a dense subset of Q, is equivalent to (3.1).

First of all we need to introduce some notation, that generalizes the one in the
previous example to the case of a number �eld. Notice that we can always suppose,
and we will, that K is �nitely generated over Q (see Proposition 1.2). Let Q be
the algebraic closure of Q inside K. Then the �eld K has the form Q(a, b), where
a = (a1, . . . , ar) is a transcendence basis of K/Q and b is a primitive element of the
algebraic extension K/Q(a). We call OQ the ring of integers of Q, v a �nite place
of Q and πv a v-adic uniformizer in OQ.

We �x an element q ∈ K which is algebraic over Q and not a root of unity, i.e.,
an element q ∈ Q which is not a root of unity. For almost all v,

• the order κv of q modulo v, as a root of unity,
• the positive integer power φv of πv, such that φ−1

v (1 − qκv ) is a unit of
OQ,

are well de�ned.
We consider a q-di�erence module MK(x) = (MK(x),Σq) over K(x), of �nite

rank ν. Choosing conveniently the set of generators a, b of K/Q, we can always
�nd a q-di�erence algebra A of the form:

(3.2) A = OQ
[
a, b, x,

1

P (x)
,

1

P (qx)
, ...

]
,

for some P (x) ∈ OQ [a, b, x], and a Σq-stable A-lattice M ofMK(x) such that the
restriction of Σq to M is invertible. According to the de�nition in �1.1.4, the pair
M = (M,Σq) is a q-di�erence module over the ring A.

Notation 3.3. For a given q-di�erence module MK(x) = (MK(x),Σq) over
K(x), the pairM = (M,Σq) will always denote a q-di�erence module over a ring
A as above, such that M⊗A K(x) := (M ⊗A K(x),Σq ⊗A σq) ∼= MK(x). The
notation may appear ambiguous, but it is actually convenient and there will be no
confusion.

Definition 3.4. We say that a q-di�erence module M = (M,Σq) over a q-
di�erence OQ-algebra A, as above, has zero v-curvature modulo φv if the linear
operator

Σκvq : M ⊗A A/(φv) −→M ⊗A A/(φv)
is the identity. By abuse of language we will say that the q-di�erence module
MK(x) =M⊗A K(x) has zero v-curvature modulo φv, ifM does.
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Remark 3.5. First of all, the de�nition is justi�ed by the fact that Σκvq induces

the identity modulo φv if and only if (∆q)
κv , where ∆q =

Σq−1
(q−1)x , is zero modulo φv.

Therefore the terminology is inspired by the classical termonology for di�erential
equations, [Kat70].

Secondly, we point out that the quotient OQ/(φv) is not an integral domain
in general. Nonetheless the following implication is always true. If M ⊗A A/(φv),
equipped with the operator induced by Σq, is trivial as a q-di�erence module over
A/(φv), then Σκvq induces the identity modulo φv. The converse is not true in such
generality (see [DV02, Proposition 2.1.2]).

Notice that the reduction modulo φv of Σκvq is well-de�ned, for almost all �nite
places v of Q. Moreover, given two q-di�erence module M over A and M′ over
A′, such that M⊗A K(x) ∼= M′ ⊗A K(x), the reduction modulo φv of the �rst
one has zero v-curvature if and only if also the other does, provided that φv is not
invertible in both A and A′.

Our �rst result is the following:

Theorem 3.6. A q-di�erence module M over A has zero v-curvature modulo
φv, for almost all �nite places v of Q, if and only ifMK(x) is trivial.

Remark 3.7. The theorem above is proved in [DV02] under the assumption
that K is a number �eld, i.e., that Q = K. Here K is only a �nitely generated
extension of Q. Notice the proof below relies crucially on [DV02], but is not a
generalization of the arguments in [DV02].

If the q-di�erence moduleMK(x) over K(x) is trivial, it is not di�cult to show
thatM has zero v-curvature modulo φv, for almost all �nite places v of Q, for any
choice of A andM, such thatM⊗AK(x) ∼=MK(x). So we only have to prove the
inverse implication.

We are actually going to prove a stronger result:

Theorem 3.8. A q-di�erence module M over A has zero v-curvature modulo
φv, for all places v in a set S of �nite places of Q of Dirichlet density 1 if and only
ifMK(x) is trivial.

We recall that a subset S of the set of �nite places C of Q has Dirichlet density
1 if

(3.3) lim sup
s→1+

∑
v∈S,v|p p

−sfv∑
v∈C,v|p p

−sfv
= 1,

where fv is the degree of the residue �eld of v over Fp.

3.2. Global nilpotence.

We start proving a result of regularity (see �1.5 for the de�nition), inspired by
[Kat70].

Definition 3.9. We say that a q-di�erence module M = (M,Σq) over a q-
di�erence OQ-algebra A, as above, has nilpotent v-curvature modulo πv, or simply
that it has nilpotent reduction modulo πv, if the linear operator

Σκvq : M ⊗A A/(πv) −→M ⊗A A/(πv)

is unipotent (or equivalently, if the linear operator induced by ∆κv
q is nilpotent. See

[DV02, �2]).

Proposition 3.10. Let M = (M,Σq) be a q-di�erence module over a q-
di�erence OQ-algebra A of the form (3.2).
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(1) IfM has nilpotent v-curvature modulo πv, for in�nitely many �nite places
v of Q, then the q-di�erence moduleMK(x) is regular singular.

(2) If there exists a set S of �nite places v of Q of Dirichlet density 1 such
thatM has nilpotent v-curvature modulo πv, for all v ∈ S, thenMK((x))

is trivial.

The proof of Proposition 3.10 is almost the same as [DV02, Theorem 6.2.2
and Proposition 6.2.3]. The last sentence of the proof of 1) in loc. cit. needs to
be recti�ed, so that we prefer to repeat the proof here. We recall the following
key-proposition:

Proposition 3.11 ([DV02, Proposition 6.1.1]). Let S be a set of �nite places
of Q of Dirichlet density equal to 1. If a and b are two non-zero elements of Q, not
roots of unity, such that

(1) for all v ∈ S, the reduction of a et b modulo πv is well de�ned and non-zero;
(2) for all v ∈ S, the reduction modulo πv of b belongs to the cyclic group generated
by the reduction modulo πv of a.

Then b ∈ aZ.

Proof of Proposition 3.10. To prove assertion (1), it is enough to prove
that 0 is a regular singular point forM, the proof at∞ being completely analogous.

In the notation of Corollary 1.19, we consider the extension L(t) of K(x), the
q̃-di�erence module ML(t) obtain by scalar extension and the basis f such that

Σq̃f = fB(t), with B(t) as in (1.5). Let Q̃ be the algebraic closure of Q in L and

B ⊂ L(t) be a q̃-di�erence algebra over the ring of integers OQ̃ of Q̃, of the same
form as (3.2), containing the entries of B(t) and the inverse of its determinant. Let
w be a �nite place of Q̃ and πw ∈ Q̃ be the uniformizer of w. Then there exists a
q̃-di�erence module N over B such that N ⊗B L(t) ∼=ML(t), having the following
properties:
1. N has nilpotent w-curvature modulo πw, for in�nitely many �nite places w of
Q̃;
2. there exists a basis f of N over B such that Σq̃f = fB(t) and B(t) veri�es (1.5).

Iterating the operator Σq̃ we obtain:

Σmq̃ (f) = fB(t)B(q̃t) · · ·B(q̃m−1t) = f

(
Bm`

q̃
`m(`m−1)

2 tm`
+ h.o.t.

)
.

We know that, for in�nitely many �nite places w of Q̃, the matrix B(t) veri�es

(3.4)
(
B(t)B(q̃t) · · ·B(q̃κw−1t)− 1

)n(w) ≡ 0 mod πw,

where κw is the order q̃ modulo πw and n(w) is a convenient positive integer.
Suppose that ` 6= 0. Then Bκwn(w)

` ≡ 0 modulo πw, , for in�nitely many w, and
hence B` is a nilpotent matrix, in contradiction with Corollary 1.19. So necessarily
` = 0.

Finally we have Σq̃(f) = f (B0 + h.o.t). It follows from (3.4) that B0 is actually
invertible, which implies thatML(t) is regular singular at 0. Proposition 1.17 allows
to end the proof of (1).

Let us prove the second part of Proposition 3.10. We have already proved that
0 is a regular singularity forM. This means that there exists a basis e ofMK(x)

over K(x) such that Σqe = eA(x), with A(x) ∈ GLν(K[[x]]) ∩GLν(K(x)).
The Frobenius algorithm (cf. [Sau00, �1.1.1]) implies that there exists a shear-

ing transformation S ∈ GLν(K[x, 1/x]), such that S(qx)A(x)S(x)−1 ∈ GLν(K[[x]])∩
GLν(K(x)) and that the constant term A0 of S(x)−1A(x)S(qx) has the following
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properties: if α and β are eigenvalues of A0 and αβ−1 ∈ qZ, then α = β. So
choosing the basis eS(x) instead of e, we can assume that A0 = A(0) has this last
property.

Always following the Frobenius algorithm (cf. [Sau00, �1.1.3]), one constructs
recursively the entries of a matrix F (x) ∈ GLν(K[[x]])), with F (0) = 1, such that
we have F (x)−1A(x)F (qx) = A0. This means that there exists a basis f ofMK((x))

such that Σqf = fA0.
The matrix A0 can be written as the product of a semi-simple matrix and a

unipotent matrix. SinceM has nilpotent reduction modulo πv, we deduce that the
reduction of Aκv0 modulo πv is the identity matrix, for any v ∈ S. First of all, this
implies that A0 is diagonalisable. Let K̃ be a �nite extension of K in which we can
�nd all the eigenvalues of A0. Then any eigenvalue α ∈ K̃ of A0 has the property
that ακv = 1 modulo πw, for all w �nite place of the algebraic closure of Q in K̃
such that w|v and v ∈ S. In other words, the reduction modulo w of an eigenvalue
α of A0 belongs to the multiplicative cyclic group generated by the reduction of
q modulo the uniformizer πw of w. Proposition 3.11 implies that α ∈ qZ. We
conclude appling Proposition 1.16. �

3.3. Proof of Theorem 3.6 and 3.8

The proof is divided into steps. We remaind that, if K is �nite over Q, the
statement is proved in [DV02].

Step 0. Reduction to a purely transcendental extension K/Q. Let
a be a transcendence basis of K/Q and b is a primitive element of K/Q(a), so that
K = Q(a, b). By restriction of scalars, the module MK(x) is also a q-di�erence
module of �nite rank over Q(a)(x). Since the �eld K(x) is a trivial q-di�erence
module over Q(a)(x), we have:

• the module MK(x) is trivial over K(x) if and only if it is trivial over
Q(a)(x) (see Corollary 1.12);
• under the present assumptions, there exist an algebra A′ of the form

(3.5) A′ = OQ
[
a, x,

1

R(x)
,

1

R(qx)
, ....

]
, with R(x) ∈ OQ[a, x],

and a A′-lattice MA′ of q-di�erence module MK(x) over Q(a)(x), such
that MA′ ⊗A′ Q(a, x) = MK(x), as a q-di�erence module over Q(a, x),
and Σκvq induces the identity onMA′ ⊗A′ A′/(φv), for all places v ∈ S.

For this reason, we can actually assume that K is a purely transcendental extension
of Q of degree d > 0 and that A = A′. We �x an immersion of Q ↪→ Q, so that we
will think to the transcendental basis a as a set of parameter generically varying in

Qd. �

Step 0bis. Initial data. Let K = Q(a) and q be a non-zero element of Q,
which is not a root of unity. We are given a q-di�erence moduleM over a convenient
algebra A as above, such that K(x) is the �eld of fraction of A and such that Σκvq
induces the identity on M ⊗A A/(φv), for all �nite places v ∈ S. We �x a basis e
of M, such that Σqe = eA−1(x), with A(x) ∈ GLν(A). We will rather work with
the associated q-di�erence system:

(3.6) Y (qx) = A(x)Y (x).

It follows from Proposition 3.10 thatMK(x) is regular singular, with no logarithmic
singularities, and that its exponents are in qZ (see also Proposition 1.16). Enlarging
a little bit the algebra A (more precisely replacing the polynomial R by a multiple
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of R), we can suppose that both 0 and∞ are not poles of A(x) and that A(0), A(∞)
are diagonal matrices with eigenvalues in qZ (see [Sau00, Theoreme �2.1]). �

Step 1. Construction of a fundamental solution at 0. We construct
a fundamental matrix of solutions, applying the Frobenius algorithm to this par-
ticular situation. There exists a shearing transformation S0(x) ∈ GLν(K[x, x−1])
such that

S−1
0 (qx)A(x)S0(x) = A0(x)

and A0(0) is the identity matrix. In particular, the matrix S0(x) can be written as a
product of invertible constant matrices and diagonal matrix with integer powers of
x on the diagonal. Once again, up to a �nitely generated extension of the algebra A,
obtained inverting a convenient polynomial, we can suppose that S0(x) ∈ GLν(A).

Notice that, since q is not a root of unity, there always exists a norm, non-
necessarily archimedean, on Q such that |q| > 1. We can always extend such a
norm to K, giving an arbitrary value to the elements of a basis of transcendence
(see [Bou64, �2.4]). As in Proposition 1.8, the system

(3.7) Z(qx) = A0(x)Z(x)

has a unique convergent solution Z0(x), such that Z0(0) is the identity and Z0(x) is
a germ of a meromorphic function with in�nite radius of meromorphy. So we have
the following meromorphic solution of Y (qx) = A(x)Y (x):

Y0(x) =
(
A0(q−1x)A0(q−2x)A0(q−3x) . . .

)
S0(x).

We remind that this in�nite product represents a meromophic fundamental solution
of Y (qx) = A(x)Y (x) for any norm over K such that |q| > 1. �

Step 2. Construction of a fundamental solution at ∞. In exactly the
same way, we can construct a solution at ∞ of the form Y∞(x) = Z∞(x)S∞(x),
where the matrix S∞ belongs to GLν(K[x, x−1]) ∩ GLν(A) and has the same
form as S0(x), and Z∞(x) is analytic in a neighborhood of ∞, with Z∞(∞) = 1:

Y∞(x) =
(
A∞(x)A∞(qx)A∞(q2x) . . .

)
S∞(x). �

Step 3. The Birkhoff matrix. To summarize we have constructed two fun-
damental solution matrices, Y0(x) at zero and Y∞(x) at∞, which are meromorphic
over A1

K r {0}, for any norm on K such that |q| > 1, and such that their set of
non-zero poles and zeros is contained in the q-orbits of the set of poles at zeros of
A(x) and A(x)−1. The Birkho� matrix

B(x) = Y −1
0 (x)Y∞(x) = S0(x)−1Z0(x)−1Z∞(x)S∞(x)

is a meromorphic matrix on A1
K r {0} with elliptic entries, i.e., B(qx) = B(x). All

the zeros and poles of B(x), other than 0 and ∞, are contained in the q-orbits of
zeros and poles of the matrices A(x) and A(x)−1 (see [Sau00, �2.3.1]). �

Step 4.Rationality of the Birkhoff matrix. Let us choose α = (α1, . . . , αr),
with αi in the algebraic closure Q of Q, so that we can specialize a to α in the co-
e�cients of A(x), A(x)−1, S0(x), S∞(x) and that the specialized matrices are still
invertible. Then we obtain a q-di�erence system with coe�cients in Q(α). It fol-
lows from Proposition 1.8 that for any norm on Q(α) such that |q| > 1, we can
specialize Y0(x), Y∞(x) and, therefore B(x), to matrices with meromorphic entries
on Q(α)∗. We will write A(α)(x), Y (α)

0 (x), etc. for the specialized matrices.

For almost all v, it still makes sense to reduce A(α)
κv (x) modulo φv. Moreover,

since Aκv (x) is the identity modulo φv, the same holds for A(α)
κv (x). Therefore the

reduced system has zero v-curvature modulo φv, for almost all v ∈ S. We know



3.3. PROOF OF THEOREM 3.6 AND 3.8 29

from [DV02, Theorem 7.1.1], that Y (α)
0 (x) and Y (α)

∞ (x) are the germs at zero of
rational functions, and therefore that B(α)(x) is a constant matrix in GLν(Q(α)).

As we have already pointed out, B(x) is q-invariant meromorphic matrix on
P1
Kr{0,∞}. The set of its poles and zeros is the union of a �nite numbers of q-orbits

of the forms βqZ, such that β is algebraic over K and is a pole or a zero of A(x) or
A(x)−1. If β is a pole or a zero of an entry b(x) of B(x) and hβ(x), kβ(x) ∈ Q[a, x]
are the minimal polynomials of β and β−1 over K, respectively, then we have:

b(x) = λ

∏
γ

∏
n≥0 hγ(q−nx)

∏
n≥0 kγ(1/qnx)∏

δ

∏
n≥0 hδ(q

−nx)
∏
n≥0 kδ(1/q

nx)
,

where λ ∈ K and γ and δ vary in a system of representatives of the q-orbits of the
zeroes and the poles of b(x), respectively. We have proved that there exists a dense

subset of Qd such that the specialization of b(x) at any point of this set is constant.
Since the factorization written above must specialize to a convergent factorization
of the same form of the corresponding element of B(α)(x), we conclude that b(x),
and therefore B(x), a constant. �

The fact that B(x) ∈ GLν(K) implies that the solutions Y0(x) and Y∞(x) glue
to a meromorphic solution on P1

K and ends the proof of Theorem 3.6.





CHAPTER 4

Rationality of solutions when q is transcendental

In this chapter we consider the case of q transcendental over the prime �eld.

4.1. Statement of the main result

Let us consider the �eld of rational function k(q) with coe�cients in a perfect
�eld k, of any characteristic. We �x d ∈]0, 1[ and for any irreducible polynomial
v = v(q) ∈ k[q] we set:

|f(q)|v = ddegq v(q)·ordv(q)f(q), ∀f(q) ∈ k[q].

The de�nition of | |v extends to k(q) by multiplicativity. To this set of norms one
has to add the q−1-adic one, de�ned on k[q] by:

|f(q)|q−1 = d−degqf(q).

Once again, this de�nition extends by multiplicativity to k(q). Then, the product
formula holds:∏

v∈k[q] irred.

∣∣∣ f(q)
g(q)

∣∣∣
v

= d
∑
v degq v(q) (ordv(q)f(q)−ordv(q)g(q))

= ddegqf(q)−degq g(q)

=
∣∣∣ f(q)
g(q)

∣∣∣−1

q−1
.

For any �nite extension K of k(q), we consider the family P of ultrametric norms,
that extends the norms de�ned above, up to equivalence. We suppose that the
norms in P are normalized so that the product formula still holds. We consider the
following partition of P:

• the set P∞ of places of K such that the associated norms extend, up to
equivalence, either | |q or | |q−1 ;
• the set Pf of places of K such that the associated norms extend, up to
equivalence, one of the norms | |v for an irreducible v = v(q) ∈ k[q],
v(q) 6= q.1

Moreover we consider the set C of places v ∈ Pf such that v divides a valuation
of k(q) having as uniformizer a factor of a cyclotomic polynomial, other than q− 1.
Equivalently, C is the set of places v ∈ Pf such that q reduces to a root of unity
modulo v of order κv strictly greater than 1. We will call v ∈ C a cyclotomic place.

Sometimes we will write PK , PK,f , PK,∞ and CK , to stress out the choice of
the base �eld.

In the sequel, we will deal with an arithmetic situation, in the following sense.
We consider the ring of integers OK of K, i.e., the integral closure of k[q] in K, and

1The notation Pf , P∞ is only psychological, since all the norms involved here are ultrametric.
Nevertheless, there exists a fundamental di�erence between the two sets, in fact for any v ∈ P∞
one has |q|v 6= 1, while for any v ∈ Pf the v-adic norm of q is 1. Therefore, from a v-adic analytic
point of view, a q-di�erence equation has a totally di�erent nature with respect to the norms in
the sets Pf or P∞.

31
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a q-di�erence algebra of the form

(4.1) A = OK
[
x,

1

P (x)
,

1

P (qx)
,

1

P (q2x)
, ...

]
,

for some P (x) ∈ OK [x], such that q ∈ A. Then A is stable by the action of σq
and we can consider a q-di�erence moduleM = (M,Σq) over A. Remember that
MK(x) = (MK(x) = M ⊗A K(x),Σq ⊗ σq) is a q-di�erence module over K(x) and
that any q-di�erence module over K(x) comes from a q-di�erence module over A,
for a convenient choice of A.

We denote by φv the uniformizer of the cyclotomic place of k(q) induced by
v ∈ CK . The ring A⊗OK OK/(φv) is not reduced in general, nevertheless it has a
q-di�erence algebra structure and the results in [DV02, �2] apply again. Therefore
we set:

Definition 4.1. A q-di�erence moduleM overA has zero v-curvature (modulo
φv) if the operator Σκvq induces the identity (or equivalently if the operator ∆κv

q ,

with ∆q =
Σq−1

(q−1)x , induces the zero operator) on the module M ⊗A A/(φv).

Our main result is the following.

Theorem 4.2. A q-di�erence module M over A has zero v-curvature modulo
φv, for almost all v ∈ C, if and only ifM becomes trivial over K(x).

Remark 4.3. As proved in [DV02, Proposition 2.1.2], if Σκvq is the identity
modulo φv then the q-di�erence module structure induced on M ⊗A A/(φv) is
trivial.

As far as the proof of Theorem 4.2 is regarded, one implication is trivial. We
will come back to the proof of the other implication in �4.3.

4.2. Regularity and triviality of the exponents

In this section, we are going to prove that a q-di�erence module is regular
singular and has integral exponents if it has nilpotent reduction for su�ciently
many cyclotomic places. We denote by πv an uniformizer of v ∈ C.

Definition 4.4. We say that a q-di�erence module M = (M,Σq) over a q-
di�erence OK-algebra A, as above, has nilpotent v-curvature modulo πv, or simply
that it has nilpotent reduction modulo πv, if the linear operator Σκvq : M ⊗A
A/(πv) −→ M ⊗A A/(πv) is unipotent (or equivalently if ∆κv

q is nilpotent. See
[DV02, �2]).

We prove the following result:

Proposition 4.5.

(1) If a q-di�erence module M over A has nilpotent v-curvature modulo πv,
for in�nitely many v ∈ C, then it is regular singular.

(2) Let M be a q-di�erence module over A. If there exists an in�nite set of
positive primes ℘ ⊂ Z such that M has nilpotent v-curvature modulo πv,
for all v ∈ C, such that κv ∈ ℘, thenMK((x)) is trivial.

Proof. The proof of Proposition 3.10 applies word by word to this case, until
the the argument showing that A0 is diagonalisable. To conclude with Proposition
1.16, one has to show that the eigenvalues of A0 are in qZ. Let K̃ be a �nite
extension of K in which we can �nd all the eigenvalues of A0. Then any eigenvalue
α ∈ K̃ of A0 has the property that ακv = 1 modulo w, for all w ∈ CK̃ , w|v and v
satis�es the assumptions. In other words, the reduction modulo w of an eigenvalue
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α of A0 belongs to the multiplicative cyclic group generated by the reduction of q
modulo πv.

To end the proof, we are reduced to prove the proposition below. �

Proposition 4.6. Let k be a perfect �eld, K/k(q) be a �nite extension and
℘ ⊂ Z be an in�nite set of positive primes. For any v ∈ C, let κv be the order of q
modulo πv, as a root of unity.

If α ∈ K is such that ακv ≡ 1 modulo πv, for all v ∈ C such that κv ∈ ℘, then
α ∈ qZ.

Remark 4.7. Let K = Q(q̃), with q̃r = q, for some integer r > 1. If q̃ is an
eigenvalue of A0 we would be asking that for in�nitely many positive primes ` ∈ Z
there exists a primitive root of unity ζr` of order r`, which is also a root of unity
of order `. Of course, this cannot be true, unless r = 1.

4.2.1. Proof of Proposition 4.6. We denote by k0 either the �eld of rational
numbers Q, if the characteristic of k is zero, or the �eld with p elements Fp, if the
characteristic of k is p > 0. First of all, let us suppose that k is a �nite perfect
extension of k0 of degree d and �x an embedding k ↪→ k of k in its algebraic
closure k. In the case of a rational function α = f(q) ∈ k(q), Proposition 4.6 is a
consequence of the following lemma:

Lemma 4.8. Let k be a perfect �eld, [k : k0] = d < ∞ and let f(q) ∈ k(q) be
non-zero rational function. If there exists an in�nite set of positive primes ℘ ⊂ Z
with the following property:

for any ` ∈ ℘ there exists a primitive root of unity ζ` of order `
such that f(ζ`) is a root of unity of order `,

then f(q) ∈ qZ.

Remark 4.9. If k = C and y − f(q) is irreducible in C[q, y], the result can be
deduced from [Lan83, Chapter 8, Theorem 6.1], whose proof uses Bézout theorem.
We give here a totally elementary proof, that holds also in positive characteristic.

Proposition 4.6 can be rewritten in the language of rational dynamic. We
denote by µ` the group of root of unity of order `. The following assertions are
equivalent:

(1) f(q) ∈ k(q) satis�es the assumptions of Lemma 4.8.
(2) There exist in�nitely many ` ∈ N such that the group µ` of roots of unity

of order ` veri�es f(µ`) ⊂ µ`.
(3) f(q) ∈ qZ.
(4) The Julia set of f is the unit circle.

As it was pointed out to us by C. Favre, the equivalence between the last two
assumptions is a particular case of [Zdu97], while the equivalence between the
second and the fourth assumption can be deduced from [FRL06] or [Aut01].

Proof. Let f(q) = P (q)
Q(q) , with P =

∑D
i=0 aiq

i, Q =
∑D
i=0 biq

i ∈ k[q] coprime
polynomials of degree less equal to D, and let ` be a prime such that:

• f(ζ`) ∈ µ`;
• 2D < `− 1.

Moreover, since ℘ is in�nite, we can chose ` >> 0 so that the extensions k and
k0(µ`) are linearly disjoint over k0. Since k is perfect, this implies that the minimal
polynomial of the primitive `-th root of unity ζ` over k is χ(X) = 1+X+ ...+X`−1.
Now let κ ∈ {0, . . . , `− 1} be such that f(ζ`) = ζκ` , i.e.,

D∑
i=0

aiζ
i
` =

D∑
i=0

biζ
i+κ
` .
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We consider the polynomialH(q) =
∑D
i=0 aiq

i−
∑D+κ
j=κ bj−κq

j and distinguish three
cases:

(1) If D+κ < `−1, then H(q) has ζ` as a zero and has degree strictly inferior
to `− 1. Necessarily H(q) = 0. Thus we have

a0 = a1 = ... = aκ−1 = bD+1−κ = ... = bD = 0 and ai = bi−κ for i = κ, . . . ,D,

which implies f(q) = qκ.
(2) If D + κ = ` − 1 then H(q) is a k-multiple of χ(q) and therefore all the

coe�cients of H(q) are all equal. Notice that the inequality D+κ ≥ `−1
forces κ to be strictly bigger than D, in fact otherwise one would have
κ + D ≤ 2D < ` − 1. For this reason the coe�cients of H(q) of the
monomials qD+1, . . . , qκ are all equal to zero. Thus

a0 = a1 = ... = aD = b0 = ... = bD = 0

and therefore f = 0 against the assumptions. So the case D + κ = l − 1
cannot occur.

(3) If D+ κ > `− 1, then κ > D > D+ κ− `, since κ > D and κ− ` < 0. In
this case we shall rather consider the polynomial H̃(q) de�ned by:

H̃(q) =

D∑
i=0

aiq
i −

`−1∑
i=κ

bi−κq
i −

D+κ−`∑
i=0

bi+`−κq
i.

Notice that H(ζ`) = H̃(ζ`) = 0 and that H̃(q) has degree smaller or equal
than `− 1. As in the previous case, H̃(q) is a k-multiple of χ(q). We get

bj = 0 for j = 0, ..., `− 1− κ
and

a0 − b`−κ = ... = aD+κ−` − bD = aD+κ−`+1 = ... = aD = 0.

We conclude that f(q) = qκ−`.

This ends the proof. �

We are going to deduce Proposition 4.6 from Lemma 4.8 in two steps: �rst of
all we are going to show that we can drop the assumption that [k : k0] is �nite and
then that one can always reduce to the case of a rational function.

Lemma 4.10. Lemma 4.8 holds if k/k0 is a �nitely generated (not necessarily
algebraic) extension.

Remark 4.11. Since f(q) ∈ k(q), replacing k by the �eld generated by the
coe�cients of f over k0, we can always assume that k/k0 is �nitely generated.

Proof. Let k̃ be the algebraic closure of k0 in k and let k′ be an intermediate
�eld of k/k̃, such that f(q) ∈ k′(q) ⊂ k(q) and that k′/k̃ has minimal transcendence
degree ι. We suppose that ι > 0, to avoid the situation of Lemma 4.8. So let
a1, . . . , aι be transcendence basis of k′/k̃ and let k′′ = k̃(a1, . . . , aι). If k′/k̃ is
purely transcendental, i.e., if k′ = k′′, then f(q) = P (q)/Q(q), where P (q) and
Q(q) can be written in the form:

P (q) =
∑
i

∑
j

α
(i)
j ajq

i and Q(q) =
∑
i

∑
j

β
(i)
j ajq

i,

with j = (j1, . . . , jι) ∈ Zι≥0, aj = aji · · · ajι and α
(i)
j , β

(i)
j ∈ k̃. If we reorganize the

terms of P and Q so that

P (q) =
∑
j

ajDj(q) and Q(q) =
∑
j

ajCj(q),
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we conclude that the assumption f(ζ`) ⊂ µ` for in�nitely many primes ` implies

that fj =
Dj
Cj

is a rational function with coe�cients in k̃ satisfying the assumptions

of Lemma 4.8. Moreover, since the fj 's take the same values at in�nitely many
roots of unity, they are all equal. Finally, we conclude that fj(q) = qd for any j

and hence that f = qd
∑
αj∑
αj

= qd.

Now let us suppose that k′ = k′′(b) for some primitive element b, algebraic over
k′′, of degree e. Then once again we write f(q) = P (q)/Q(q), with:

P (q) =
∑
i

e−1∑
h=0

αi,hb
hqi and Q(q) =

∑
i

e−1∑
h=0

βi,hb
hqi,

with αi,h, βi,h ∈ k′′. Again we conclude that
∑
i αi,hq

i∑
i βi,hq

i = qd for any h = 0, . . . , e−1,

and hence that f(q) = qd. �

End of the proof of Proposition 4.6. Let K̃ = k(q, f) ⊂ K. If the char-
acteristic of k is p, replacing f by a pn-th power of f , we can suppose that K̃/k(q)
is a Galois extension. So we set:

y =
∏

ϕ∈Gal(K̃/k(q))

fϕ ∈ k(q).

For in�nitely many v ∈ Ck(q) such that κv is a prime, we have fκv ≡ 1 modulo w,

for any w|v. Since Gal(K̃/K) acts transitively over the set of places w ∈ CK̃ such
that w|v, this implies that yκv ≡ 1 modulo πv. Then Lemmas 4.10 and 4.8 allow us
to conclude that y ∈ qZ. This proves that we are in the following situation: f is an
algebraic function such that |f |w = 1 for any w ∈ PK̃,f and that |f |w 6= 1 for any

w ∈ PK̃,∞. We conclude that f = cqs/r for some non-zero integers s, r and some
constant c in a �nite extension of k. Since fκv ≡ 1 modulo w, for all w ∈ CK̃ such
that κv ∈ ℘, we �nally obtain that r = 1 and c = 1. �

4.3. Proof of Theorem 4.2

Under the assumption of Theorem 4.2, Proposition 4.5 implies that the q-
di�erence module M becomes trivial over K((x)). To conclude we need to show
the following proposition:

Proposition 4.12. If a q-di�erence module M over A has zero v-curvature
modulo φv, for almost all v ∈ C, then there exists a basis e ofMK(x) over K(x) such
that the associated q-di�erence system has a formal fundamental solution Y (x) ∈
GLν(K((x))), which is the Taylor expansion at 0 of a matrix in GLν(K(x)), i.e.,
M becomes trivial over K(x).

Remark 4.13. This is the only part of the proof of Theorem 4.2 where we need
to suppose that the v-curvature are zero modulo φv, for almost all v ∈ C.

Proof. (cf. [DV02, Proposition 8.2.1]) Let e be a basis of M over K(x).
Applying a basis change with coe�cients in K

[
x, 1

x

]
, we can actually suppose that

Σqe = eA(x), where A(x) ∈ GLν(K(x)) has no pole at 0 and A(0) is the identity
matrix. In the notation of �1.3, the recursive relation de�ning the matrices Gn(x)
implies that they have no pole at 0. This means that Y (x) :=

∑
n≥0G[n](0)xn is a

fundamental solution of the q-di�erence system associated toMK(x) with respect
to the basis e.



36 4. RATIONALITY OF SOLUTIONS WHEN Q IS TRANSCENDENTAL

We recall the de�nition of the Gauss norm associated to an ultrametric norm
v ∈ P:

for any

∑
aix

i∑
bjxj

∈ K(x),

∣∣∣∣∑ aix
i∑

bjxj

∣∣∣∣
v,Gauss

=
sup |ai|v
sup |bj |v

.

We have:

Lemma 4.14. Let v ∈ CK . We assume that |G1(x)|v,Gauss ≤ 1. Then the
following assertions are equivalent:

(1) The moduleM = (M,Σq) has zero v-curvature modulo φv.
(2) For any positive integer n, we have

∣∣G[n]

∣∣
v,Gauss

≤ 1.

Remark 4.15. Let kv be the residue �eld of K modulo v and qv the reduction
of q in kv, which is de�ned for almost all v ∈ C. According to [Har10, �3], the
second assertion of the lemma above can be rewritten as: Mkv(x) has a natural
structure of iterated qv-di�erence module.

Proof of Lemma 4.14. The only non-trivial implication is �1 ⇒ 2� whose
proof is quite similar to [DV02, Lemma 5.1.2]. The Leibniz Formula for dq and ∆q

implies that:

G(n+1)κv =

κv∑
i=0

(
κv
i

)
q

σκv−iq (diq (Gnκv ))Gκv−i.

If M has zero v-curvature modulo φv then |Gκv |v,Gauss ≤ |φv|v. One obtains

recursively that |Gm|v,Gauss ≤ |φv|
[ mκv ]
v , where we have denoted by [a] the integral

part of a ∈ R, i.e., [a] = max{n ∈ Z : n ≤ a}. Since |[κv]q|v = |φv|v and

|[m]!q|v = |φv|
[ mκv ]
v , we conclude that:

(4.2)

∣∣∣∣ Gm[m]!q

∣∣∣∣
v,Gauss

≤ 1.

This ends the proof of the lemma. �

We go back to the proof of Proposition 4.12. The entries of Y (x) =
∑
n≥0G[n](0)xn

verify the following properties:

• For any v ∈ P∞, the matrix Y (x) is analytic at 0 and has in�nite v-adic
radius of meromorphy (see Proposition 1.7).
• Since |[n]q|v,Gauss = 1 for any non-cyclotomic place v ∈ Pf , we have∣∣G[m](x)

∣∣
v,Gauss

≤ 1, for almost all v ∈ Pf \ C. For the �nitely many
v ∈ Pf such that |G1(x)|v,Gauss > 1, there exists a constant C > 0 such
that

∣∣G[m](x)
∣∣
v,Gauss

≤ Cm, for any positive integer m.

• For almost all v ∈ C and all positive integer m,
∣∣G[m](x)

∣∣
v,Gauss

≤ 1 (cf.
Lemma 4.14), while for the remaining �nitely many v ∈ C there exists a
constant C > 0 such that

∣∣G[m](x)
∣∣
v,Gauss

≤ Cm for any positive integer
m.

This implies that:

lim sup
m→∞

1

m

∑
v∈P

log+
∣∣G[m](x)

∣∣
v,Gauss

<∞.

To conclude that Y (x) is the expansion at zero of a matrix with rational entries, we
apply a simpli�ed form of the Borel-Dwork criteria for function �elds, which says
exactly that a formal power series having positive radius of convergence for almost
all places and in�nite radius of meromorphy at one �xed place is the expansion of a
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rational function. The proof in this case is a slight simpli�cation of [DV02, Propo-
sition 8.4.1]2, which is itself a simpli�cation of the more general criteria [And04,
Theorem 5.4.3]. We are omitting the details. �

4.4. Link with iterative q-di�erence equations

We denote by kv the residue �eld of K with respect to a place v ∈ P and by
qv the image of q in kv, which is de�ned for all places v ∈ P. For almost all v ∈ Pf
we can consider the kv(x)-vector space Mkv(x) = M ⊗A kv(x), with the structure
induced by Σq. In this way, for almost all v ∈ P, we obtain a qv-di�erence module
Mkv(x) = (Mkv(x),Σqv ) over kv(x),

In the framework of iterative q-di�erence equations [Har10], Theorem 4.2 is
equivalent to the following statement, which is a q-analogue of the conjecture stated
at the very end of [MvdP03]:

Corollary 4.16. For a q-di�erence moduleM over A the following statement
are equivalent:

(1) The q-di�erence moduleM over A becomes trivial over K(x);
(2) It induces an iterative qv-di�erence structure over Mkv(x), for almost all

v ∈ C;
(3) It induces a trivial iterative qv-di�erence structure overMkv(x), for almost

all v ∈ C.

Proof. The equivalence 1⇔ 2 is a consequence of Lemma 4.14 and Theorem
4.2, while the implication 3⇒ 2 is tautological.

Let us prove that 1 ⇒ 3. If the q-di�erence module M becomes trivial over
K(x), then there exist an A-algebra A′, of the form (4.1), obtained from A inverting
a polynomial and its q-iterates, and a basis e of M ⊗A A′ over A′, such that the
associated q-di�erence system is σq(Y ) = Y . Therefore, for almost all v ∈ C,
M induces an iterative qv-di�erence module Mkv(x) whose iterative qv-di�erence

equations are given by
dκvqv

[κv]!qv
(Y ) = 0 for all n ∈ N (cf. [Har10, Proposition

3.17]). �

2The simpli�cation comes from the fact, in this setting, that there are no archimedean norms.





CHAPTER 5

A uni�ed statement

Let K be a �eld, q ∈ K, q 6= 0, 1 be a �xed element. If follows from Proposition
1.4 that we can suppose that K is �nitely generated over the prime �eld. Let
M = (MK(x),Σq) be a q-di�erence module over K(x). We recall the following
notations:

(A) If q is algebraic over Q, but not a root of unity, we are in the following situation.
We call Q the algebraic closure of Q inside K, OQ the ring of integer of Q, C the set
of �nite places v of Q and πv ∈ OQ a v-adic uniformizer. For almost all �nite place v
of Q, the following are well de�ned: the order κv, as a root of unity, of the reduction
of q modulo πv and the positive integer power φv of πv, such that φ−1

v (1 − qκv )
is a unit of OQ. The �eld K has the form Q(a, b), where a = (a1, . . . , ar) is a
transcendence basis of K/Q and b is a primitive element of the algebraic extension
K/Q(a). Choosing conveniently the set of generators a, b and P (x) ∈ OQ [a, b, x],
we can always �nd a q-di�erence algebra A of the form

(5.1) A = OQ
[
a, b, x,

1

P (x)
,

1

P (qx)
, ...

]
and a Σq-stable A-lattice M ofMK(x), so that we can consider the A/(φv)-linear
operator

Σκvq : M ⊗A A/(φv) −→M ⊗A A/(φv),
that we have called the v-curvature ofMK(x)-modulo φv. Notice that OQ/(φv) is
not an integral domain in general.
(T ) If q is transcendental over the prime �eld of K, then there exists a sub�eld k
of K such that K is a �nite extension of k(q). We denote by C the set of places of
K that extend the places of k(q), associated to irreducible polynomials φv of k[q],
that vanish at roots of unity. Let κv be the order of the roots of φv. Let OK be the
integral closure of k[q] in K. Choosing conveniently P (x) ∈ OK [x], we can always
�nd a q-di�erence algebra A of the form:

(5.2) A = OK
[
x,

1

P (x)
,

1

P (qx)
, ...

]
and a Σq-stable A-lattice M ofMK(x), so that we can consider the A/(φv)-linear
operator

Σκvq : M ⊗A A/(φv) −→M ⊗A A/(φv),
that we have also called the v-curvature of MK(x)-modulo φv. Notice that, once
again, OK/(φv) is not an integral domain in general.
(R) If q is a primitive root of unity of order κ, we de�ne C to be the set containing
only the trivial valuation v on K, φv = 0 and κv = κ. Then there exists a poly-

nomial P (x) ∈ K[x] such that the algebra A = K
[
x, 1

P (x) ,
1

P (qx) , ...
]
is σq-stable

and there exists a Σq-stable A-lattice M of MK(x), so that we can consider the
A/(φv)-linear operator

Σκvq : M ⊗A A/(φv) −→M ⊗A A/(φv),
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that we will call the v-curvature of MK(x)-modulo φv. Notice that this is simply
the κ-th iterate of Σq, namely Σκq : M −→M .

Then the main result of the �rst part of this work is:

Theorem 5.1. A q-di�erence moduleMK(x) = (MK(x),Σq) over K(x) is triv-
ial if and only if there exist an algebra A, as above, and a Σq-stable A-lattice M of
MK(x) such that the map

Σκvq : M ⊗A A/(φv) −→M ⊗A A/(φv),
is the identity, for any v in a co�nite non-empty subset of C.

In the case (A) we can take C to be a set of �nite places of Q of density 1,
depending onMK(x).

Proof. So the statement above coincide with Proposition 3.1 if q is a root of
unity, and with Theorem 3.8 if q is algebraic, but not a root of unity. Finally, to
deduce the third case from Theorem 4.2, it is enough to remark that we can replace
k by its perfect closure. �

Of course, for a given moduleMK(x) we can always �nd a q-di�erence algebra
A as above and a q-di�erence moduleM over A such thatM⊗A K(x) ∼=MK(x).
Also, if the statement above is true for a choice of A and one q-di�erence module
M over A, then it is true for all choice of A and ofM. In the following chapters,
we will use this fact implicitly.
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Intrinsic Galois groups





CHAPTER 6

The intrinsic Galois group

6.1. Arithmetic characterization of the intrinsic Galois group

6.1.1. De�nition. Let F be a q-di�erence �eld and MF = (MF ,Σq) be a
q-di�erence module of rank ν over F , in the sense of Chapter 1. We can consider
the family ConstrF (MF ) of q-di�erence modules containing MF and closed un-
der direct sum, tensor product, dual, symmetric and antisymmetric products (see
�1.1.1). We will denote by ConstrF (MF ) the collection of constructions of linear
algebra of the F-vector space MF , i.e., the collection of underlying vector spaces
of the family ConstrF (MF ). Notice that GL(MF ) acts naturally, by functoriality,
on any element of ConstrF (MF ).

Definition 6.1. The intrinsic Galois group1 Gal(MF , ηF ) ofMF is the sub-
group of GL(MF ) which is the stabilizer of all the q-di�erence submodules over F
of any object in ConstrF (MF ).

In the de�nitions above and below, the term �stabilizer� has to be understood
in the functorial sense of [DG70, II.1.36]. For instance, Gal(MF , ηF ) is a functor
from the category of F-algebras to the category of groups, that associates to any
F-algebra S, the subgroup of GL(MF ) ⊗ S that stabilizes NF ⊗ S, for all the q-
di�erence submodules NF over F of any object in ConstrF (MF ). By [DG70,
II.1.36], this functor is representable and thus de�nes an algebraic group scheme
over F .

Notice that in positive characteristic p, the group Gal(MF , ηF ) is not neces-
sarily reduced. An easy example is given by the equation y(qx) = q1/py(x), whose
intrinsic Galois group is µp (cf. [vdPR07, �7]).

The group Gal(MF , ηF ) is a tannakian object. In fact, the full tensor category
〈MF 〉⊗ generated byMF in Diff(F , σq) is naturally a tannakian category, when
equipped with the forgetful functor

ηF : 〈MF 〉⊗ −→ {F-vector spaces}.
In the notation of �2.2, the functor Aut⊗(ηF ) corresponds to the algebraic group
Gal(MF , ηF ). Moreover, we have the following proposition.

Proposition 6.2. Let ω : 〈MF 〉⊗ → V ectFσq be a neutral �ber functor. The
algebraic group schemes Aut⊗(ω)⊗ F and Gal(MF , ηF ), de�ned over F , are iso-
morphic over the algebraic closure F of F .

Proof. In the notations of �2.2, the a�ne scheme Isom⊗(ω ⊗Fσq F , ηF ) is
representable by a non-zero �nitely generated F-algebra. Since F is algebraically
closed, the previous algebraic scheme has a point in F . This ends the proof. �

We will come back on the tannakian point of view in Part 4.

Remark 6.3. We recall that the Chevalley theorem, that also holds for non-
reduced groups (cf. [DG70, II, �2, n.3, Corollary 3.5]), ensures that Gal(MF , ηF )

1In the literature, the intrinsic Galois group is also called the generic Galois group of MF .
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44 6. THE INTRINSIC GALOIS GROUP

can be de�ned as the stabilizer of a rank one submodule (which is not necessarily a
q-di�erence module) of a q-di�erence module contained in an algebraic construction
of MF . Nevertheless, it is possible to �nd a line that de�nes Gal(MF , ηF ) as
the stabilizer and that is also a q-di�erence module. In fact the noetherianity of
GL(MF ) implies that Gal(MF , ηF ) is de�ned as the stabilizer of a �nite family
of q-di�erence submodules W(i)

F = (W
(i)
F ,Σq) contained in some objects M(i)

F of
〈MF 〉⊗. It follows that the line

LF = ∧dim⊕iW
(i)
F

(
⊕
i
W

(i)
F

)
⊂ ∧dim⊕iW

(i)
F

(
⊕
i
M

(i)
F

)
is a q-di�erence module and de�nes Gal(MF , ηF ) as a stabilizer (cf. [Kat82, proof
of Proposition 9]).

In the sequel, we will use the notation Stab(W (i)
F , i) to say that a group is the

stabilizer of the set of vector spaces {W (i)
F }i.

6.1.2. Main result. From now on we consider the particular case F = K(x),
with the notations introduced in Chapter 5. Let G be a closed algebraic subgroup
of GL(MK(x)), such that G = Stab(LK(x)) for some line LK(x) contained in an
object WK(x) of 〈MK(x)〉⊗. For a q-di�erence algebra A, a Σq-stable A-lattice M
of MK(x) determines an A-lattice L of LK(x) and an A-lattice W of WK(x). The
latter is the underlying space of a q-di�erence module W = (W,Σq) over A.

Definition 6.4. Let C̃ be a co�nite non-empty subset of C and (Λv)v∈C̃ be a
family ofA/(φv)-linear operators acting onM⊗AA/(φv). We say that the algebraic
group G ⊂ GL(MK(x)) contains the operators Λv modulo φv for almost all v ∈ C
if for almost all, and at least one, v ∈ C̃ the operator Λv stabilizes L ⊗A A/(φv)
inside W ⊗A A/(φv):

Λv ∈ StabA/(φv)(L⊗A A/(φv)).

Remark 6.5. First of all, starting from now, we will always use the phrase �for
almost all� to mean �for almost all, and at least one�. In this way the statements
will be correct even in the case (R) (see Chapter 5).

As in [DV02, 10.1.2], one can prove that the de�nition above is independent
of the choice of A, M and LK(x).

The main result of this section is the following:

Theorem 6.6. The algebraic group Gal(MK(x), ηK(x)) is the smallest closed
algebraic subgroup of GL(MK(x)), that contains the operators Σκvq modulo φv, for
almost all v ∈ C.

Remark 6.7. • The noetherianity of GL(MK(x)) implies that the small-
est closed algebraic subgroup of GL(MK(x)) that contains the operators
Σκvq modulo φv, for almost all v ∈ C, is well-de�ned. Theorem 6.6 has been
proved in [Hen96, Chapter 6] when q is a root of unity and in [DV02]
when q is algebraic and K is a number �eld.
• Under the assumption (A) (see Chapter 5), the statement above is still
true if we replace C by a set of �nite places of Q of density 1. This remark
applies to all statements in this and the next chapter.

A part of Theorem 6.6 is easy to prove:

Lemma 6.8. The algebraic group Gal(MK(x), ηK(x)) contains the operators Σκvq
modulo φv, for almost all v ∈ C.
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Proof. The statement follows immediately from the fact thatGal(MK(x), ηK(x))

can be de�ned as the stabilizer of a rank one q-di�erence module in 〈MK(x)〉⊗,
which is a fortiori stable by the action of Σκvq . �

Corollary 6.9. Gal(MK(x), ηK(x)) = {1} if and only if MK(x) is a trivial
q-di�erence module.

Proof. Because of the lemma above, if Gal(MK(x), ηK(x)) = {1} is the triv-
ial group, then Σκvq induces the identity on M ⊗A A/(φv), for almost all v ∈ C.
Therefore Theorem 5.1 implies thatMK(x) is trivial. On the other hand, ifMK(x)

is trivial, then it is isomorphic to the q-di�erence module (Kν ⊗K K(x), 1⊗σq). It
follows that the intrinsic Galois group Gal(MK(x), ηK(x)) is forced to stabilize all
the lines generated by vectors of the type m⊗ 1, with m ∈ Kν . Therefore it is the
trivial group. �

Now we are ready to give the proof of Theorem 6.6, whose main ingredient is
Theorem 5.1. The argument is inspired by [Kat82, �X].

Proof of Theorem 6.6. Lemma 6.8 says that Gal(MK(x), ηK(x)) contains
the smallest subgroup G of GL(MK(x)), that contains the operator Σκvq modulo φv,
for almost all v ∈ C. Let LK(x) be a line contained in some object of the category
〈MK(x)〉⊗, that de�nes G as a stabilizer. Then there exists a smaller q-di�erence
module WK(x) over K(x) that contains LK(x). Let L and W = (W,Σq) be the
associated A-modules. Any generator m of L as an A-module is a cyclic vector for
W and the operator Σκvq acts onW ⊗AA/(φv) with respect to the basis induced by
the cyclic basis generated by m via a diagonal matrix. Because of the de�nition of
the q-di�erence structure on the dual module W∗ of W, the group G can be de�ne
as the subgroup of GL(MK(x)) that �xes a line L′ in W ∗ ⊗W , i.e., such that Σκvq
acts as the identity on L′⊗AA/(φv), for almost all v ∈ C. It follows from Theorem
5.1 that the minimal submodule W ′ that contains L′ becomes trivial over K(x).
Since the tensor category generated by W ′K(x) is contained in 〈MK(x)〉⊗, we have
a functorial surjective group morphism

Gal(MK(x), ηK(x)) −→ Gal(W ′K(x), ηK(x)) = {1}.

We conclude that Gal(MK(x), ηK(x)) acts trivially over W ′K(x), and therefore that
Gal(MK(x), ηK(x)) is contained in G. �

Corollary 6.10. Theorem 5.1 and Theorem 6.6 are equivalent.

Proof. We have seen in the proof above that Theorem 5.1 implies Theorem
6.6. Corollary 6.9 gives the opposite implication. �

6.1.3. Finite intrinsic Galois groups. We deduce from Theorem 6.6 the
following description of a �nite intrinsic Galois group:

Corollary 6.11. The following facts are equivalent:

(1) There exists a positive integer r such that the q-di�erence module M =
(M,Σq) becomes trivial as a q̃-di�erence module over K(q̃, t), with q̃r = q,
tr = x.

(2) There exists a positive integer r such that, for almost all v ∈ C, the mor-
phism Σκvrq induces the identity on M ⊗A A/(φv).

(3) There exists a q-di�erence �eld extension F/K(x) of �nite degree such
thatM becomes trivial over F .

(4) The (intrinsic) Galois group ofM is �nite.

In particular, if Gal(MK(x), ηK(x)) is �nite, it is necessarily cyclic (of order r, if
one chooses r minimal in the assertions above).
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Proof. The equivalence �1 ⇔ 2� follows from Theorem 5.1 applied to the
q̃-difference module (M ⊗K(q̃, t),Σq ⊗ σq̃), over the �eld K(q̃, t).

If the intrinsic Galois group is �nite, the reduction modulo φv of Σκvq must be a
cyclic operator of order dividing the cardinality of Gal(MK(x), ηK(x)). So we have
proved that �4⇒ 2�. On the other hand, assertion 2 implies, by Theorem 6.6, that
there exists a basis of MK(x) such that the representation of Gal(MK(x), ηK(x)) is
given by the group of diagonal matrices, whose diagonal entries are r-th roots of
unity.

Of course, assertion 1 implies assertion 3. The inverse implication follows from
the Corollary 1.14, applied to a cyclic basis ofMK(x). �

6.2. Intrinsic Galois group of a q-di�erence module over C(x), for
q 6= 0, 1

We deduce from the previous section a curvature characterization of the intrin-
sic Galois group of a q-di�erence module over C(x), for q ∈ Cr {0, 1}.2

LetMC(x) = (MC(x),Σq) be a q-di�erence module over C(x). We can consider
a �nitely generated extension K of Q such that there exists a q-di�erence module
MK(x) = (MK(x),Σq) satisfyingMC(x) =MK(x) ⊗K(x) C(x).

With an abuse of language, Theorem 5.1 can be rephrased as:

Theorem 6.12. The q-di�erence moduleMC(x) = (MC(x),Σq) is trivial if and
only if there exists a �nitely generated extension K of Q, a set of places C as in
Chapter 5 and a q-di�erence moduleMK(x) such thatMC(x)

∼=MK(x)⊗K(x) C(x)
andMK(x) has zero v-curvature, for almost all v ∈ C.

We can of course de�ne as in the previous sections an intrinsic Galois group
Gal(MC(x), ηC(x)). A noetherianity argument, that we have already used several
times, shows the following:

Proposition 6.13. In the notation above we have:

Gal(MC(x), ηC(x)) ⊂ Gal(MK(x), ηK(x))⊗K(x) C(x).

Moreover there exists a �nitely generated extension K ′ of K such that

Gal(MK(x) ⊗K(x) K
′(x), ηK′(x))⊗K′(x) C(x) ∼= Gal(MC(x), ηC(x)).

Choosing K large enough, we can assume that K = K ′, which we will do
implicitly in the following informal statement. We can deduce from Theorem 6.12:

Theorem 6.14. The intrinsic Galois group Gal(MC(x), ηC(x)) is the smallest
algebraic subgroup of GL(MC(x)) that contains the v-curvature of the q-di�erence
moduleMK(x), for K large enough and for almost all v ∈ C.

2All the statements in this subsection remain true if one replace C with any �eld of charac-
teristic zero.



CHAPTER 7

The parametrized intrinsic Galois group

7.1. Parametrized intrinsic Galois groups

We recall some facts from Chapter 2. Let F be a q-di�erence-di�erential �eld
of characteristic zero, that is, an extension of K(x) equipped with an extension of
the q-di�erence operator σq and a derivation ∂ commuting with σq. For instance,
the q-di�erence-di�erential �eld (K(x), σq, x

d
dx ) satis�es these assumptions.

We can de�ne an action of the derivation ∂ on the category Diff(F , σq), twist-
ing the q-di�erence modules with the right F-module F [∂]≤1 of di�erential opera-
tors of order less or equal than one. We recall that the structure of right F-module
on F [∂]≤1 is de�ned via the Leibniz rule, i.e.,

∂.λ = λ∂ + ∂(λ), for any λ ∈ F .

Let V be an F-vector space. We denote by F∂(V ) the tensor product of the right
F-module F [∂]≤1 with the left F-module V :

F∂(V ) := F [∂]≤1 ⊗F V.

We will write v for 1⊗v ∈ F∂(V ) and ∂(v) for ∂⊗v ∈ F∂(V ), so that av+ b∂(v) :=
(a + b∂) ⊗ v, for any v ∈ V and a + b∂ ∈ F [∂]≤1. We endow F∂(V ) with a left
F-module structure such that if λ ∈ F :

λ∂(v) = ∂(λv)− ∂(λ)v, for all v ∈ V,

which means that λ(∂ ⊗ v) = ∂ ⊗ λv − 1 ⊗ ∂(λ)v. This construction comes out
of the Leibniz rule ∂(λv) = λ∂(v) + ∂(λ)v, which justi�es the notation introduced
above.

Definition 7.1. The prolongation functor F∂ is de�ned on the category of
F-vector spaces as follows. It associates to any object V the F-vector space F∂(V ).
If f : V −→W is a morphism of F-vector space then we de�ne

F∂(f) : F∂(V )→ F∂(W ),

setting F∂(f)(∂i(v)) = ∂i(f(v)), for any i = 0, 1 and any v ∈ V (using the conven-
tion that ∂0 is the identity).

The prolongation functor F∂ restricts to a functor from the categoryDiff(F , σq)
to itself in the following way:

(1) If MF := (MF ,Σq) is an object of Diff(F , σq) then F∂(MF ) is the q-
di�erence module, whose underlying F-vector space is F∂(MF ) = F [∂]≤1⊗
MF , as above, equipped with the q-invertible σq-semilinear operator de-
�ned by Σq(∂

i(m)) := ∂i(Σq(m)) for i = 0, 1.
(2) If f ∈ Hom(MF ,NF ) then F∂(f) is de�ned in the same way as for F-

vector spaces.

Remark 7.2. This formal de�nition comes from a simple and concrete idea.
Let MF be an object of Diff(F , σq). We �x a basis e of MF over F such that
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Σqe = eA. Then (e, ∂(e)) is a basis of F∂(MF ) and

Σq(e, ∂(e)) = (e, ∂(e))

(
A ∂A
0 A

)
.

In other terms, if σq(Y ) = A−1Y is a q-di�erence system associated to MF with
respect to a �xed basis e, the q-di�erence system associated to F∂(MF ) with respect
to the basis e, ∂(e) is:

σq(Z) =

(
A−1 ∂(A−1)

0 A−1

)
Z =

(
A ∂A
0 A

)−1

Z.

If Y is a solution of σq(Y ) = A−1Y in some q-di�erence-di�erential extension of F
then we have:

σq

(
∂Y Y
Y 0

)
=

(
A−1 ∂(A−1)

0 A−1

)(
∂Y Y
Y 0

)
,

in fact the commutation of σq and ∂ implies:

σq(∂Y ) = ∂(σqY ) = ∂(A−1 Y ) = A−1 ∂Y + ∂(A−1)Y.

Let V be a �nite dimensional F-vector space. We denote by Constr∂F (V ) the
smallest family of �nite dimensional F-vector spaces containing V and closed with
respect to the constructions of linear algebra (i.e., direct sums, tensor product,
symmetric and antisymmetric product, dual. See �1.1.1) and the functor F∂ . We
will say that an element Constr∂F (V ) is a construction of di�erential linear algebra
of V . By functoriality, the linear algebraic group GL(V ) operates on Constr∂F (V ).
For example g ∈ GL(V ) acts on F∂(V ) through g(∂i(v)) = ∂i(g(v)), for i = 0, 1.

If we start with a q-di�erence module MF = (MF ,Σq) over F , then every
object of Constr∂F (MF ) has a natural structure of q-di�erence module (see also
�1.1.1). We will denote Constr∂F (MF ) the family of q-di�erence modules obtained
in this way.

Definition 7.3. We call parametrized intrinsic Galois group of an object
MF = (MF ,Σq) of Diff(F , σq) the group de�ned by

Gal∂(MF , ηF ) :=
{
g ∈ GL(MF ) : g(NF ) ⊂ NF for all sub-q-di�erence module

NF = (NF ,Σq) contained in an object of Constr∂F (MF )
}
⊂ GL(MF ).

Similarly to �6, one has to understand the de�nition above in a functorial sense.
More precisely, Gal∂(MF , ηF ) is a functor from the category of ∂-F-algebras to the
category of groups, that associates to any F-algebra S, the subgroup of GL(MF )⊗S
that stabilizes NF ⊗S, for all the q-di�erence submodules NF over F of any object
in Constr∂F (MF ). The proposition below shows that this functor is representable
and thus de�nes a di�erential algebraic group over F .

Proposition 7.4. The group Gal∂(MF , ηF ) is a reduced di�erential F-subgroup
of GL(MF ).

Remark 7.5. We recall that in the notations of �2.1.2, the ring of di�erential
coordinates F

{
Y, 1

detY

}
∂
of GL(MF ) = GLν(F) for some ν is de�ned as follows.

We denote by F{Y }∂ the ring of di�erential polynomials in the ∂-di�erential inde-
terminates Y = {yi,j : i, j = 1, . . . , ν}. The di�erential Hopf-algebra F

{
Y, 1

detY

}
∂

of GLν(F) is obtained from F{Y }∂ by inverting detY . Now, Proposition 7.4
says that the functor Gal∂(MF , ηF ) is represented by a ∂-F-algebra, quotient of
F
{
Y, 1

detY

}
∂
by some radical ∂-ideal.
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Proof. In the notations of �2.1.2, let us denote byD : F-algebras→ ∂-F-algebras
the left adjoint of the forgetful functor that attach to any ∂-F-algebras its under-
lying F-algebra. By [DG70, II.1.36], the functor Gal∂(MF , ηF ) ◦ D is repre-
sentable by a F-algebra S. Then, D(S) represents Gal∂(MF , ηF ). Moreover, since
Gal∂(MF , ηF ) is a group functor, D(S) is an Hopf algebra over a �eld of char-
acteristic zero. Then, D(S) is automatically reduced by Cartier's theorem (see
[Wat79a, �11.4]). �

Following the approach of Chapter 2, we denote by 〈MF 〉⊗,∂ the full abelian
tensor subcategory of Diff(F , σq) generated byMF and closed under the prolon-
gation functor F∂ . Then 〈MF 〉⊗,∂ is naturally a di�erential tannakian category,
when equipped with the forgetful functor

ηF : 〈MK(x)〉⊗,∂ −→ {F-vector spaces}.

The functor Aut⊗,∂(ηF ) de�ned over the category of F-algebras coincides with
Gal∂(MF , ηF ). Moreover, we have the following result.

Proposition 7.6. Let F be a q-di�erence di�erential �eld and letMF be a q-
di�erence module over F . Let ω : 〈MF 〉⊗,∂ → V ectFσq be a neutral di�erential �ber
functor. Then, the di�erential algebraic groups Aut⊗,∂(ω)⊗F and Gal∂(MF , ηF ),

de�ned over F , are isomorphic over the di�erential closure F̃ of F .

Proof. By [GGO13, Proposition 4.28], the a�ne di�erential scheme Isom⊗,∂(ω⊗Fσq
F , ηF ) is representable by a non-zero di�erential �nitely generated F-algebra. Since
F̃ is di�erentially closed, the previous di�erential algebraic scheme has a point in
F̃ . This ends the proof. �

Once again, we will come back on this point of view in Part 4.

For further reference, we recall (a particular case of) the Ritt-Raudenbush
theorem (cf. [Kap57, Theorem 7.1]):

Theorem 7.7. Let (F , ∂) be a di�erential �eld of characteristic zero. If R is
a reduced �nitely generated ∂-F-algebra then R is ∂-noetherian.

This means that any ascending chain of radical di�erential ideals (i.e., radical
∂-stable ideals) is stationary or equivalently that every radical ∂-ideal has a �nite
set of generators as radical ∂-ideal (which in general does not mean that it is a
�nitely generated ideal). Theorem 7.7 combined with Proposition 7.4 asserts that
the parametrized intrinsic Galois group as well as any GLν(F) are ∂-noetherian.

The ∂-noetherianity of GLν(F) implies the following:

Corollary 7.8. The parametrized intrinsic Galois group Gal∂(MF , ηF ) can
be de�ned as the stabilizer of a line in a construction of di�erential algebra ofMF .
This line can be chosen so that it is also a q-di�erence module in the category
〈MF 〉⊗,∂ .

Proof. Since GL(MF ) is ∂-noetherian, any descending chain of reduced dif-
ferential sub-schemes in GL(MF ) is stationary. Then, let

{
W(i); i ∈ Ih

}
h
be an as-

cending chain of �nite sets of q-di�erence submodules contained in some elements
of Constr∂(MK(x)) so that any q-di�erence submodule contained in a construc-
tion of linear di�erential algebra is contained in some

{
W(i); i ∈ Ih

}
. Let Gh be

the di�erential subgroup of GL(MF ) de�ned as the stabilizer of {W(i); i ∈ Ih}.
By Cartier's theorem, the Gh are reduced (see previous proposition). Then, the
descending chain of di�erential algebraic subgroups Gh of GL(MF ) is stationary.
This proves that Gal∂(MF , ηF ) is the stabilizer of a �nite number of q-di�erence
submodulesW(i), i ∈ I, contained in some elements of Constr∂(MK(x)). It follows
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from a standard argument of linear algebra that Gal∂(MF , ηF ) is the stabilizer of
the maximal exterior power of the direct sum of the W(i)'s (see Remark 6.3). �

Let Gal(MF , ηF ) be the intrinsic Galois group de�ned in the previous chapter.
We have the following inclusion, that we will characterize in a more precise way in
the next pages:

Lemma 7.9. Let MF be an object of Diff(F , σq). The following inclusion of
di�erential algebraic groups holds

Gal∂(MF , ηF ) ⊂ Gal(MF , ηF ).

Remark 7.10. The inclusion above means that, for all ∂-F-algebra S, we have
Gal∂(MF , ηF )(S) ⊂ Gal(MF , ηF )(η(S)), where η(S) is the underlying F-algebra
of S. We would like to underline the fact that di�erential algebraic groups are not
algebraic groups, while algebraic groups may be considered as di�erential algebraic
groups (whose de�ning equations are polynomials-see also �2.1.2). In particular,
the parametrized intrinsic Galois group is not an algebraic subgroup of the intrinsic
Galois group but only a di�erential algebraic subgroup. Later, for F = K(x), we
will prove that Gal∂(MF , ηF ) is actually Zariski dense in Gal(MF , ηF ).

Proof. We recall, that the algebraic group Gal(MF , ηF ) is de�ned as the
stabilizer in GL(MF ) of all the subobjects contained in a construction of linear
algebra of MF . Because the list of subobjects contained in a construction of
di�erential linear algebra ofMF includes those contained in a construction of linear
algebra ofMF , we get the claimed inclusion. �

7.2. Characterization of the parametrized intrinsic Galois group by

curvatures

From now on we focus on the special case F = K(x), where K is a �nitely
generated extension of Q. We endow K(x) with the derivation ∂ := x d

dx , that
commutes with σq. We refer to Chapter 5 for notations.

LetMK(x) = (MK(x),Σq) be a q-di�erence module. The di�erential version of
Chevalley's theorem (cf. [Cas72, Proposition 14], [MO10, Theorem 5.1]) implies
that any closed di�erential subgroup G of GL(MK(x)) can be de�ned as the sta-
bilizer of some line LK(x) contained in an object WK(x) of 〈MK(x)〉⊗,∂ . Because
the derivation ∂ does not modify the set of poles of a rational function, the lattice
M ofMK(x) determines a Σq-stable A-lattice of all the objects of 〈MK(x)〉⊗,∂ . In
particular, the A-lattice M of MK(x) determines an A-lattice L of LK(x) and an
A-lattice W of WK(x). The latter is the underlying space of a q-di�erence module
W = (W,Σq) over A.

Definition 7.11. Let C̃ be a non-empty co�nite subset of C and (Λv)v∈C̃ be a
family of A/(φv)-linear operators acting onM⊗AA/(φv). We say that a di�erential
algebraic group G = Stab(LK(x)) over K(x) contains the operators Λv modulo φv,

for almost all v ∈ C, if for almost all (i.e. for almost all and at least one) v ∈ C̃ the
operator Λv stabilizes L⊗A A/(φv) inside W ⊗A A/(φv):

Λv ∈ StabA/(φv)(L⊗A A/(φv)).

Remark 7.12. The di�erential Chevalley's theorem and the ∂-noetherianity of
GL(MK(x)) imply that the notions of a di�erential algebraic group containing the
operators Λv modulo φv, for almost all v ∈ C, and the smallest closed di�erential
subgroup of GL(MK(x)) containing the operators Λv modulo φv, for almost all
v ∈ C, are well de�ned. In particular they are independent of the choice of A, M
and LK(x) (See [DV02, 10.1.2] and Remark 6.5).
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The main result of this section is the following:

Theorem 7.13. The di�erential algebraic group Gal∂(MK(x), ηK(x)) is the
smallest closed di�erential algebraic subgroup of GL(MK(x)) that contains the op-
erators Σκvq modulo φv, for almost all v ∈ C.

Proof. The lemmas below plus the di�erential Chevalley theorem allow to
prove Theorem 7.13 in exactly the same way as Theorem 6.6. �

Lemma 7.14. The di�erential algebraic group Gal∂(MK(x), ηK(x)) contains the
operators Σκvq modulo φv, for almost all v ∈ C.

Proof. The statement follows immediately from the fact thatGal∂(MK(x), ηK(x))

can be de�ned as the stabilizer of a rank one q-di�erence module in 〈MK(x)〉⊗,∂ ,
which is a fortiori stable under the action of Σκvq . �

Lemma 7.15. Gal∂(MK(x), ηK(x)) = {1} if and only if MK(x) is a trivial q-
di�erence module.

Proof. The proof is analogous to the proof of Corollary 6.9. It su�ces to
replace 〈MK(x)〉⊗ with 〈MK(x)〉⊗,∂ . �

We obtain the following:

Corollary 7.16. The parametrized intrinsic Galois group Gal∂(MK(x), ηK(x))
is a Zariski dense subset of the algebraic intrinsic Galois group Gal(MK(x), ηK(x)).

Proof. We have seen in Lemma 7.9 that Gal∂(MK(x), ηK(x)) is a subgroup
of Gal(MK(x), ηK(x)). By Theorem 7.13 (resp. Theorem 6.6) we have that the
intrinsic Galois group Gal∂(MK(x), ηK(x)) (resp. Gal(MK(x), ηK(x))) is the small-
est closed di�erential subgroup (resp. closed algebraic group) of GL(MK(x)) that
contains the operators Σκvq modulo φv, for almost all v ∈ C. This immediately
implies the Zariski density. �

Example 7.17. The logarithm is solution both a q-di�erence and a di�erential
system:

Y (qx) =

(
1 log q
0 1

)
Y (x), ∂Y (x) =

(
0 1
0 0

)
Y (x).

It is easy to verify that the two systems are integrable in the sense that ∂σqY (x) =
σq∂Y (x) (and therefore that the induced condition on the matrices of the systems
is veri�ed).

By iterating the q-di�erence system for any n ∈ Z>0 we obtain:

Y (qnx) =

(
1 n log q
0 1

)
Y (x).

This implies that the parametrized intrinsic Galois group is the subgroup of Ga,K(x)

de�ned by the equation ∂y = 0. This coincides with the group Ga,K , which is
coherent with the integrability criteria in [HS08]. For more precise comparison
results with the theory developed in [HS08], we refer to Part 4.

7.3. Parametrized intrinsic Galois group of a q-di�erence module over
C(x), for q 6= 0, 1

We conclude with some remarks on complex q-di�erence modules. LetMC(x) =
(MC(x),Σq) be a q-di�erence module over C(x). We can consider a �nitely gener-
ated extension of K of Q such that there exists a q-di�erence module MK(x) =
(MK(x),Σq) satisfying MC(x) = MK(x) ⊗K(x) C(x). We can of course de�ne, as
above, two parametrized intrinsic Galois groups, Gal∂(MK(x), ηK(x)) andGal∂(MC(x), ηC(x)).
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A (di�erential) noetherianity argument, that we have already used several times,
on the submodules stabilized by those groups shows the following:

Proposition 7.18. In the notations above, we have:

Gal∂(MC(x), ηC(x)) ⊂ Gal∂(MK(x), ηK(x))⊗K(x) C(x).

Moreover there exists a �nitely generated extension K ′ of K such that

Gal∂(MK(x) ⊗K(x) K
′(x), ηK′(x))⊗K′(x) C(x) ∼= Gal∂(MC(x), ηC(x)).

We can informally rephrase Theorem 7.13 in the following way:

Theorem 7.19. The parametrized intrinsic Galois group Gal∂(MC(x), ηC(x))
is the smallest di�erential algebraic subgroup of GLν(MC(x)) that contains a non-
empty co�nite set of curvatures of the q-di�erence moduleMK′(x).

7.4. The example of the Jacobi Theta function

Consider the Jacobi Theta function

Θ(x) =
∑
n∈Z

q−n(n−1)/2xn,

which is solution of the q-di�erence equation

Θ(qx) = qxΘ(x).

Iterating the equation, one proves that Θ satis�es y(qnx) = qn(n+1)/2xny(x), for
any n ≥ 0. Therefore we immediately deduce that the intrinsic Galois group of the
rank one q-di�erence moduleMΘ = (K(x).Θ,Σq), with

Σq : K(x).Θ −→ K(x).Θ

f(x)Θ 7−→ f(qx)qxΘ
,

is the whole multiplicative group Gm,K(x). As far as the parametrized intrinsic
Galois group is concerned we have:

Proposition 7.20. The parametrized intrinsic Galois group Gal∂
(
MΘ, ηK(x)

)
is de�ned by ∂(∂(y)/y) = 0.

Proof. For almost any v ∈ C, the reduction modulo φv of qκv(κv+1)/2xκv is
the monomial xκv , which satis�es the equation ∂

(
∂xκv

xκv

)
= 0. This means that

parametrized intrinsic Galois group Gal∂
(
MΘ, ηK(x)

)
is a subgroup of the di�er-

ential algebraic group de�ned by ∂
(
∂y
y

)
= 0. In other words, the logarithmic

derivative
Gm −→ Ga
y 7−→ ∂y

y

sends Gal∂
(
MΘ, ηK(x)

)
into a subgroup of the additive group Ga,K(x) de�ned by

the equation ∂z = 0. This is nothing else that Ga,K , whose proper subgroup is only
{0}. If the image by the logarithmic derivative of Gal∂

(
MΘ, ηK(x)

)
were {0}, then

the curvatures should be constant with respect to ∂. It is not the case, which ends
the proof. �

Let us consider a norm | | on K such that |q| 6= 1. The di�erential dimension of

the subgroup ∂
(
∂y
y

)
= 0 is zero. We will show in Part 4 that this means that Θ is

di�erentially algebraic over the �eld of rational functions C̃E(x) with coe�cients in
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the di�erential closure C̃E of the elliptic function over K∗/qZ. In fact, the function
Θ satis�es

σq

(
∂Θ

Θ

)
=
∂Θ

Θ
+ 1,

which implies that ∂
(
∂Θ
Θ

)
is an elliptic function. Since the Weierstrass function is

di�erentially algebraic over K(x), the Jacobi Theta function is also di�erentially
algebraic over K(x).

Notice that, if q is transcendental over Q, the derivation d
dq naturally comes

into the picture. Since it intertwines with σq in a relatively complicate way, the
study of this situation requires a speci�c approach. See [DVH11].





Part 4

Comparison with other Galois

theories for linear q-di�erence
equations





CHAPTER 8

Meromorphic solutions and comparison theorems

In the �rst section of this chapter, we remind that a q-di�erence system with
coe�cients in K(x), where K is a �nitely generated extension of Q, together with
a norm |.|, such that |q| 6= 1, admits a basis of meromorphic solutions with respect
to |.|. These solutions are linearly independent over the �eld of elliptic functions
over the torus K∗/qZ, denoted CE . Letting MK(x) be a q-di�erence module cor-
responding to the initial q-di�erence system, this allows us to construct a neutral
di�erential �ber functor for 〈MK(x) ⊗ CE(x)〉⊗,∂ (see �2.2 for notations and def-
initions). The second section of this chapter is devoted to the comparison of the
distinct parametrized Galois groups attached to the q-di�erence module MK(x).
Corollary 8.9, together with Proposition 8.10, proves the di�erential analogue of
[CHS08, Theorem 3.1], i.e., that all the di�erential algebraic group schemes con-
sidered are forms of the same di�erential algebraic group scheme. As a corollary, we
get that the di�erential algebraic relations satis�ed by the meromorphic solutions
of the q-di�erence system are encoded in the di�erential algebraic relations satis�ed
by the curvatures (see Corollary 8.13).

8.1. Meromorphic solutions and di�erential �ber functor

8.1.1. Classical functions as solutions of q-di�erence equations. For
a �xed complex number q, with |q| 6= 1, Praagman proves in [Pra86] that every
linear q-di�erence equation with meromorphic coe�cients over C∗ admits a basis of
solutions, meromorphic over C∗, linearly independent over the �eld CE of elliptic
functions, i.e., the �eld of meromorphic functions over the elliptic curve E := C∗/qZ.
The reformulation of his theorem in the tannakian language is that the category of
q-di�erence modules over the �eld of meromorphic functions on the punctured plane
C∗ is a neutral tannakian category over CE , i.e., admits a �ber functor into V ectCE .
We give below the intrinsic analogue of this theorem for q-di�erence modules over
K(x) where K is a valued �eld of characteristic zero.

Let K(x) be a q-di�erence �eld, ∂ = x d
dx , | | a norm on K such that |q| > 1

and C an algebraically closed �eld extension of K, complete with respect to | |. 1

Here are a few examples to keep in mind:

• K is a sub�eld of C equipped with the norm induced by C and C = C;
• K is �nite extension of a �eld of rational functions k(q), with k of char-
acteristic 0, equipped with the q−1-adic norm;
• K is a �nitely generated extension of Q and q is an algebraic number, nor
a root of unity: in this case there always exists a norm on the algebraic
closure Q of Q in K such that |q| > 1, that can be extended to K. The
�eld C is equal to C if the norm is archimedean.

1What follows is of course valid also for the norms for which |q| < 1 and can be deduced
by transforming the q-di�erence system σq(Y ) = AY in the q−1-di�erence system σq−1 (Y ) =

σq−1 (A−1)Y .

57
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We call holomorphic function over C∗ a power series f =
∑∞
n=−∞ anx

n, with
coe�cients in C, that satis�es

lim
n→∞

|an|ρn = 0 and lim
n→−∞

|an|ρn = 0, for all ρ > 0.

The holomorphic functions on C∗ form a ring Hol(C∗). Its fraction �eldMer(C∗)
is the �eld of meromorphic functions over C∗.

Proposition 8.1. Every q-di�erence system σq(Y ) = AY , with A ∈ GLν(K(x))
(and actually also A ∈ GLν(Mer(C∗))), admits a fundamental solution matrix with
coe�cients in Mer(C∗), i.e., an invertible matrix U ∈ GLν(Mer(C∗)), such that
σq(U) = AU .

Remark 8.2. Notice that the �eld of σq-constants ofMer(C∗) is the �eld CE
of elliptic functions over the torus E = C∗/qZ. The proposition above is equivalent
to the global triviality of the pull back over C∗ of the �ber bundles on elliptic curves.
A more explicit construction of meromorphic solutions of q-di�erence equations has
been given recently by T. Dreyfus [Dre14].

Proof. We are only sketching the proof. The Jacobi theta function

Θq(x) =
∑
n∈Z

q−n(n−1)/2xn,

is an element ofMer(C∗). It is solution of the q-di�erence equation

y(qx) = qx y(x).

We follow [Sau00]. Since

• for any c ∈ C∗, the meromorphic function Θ(cx)/Θq(x) is solution of
y(qx) = cy(x);
• the meromorphic function xΘ′q(x)/Θq(x) is solution of the equation y(qx) =
y(x) + 1;

we can write a meromorphic fundamental solution to any regular singular system
at 0, and, more generally, of any system whose Newton polygon has only one slope
(cf. for instance [Sau00], [DVRSZ03] or [Sau04b, �1.2.2]). For the �pieces� of
solutions linked to the Stokes phenomenon, all the techniques of q-summation in the
case q ∈ C, |q| > 1, apply in a straightforward way to our situation (cf. [Sau04a,
�2, �3]) and give a fundamental solution meromorphic over C∗. �

8.1.2. Di�erential �ber functors. We consider the q-di�erence-di�erential
�eld

(
C(x), σq, ∂ = x d

dx

)
, where C is a complete algebraically closed normed exten-

sion of (K, | |), with |q| > 1. Notice that both Hol(C∗) and Mer(C∗) are stable
under the action of σq and ∂. Because σq and ∂ commute, the derivation ∂ sta-
bilizes CE inside Mer(C∗), so that CE is naturally endowed with a structure of
q-di�erence-di�erential �eld. Let C̃E be a di�erential closure of CE with respect
to ∂ (cf. [CS06, �9.1]). We still denote by ∂ the derivation of C̃E and we extend
the action of σq to C̃E by setting σq|C̃E = id. Let CE(x) (resp. C̃E(x)) denote the

�eld C(x)(CE) (resp. C(x)(C̃E)). 2

LetMK(x) be a q-di�erence module over K(x). As usual, for any q-di�erence
�eld extension F/K(x) we will denote by MF the q-di�erence module over F
obtained fromMK(x) by scalar extension. Thanks to Proposition 8.1, we are able
to construct a weak parametrized Picard-Vessiot ring for MCE(x) (see De�nition
2.8).

2Notice that CE (resp. C̃E) and C(x) are linearly disjoint over C. The �eld C̃E(x) is the
intrinsic analogue of the �eld G(x) in [HS08, p. 340].
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Lemma 8.3. LetMCE(x) be a q-di�erence module over CE(x) and let σq(Y ) =
AY , with A ∈ GLν(CE(x)), be a q-di�erence system attached to MCE(x). By
Proposition 8.1, let U ∈ GLν(Mer(C∗)) be a fundamental solution matrix. Then,
the ring RE := CE(x){U, 1

det(U)}∂ is a weak parametrized Picard-Vessiot ring for

MCE(x) over CE(x) and an integral domain.

Proof. Notice that RM ⊂ Mer(C∗) and that CE ⊂ R
σq
M ⊂ Mer(C∗)σq =

CE . �

8.2. Constructions of the �ber functors

We remind the notations introduced so far and we refer to �2.3 for notions on
Picard-Vessiot ring. Let K be a �eld and | | a norm on K such that |q| > 1. We
will be dealing with groups de�ned over the following �elds:
C = smallest algebraically closed and complete extension of the normed �eld (K, | |);
CE = �eld of constants with respect to σq ofMer(C∗);
CE = algebraic closure of CE ;
C̃E = di�erential closure of CE .
We remind that any q-di�erence system Y (qx) = A(x)Y (x), withA(x) ∈ GLν(K(x)),
has a fundamental solution inMer(C∗) (cf. Proposition 8.1).

LetMK(x) be a q-di�erence module overK(x). By [DVH11, Proposition 1.16],
one can attach to the q-di�erence module MC(x), a weak parametrized Picard-
Vessiot ring R, which is also σq-simple and satis�es Rσq = C (This will be crucial
in Corollary 8.9). By Lemma 8.3, one can also consider the weak parametrized ring
RE , generated by meromorphic solutions of MCE(x). Finally, if we denote by C̃E
a di�erential closure of CE , we can apply the constructions of [HS08], to attach to
the q-di�erence module MC̃E(x) a parametrized Picard-Vessiot ring R̃. Since C̃E

is di�erentially closed, R̃σq = C̃E by [HS08, Corollary 6.15].
By Proposition 2.9, each of these weak parametrized Picard-Vessiot rings yields

to a neutral di�erential �ber functor for 〈MC(x)〉⊗,∂ , 〈MCE(x)〉⊗,∂ , 〈MC̃E(x)〉
⊗,∂ .

When restricted to the Tannakian category generated byMC(x),MCE(x),MC̃E(x),
these di�erential �ber functors induce neutral �ber functors in the classical sense
of [Del90]. We keep the notations of Proposition 2.9.

Warning 8.4. We want to compare the behaviour of the group of di�erential
tensor automorphisms of a given moduleMK(x) with respect to �eld extensions. In
order to avoid any confusion, we will change a little bit the notation of Chapter 2,
namely we will denote by Aut⊗,∂(M, ω) what was previously denoted Aut⊗,∂(ω).

We remind �rst of all the neutral �ber functors de�ned above:

ωR : 〈MC(x)〉⊗ −→ V ectC , N 7→ ker(Σq − Id,R⊗C(x) N );(8.1)

ωRE : 〈MCE(x)〉⊗ −→ V ectCE N 7→ ker(Σq − Id,RE ⊗CE(x) N );(8.2)

ωR̃ : 〈MC̃E(x)〉
⊗ −→ V ectC̃E N 7→ ker(Σq − Id, R̃⊗C̃E(x) N );(8.3)

and the three neutral di�erential �ber functors extending them:

ωR : 〈MC(x)〉⊗,∂ −→ V ectC ;(8.4)

ωRE : 〈MCE(x)〉⊗,∂ −→ V ectCE ;(8.5)

ωR̃ : 〈MC̃E(x)〉
⊗,∂ −→ V ectC̃E .(8.6)



60 8. MEROMORPHIC SOLUTIONS AND COMPARISON THEOREMS

We also have four forgetful functors:

ηK(x) : 〈MK(x)〉⊗ −→ V ectK(x) and its extension to 〈MK(x)〉⊗,∂ ;(8.7)

ηC(x) : 〈MC(x)〉⊗ −→ V ectC(x) and its extension to 〈MC(x)〉⊗,∂ ;(8.8)

ηCE(x) : 〈MCE(x)〉⊗ −→ V ectCE(x) and its extension to 〈MCE(x)〉⊗,∂ ;(8.9)

ηC̃E(x) : 〈MC̃E(x)〉
⊗ −→ V ectC̃E and its extension to 〈MC̃E(x)〉

⊗,∂ .(8.10)

8.3. Comparison of �classical� Galois groups

The group of tensor automorphisms of ωR corresponds to the �classical� Picard-
Vessiot group of a q-di�erence equation attached to MK(x), de�ned in [vdPS97,
�1.2]. It can be identi�ed to the group of ring automorphims of the subring S
of R generated over C(x) by a fundamental solution matrix and the inverse of its
determinant, stabilizing C(x) and commuting with σq. It is a linear algebraic group
over C and its dimension is equal to the transcendence degree of the total ring of
quotients of S over C(x), i.e., it measures the algebraic relations between the formal
solutions introduced in [DVH11].

The group of tensor automorphisms of ωRE corresponds to another Picard-
Vessiot group attached toMK(x). Its dimension as a linear algebraic group is equal
to the transcendence degree of the �eld F generated over CE(x) by an invertible
matrix of meromorphic solutions in GLν(RE). In other words, Aut⊗(MCE(x), ωRE )
measures the algebraic relations between the meromorphic solutions, introduced in
�8.1.2. One of the main results of [CHS08, �3] is:

Theorem 8.5. The linear algebraic groups Aut⊗(MC(x), ωR), Aut⊗(MCE(x), ωRE ),

Aut⊗(MCE(x), ωR̃) become isomorphic over C̃E.

Remark 8.6. In [Sau04b], Sauloy constructs a C-linear �ber functor for q-
di�erence modules over C(x), using a basis of meromorphic solutions. Since C
is algebraically closed, it follows from the classical general theory of tannakian
categories, that such a �ber functor gives rise to a group that is isomorphic to the
Picard-Vessiot group of [vdPS97] over F = C(x). We won't consider Sauloy's
point of view in this paper.

8.4. Comparison of parametrized Galois groups

The goal of this section is to compare the di�erential algebraic groups attached
to the di�erential �ber functors de�ned above (see De�nition 2.5). For ∂ the trivial
derivation, we retrieve of course the study of [CHS08, �3] (see �8.3).

In this section, we adapt the techniques of [CHS08, �2] to a di�erential frame-
work, in order to compare the distinct parametrized Picard-Vessiot rings, attached
toMK(x) over C,CE and C̃E . For a model theoretic approach of these questions,
we refer to [PN09].

The following proposition compare formal and meromorphic solutions. It is a
di�erential analogue of [CHS08, Proposition 2.4]. We keep the notations of the
previous sections. In particular, let R be the parametrized Picard-Vessiot ring
attached to the system as in [DVH11, Proposition 1.16]. We remind that R can
be written in the form R = C(x){Y, 1

det(Y )}∂/q, where Y is an invertible matrix
satisfying the system σq(Y ) := AY and q is not only a maximal (σq, ∂)-ideal but
also a maximal σq-ideal. We have:

Proposition 8.7. LetMC(x) be a q-di�erence module over C(x) and let σq(Y ) =
AY be a q-di�erence system attached toMC(x). Let F be a q-di�erence di�erential

�eld extension of C(x) such that F = C(x)(Fσq ). Then, S := F{Y, 1
det(Y )}∂/qF is

a parametrized Picard-Vessiot ring forMF and Sσq = Fσq .
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Proof. First note that qF ( F{Y, 1
det(Y )}∂ . Then, consider the map φ :

R⊗Fσq → S. Let I ⊂ R⊗Fσq be a σq-ideal. Since Rσq = C and R is σq-simple,
[vdPS97, Lemma 1.11] implies that the σq-ideal I in R⊗Fσq is generated by I∩R.
Since R is σq-simple, we get that R⊗Fσq is σq-simple and that φ injective. Now let
R′ = φ(R⊗Fσq ). Since, for all x ∈ S, there exists a ∈ R′ such that ax ∈ R′, we get
that a σq-ideal J in S is generated by J ∩R′. This implies that S is σq-simple and
thus (σq, ∂)-simple. Then, it is clear that S is a parametrized Picard-Vessiot ring
for MF . Finally, for any c ∈ Sσq , the set {a ∈ R′|ac ∈ R′} is a non-zero σq-ideal
3 and by σq-simplicity of R′, we see that c ∈ R′. We conclude by remarking that
R′σq = Fσq . �

As corollary of the previous proposition, we �nd

Corollary 8.8. LetMC(x) be a q-di�erence module over C(x) and let σq(Y ) =

AY be a q-di�erence system attached to MC(x). Let R,RE and R̃ be the weak
parametrized Picard-Vessiot rings attached to MC(x), as in �8.2. As above, we

write R = C(x){Y, 1
det(Y )}∂/q. Then we have two isomorphisms of C̃E(x)-(σq, ∂)-

algebras:

• S̃ := C̃E(x){Y, 1
det(Y )}∂/qC̃E(x) −→ R̃;

• S ⊗ C̃E := CE(x){Y, 1
det(Y )}∂/qCE(x)⊗ C̃E −→ RE ⊗ C̃E.

Proof. By Proposition 8.7, applied to F = CE(x) and F = C̃E(x), we �nd
that S (resp. S̃) is a parametrized Picard-Vessiot ring forMCE(x) (resp. MC̃E(x))

such that Sσq = CE (resp. S̃σq = C̃E). Since C̃E is di�erentially closed, [HS08,
Proposition 6.16] assures that two parametrized Picard-Vessiot ring for the same
q-di�erence equation over C̃E(x) are isomorphic as C̃E(x)-(σq, ∂)-algebras. The
�rst isomorphism follows from this fact.

The second isomorphism comes from a parametrized version of [CHS08, Propo-
sition 2.7]. Its proof follows line by line the proof in the algebraic case, but we
give it here for sake of completeness. Let us denote by FE the fraction �eld
of RE and let X = (Xi,j) be a ν × ν-matrix of di�erential indeterminates over
FE . Let S := CE(x){X, 1

det(X)}∂ ⊂ FE{X, 1
det(X)}∂ . De�ne a (σq, ∂)-structure

on FE{X, 1
det(X)}∂ by setting σq(X) := AX, σq(∂X) := A∂X + ∂AX, . . . . This

induces a (σq, ∂)-structure on S. Since S is a parametrized Picard-Vessiot ring for
σq(Y ) = AY view over CE(x), we can write S = S/p, where p is a maximal (σq, ∂)-
ideal of S. Now, let U ∈ GLν(RE) be fundamental solution matrix of σq(Y ) =
AY . De�ne Y = (Yi,j) ∈ GL(FE{X, 1

det(X)}∂) via Y := U−1X and remark that

σq(Y ) = Y and FE{X, 1
det(X)}∂ = FE{Y, 1

det(Y )}∂ . De�ne S1 := CE{Y, 1
det(Y )}∂ .

The ideal p ⊂ S ⊂ FE{X, 1
det(X)}∂ generates a (σq, ∂)-ideal (p) in FE{X, 1

det(X)}∂ ,
which intersected with S1 gives a ∂-ideal a. Since C̃E is di�erentially closed and
S1/a is di�erentially �nitely generated over CE , we �nd a di�erential homomor-
phism S1 ⊗ C̃E → S1/a → C̃E . We can extend this homomorphism into a (σq, ∂)-
morphism FE{X, 1

det(X)}∂ = FE ⊗ S1 → FE ⊗CE C̃E and restricted to S, we �nd

a (σq, ∂)-morphism S → FE ⊗ C̃E , whose Kernel contains p. By maximality of p,
we have equality and we get an embedding ι : S = S/p → FE ⊗ C̃E . Now, if we
denote by V ∈ GL(S) a fundamental solution matrix of σq(Y ) = AY , we �nd, since
(FE ⊗ C̃E)σq = C̃E , that ι(V ) = UC with C ∈ GL(C̃E). Since S (resp. RE) RE)
is di�erentially generated over CE(x) (resp. C̃E(x)) by V (resp U) and the inverse
of its determinant, this allows us to conclude that ι(S ⊗ C̃E) = RE ⊗ C̃E . �

3 It is not a (σq , ∂)-ideal and here the assumption of σq-simplicity is crucial.
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The comparison between the group of di�erential tensor automorphisms at-
tached to the �ber functors de�ned in �8.2 follows from the previous corollary. We
refer to De�nition 2.10 for the notations. We obtain the following statement:

Corollary 8.9. Let MC(x), R,RE and R̃ be as in Corollary 8.8. Let ωR

(resp. ωRE , ωR̃) be the di�erential �ber functor attached to R (resp RE , R̃) as in
Proposition 2.9. Then,

Aut⊗,∂(MC(x), ωR)⊗CC̃E ' Aut⊗,∂(MCE(x), ωRE )⊗CE C̃E ' Aut⊗,∂(MC̃E(x), ωR̃).

Proof. By Proposition 2.13, we have Aut⊗,∂(MC(x), ωR) ⊗ C̃E ' G∂R ⊗ C̃E ,
Aut⊗,∂(MCE(x), ωRE ) ⊗ C̃E ' G∂RE ⊗ C̃E and Aut⊗,∂(MC̃E(x), ω̃R̃) ' G∂

R̃
. We

recall that, for instance, G∂R denotes the di�erential group scheme of (σq, ∂)-C(x)-
automorphism of R. Now, the (σq, ∂)-isomorphism of Corollary 8.8 translates into
functorial isomorphism between G∂R ⊗ C̃E , G

∂
RE
⊗ C̃E and G∂

R̃
(As in [CHS08,

Corollary 2.5], it is a consequence of Yoneda lemma). �

We have proved that the group of di�erential tensor automorphisms of �ber
functors attached either to formal solutions, i.e. to ωR and ωR̃, or to meromorphic
solutions, i.e. to ωRE , are forms of the same di�erential algebraic group scheme
de�ned over C.

8.5. Comparison results for intrinsic Galois groups

We are now concerned with the intrinsic Galois groups, algebraic and parametrized.
We �rst relate them with the Picard-Vessiot groups we have studied previously and
then we investigate how they behave through certain type of base �eld extensions.

8.5.0.1. Comparison with Picard-Vessiot groups. Let MK(x) be a q-di�erence
module de�ned over K(x). We remind the reader that we have attached toMK(x)

the following groups:

group �ber functor �eld of de�nition

Aut⊗(MC(x), ωR) ωR:〈MC(x)〉⊗ −→ V ectC C

Aut⊗,∂(MC(x), ωR) ωR:〈MC(x)〉⊗,∂ −→ V ectC C

Gal(MC(x), ηC(x)) ηC(x):〈MC(x)〉⊗ −→ V ectC(x) C(x)

Gal∂(MC(x), ηC(x)) ηC(x):〈MC(x)〉⊗,∂ −→ V ectC(x) C(x)

Aut⊗(MCE(x), ωRE ) ωRE :〈MCE(x)〉⊗ −→ V ectCE CE

Aut⊗,∂(MCE(x), ωRE ) ωRE :〈MCE(x)〉⊗,∂ −→ V ectCE CE

Gal(MCE(x), ηCE(x)) ηCE(x):〈MCE(x)〉⊗ −→ V ectCE (x) CE(x)

Gal∂(MCE(x), ηCE(x)) ηCE(x):〈MCE(x)〉⊗,∂ −→ V ectCE(x) CE(x)

The comparison between the forgetful functors and their corresponding neutral
�ber functors is a direct consequence of the more general statement Corollary 7.6.
We have:
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Proposition 8.10. Let us denote by C̃(x) (resp. C̃E(x)) a di�erential closure
of C(x) (resp. CE(x)). We have the following isomorphisms of linear algebraic
groups:

(1) Aut⊗(MC(x), ωR)⊗C C̃(x) ' Gal(M, ηC(x))⊗C(x) C̃(x);

(2) Aut⊗(MCE(x), ωRE )⊗CE C̃E(x) ' Gal(MCE(x), ηCE(x))⊗CE(x) C̃E(x);

and the following isomorphisms of linear di�erential algebraic groups:

(3) Aut⊗,∂(MC(x), ωR)⊗C C̃(x) ' Gal∂(M, ηC(x))⊗C(x) C̃(x);

(4) Aut⊗,∂(MCE(x), ωRE )⊗CE C̃E(x) ' Gal∂(MCE(x), ηCE(x))⊗CE(x) C̃E(x).

Since the dimension of a di�erential algebraic group as well as the di�erential
transcendence degree (see De�nition 2.1) of a �eld extension is stable up to �eld
extension, one obtains the following corollary

Corollary 8.11. LetMK(x) be a q-di�erence module de�ned over K(x). Let
U ∈ GL(Mer(C∗)) be a fundamental solution matrix attached to MCE(x), as in
Proposition 8.1.

Then, the di�erential transcendence degree of the di�erential �eld FE gen-
erated over CE(x) by the entries of U is equal to the di�erential dimension of
Gal∂(MC(x), ηC(x)).

Proof. By [GGO13, Proposition 4.28], the functor Isom⊗,∂(ωRE⊗CE(x), ηCE(x))
is a reduced di�erential algebraic scheme over CE(x), represented by RE . It

is also a Aut⊗,∂(MCE(x), ωRE )-torsor. It has thus a C̃E(x)-point, which gives,

by triviality of the torsor, a (σq, ∂)-isomorphism between C̃E(x) ⊗CE(x) RE and

C̃E(x) ⊗CE CE{Aut⊗,∂(MCE(x), ωRE )}. Using the discussion on the di�erential
dimension in �2.1, we get that the di�erential dimension of Aut⊗,∂(MCE(x), ωRE )
equals the di�erential transcendence degree of FE over CE(x). By Proposition 8.10
combined with Corollary 8.9, we �nd that Aut⊗,∂(MCE(x), ωRE ) is isomorphic to

Gal∂(MC(x), ηC(x)) over C̃E(x). We conclude by using one more time the fact that
the di�erential dimension of a reduced di�erential algebraic scheme is invariant by
base �eld extension. �

8.5.0.2. From K(x) to C(x). In [Kat87, Lemma 1.3.2], it is shown that the
group of tensor automorphism of a k-linear neutral �ber functor is invariant up
to algebraic �eld extension of k. For forgetful functors, this is not true. This
is essentially due to the fact that, unlike to the case of neutral �ber functors, a
vector space stable under the action of the group of tensor automorphism of the
forgetful functor is not necessarily an object of the Tannakian category . For
q-di�erence modules de�ned above K(x), we bypass this di�culties and obtain
the following lemma, in which we show that, for any �eld extension L/K, the
parametrized intrinsic Galois group ofML(x) is equal, up to scalar extension, to the
parametrized intrinsic Galois group ofMK′(x), for a convenient �nitely generated
extension K ′/K, with K ′ ⊂ L.

Lemma 8.12. Let L be a �eld extension of K with σq|L = id. There exists a
�nitely generated intermediate �eld L/K ′/K such that

Gal(ML(x), ηL(x)) ∼= Gal(MK′(x), ηK′(x))⊗K′(x) L(x)

and
Gal∂(ML(x), ηL(x)) ∼= Gal∂(MK′(x), ηK′(x))⊗K′ L(x).

These equalities hold when we replace K ′ by any sub�eld extension of L containing
K ′.
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Proof. By de�nition, Gal∂(ML(x), ηL(x)) is the stabilizer inside GL(ML(x))

of all L(x)-vector spaces of the formWL(x) forW object of 〈ML(x)〉⊗,∂ . 4 Similarly,
for any �eld extension L/K ′/K, we have

Gal∂(MK′(x), ηK′(x)) = Stab(WK′(x),W object of 〈MK′(x)〉⊗,∂).

Then,
Gal∂(ML(x), ηL(x)) ⊂ Gal∂(MK′(x), ηK′(x))⊗ L(x).

By noetherianity, the (parametrized) intrinsic Galois group ofML(x) is de�ned by
a �nite family of (di�erential) polynomial equations, thus we can choose K ′, which
contains the coe�cients of the de�ning equations. �

The corollary below summarizes results of this chapter.

Corollary 8.13. LetMK(x) be a q-di�erence module de�ned over K(x). Let
U ∈ GLν(Mer(C∗)) be a fundamental matrix of meromorphic solutions ofMK(x).
Then,

(1) the dimension of Gal(MC(x), ηC(x)) is equal to the transcendence degree of
the �eld generated by the entries of U over CE(x), i.e., the algebraic group
Gal(MC(x), ηC(x)) measures the algebraic relations between the meromor-
phic solutions ofMCE(x).

(2) the ∂-di�erential dimension of Gal∂(MC(x), ηC(x)) is equal to the di�er-
ential transcendence degree of the di�erential �eld generated by the entries

of U over C̃E(x), i.e., the di�erential algebraic group Gal∂(MC(x), ηC(x))
encodes the di�erential algebraic relations between the meromorphic solu-
tions ofMK(x).

(3) there exists a �nitely generated extension K ′/K such that the di�erential
transcendence degree of the di�erential �eld generated by the entries of U

over C̃E(x) is equal to the di�erential dimension of Gal∂(MK′(x), ηK′(x)),
i.e., it is given by an arithmetic characterization.

Proof. The �rst two statements are proved in Corollary 8.11. The third one
is Lemma 8.12. �

4One has to understand this equality as a functorial equality for di�erential scheme de�ned
above L(x).



CHAPTER 9

Specialization of the parameter q

In this chapter we consider the situation in which q is a parameter, that we
want to specialize. When we specialize q to q0 in a q-di�erence module, we can
obtain both a di�erential module (if q0 = 1) or a q0-di�erence module (if q0 6= 1).
Therefore the best framework for studying the reduction of intrinsic Galois groups
is André's theory of generalized di�erential rings (cf. [And01, 2.1.2.1]). For the
reader's convenience, we �rst recall some de�nitions and basic facts from [And01]).
Then we deduce some results on the specialization of intrinsic Galois groups and
their di�erential analogues.

Our purpose is to give a framework where the following result can possibly
be analysed more deeply. In [DV02, Appendix], the author considers the Heine
hypergeometric series. Let a, b, c, q be complex numbers, such that q is non-zero
and not a root of unity. The basic q-hypergeometric series:

2φ1(a, b, c; q−1, x) =
∑
n≥0

(a; q−1)n(b; q−1)n
(c; q−1)n(q−1; q−1)n

xn,

where (a; q−1)n = (1 − a)(1 − aq−1) · · · (1 − aq−(n−1)), is de�ned if c 6∈ qZ≤0 or
if c ∈ qZ≤0 and either a ∈ qZ≤0 , ac−1 ∈ qZ≥0 or b ∈ qZ≤0 , bc−1 ∈ qZ≥0 . It is a
q-analogue of the Gauss hypergeometric series

2F1(α, β, γ;x) =
∑
n≥0

(α)n(β)n
(γ)nn!

xn,

where (α)n = α(α + 1) · · · (α + n − 1) is the Pochhammer symbol. If γ is a non-
positive integer, 2F1(α, β, γ;x) is de�ned if and only if either α ∈ Z, γ ≤ α ≤ 0 or
β ∈ Z, γ ≤ β ≤ 0.

The series 2φ1(a, b, c; q−1, x) is a solution of the basic hypergeometric q-di�erence
equation

(Ha,b,c) ϕ2
qy(x)− (a+ b)x− (1 + cq−1)

abx− cq−1
ϕqy(x) +

x− 1

abx− cq−1
y(x) = 0,

which is de�ned as soon as neither a = c = 0 nor b = c = 0. Rewriting (Ha,b,c) in
terms of the operator dq :=

σq−1
(q−1)x , we �nd

(H̃a,b,c)

x(c−abqx)d2
q(y(x))+

[
1− c
1− q

+
(1− a)(1− b)− (1− abq)

1− q
x

]
dq(y(x))− (1− a)(1− b)

(1− q)2
y(x).

By replacing a, b, c by qα, qβ , qγ and letting q go to 1, one sees that (H̃a,b,c) tends
to the hypergeometric di�erential equation:

(Eα,β,γ) y′′(x) +
γ − (α+ β + 1)x

x(1− x)
y′(x)− αβ

x(1− x)
y(x) = 0,

where α, β, γ are complex parameters. Of course, 2F1(α, β, γ;x) is a solution of
(Eα,β,γ). The following theorem gives necessary and su�cient conditions for the
rationality of the solutions of (Ha,b,c).

65
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Theorem 9.1. Let Z = (Z>0 × Z≤0) ∪ (Z≤0 × Z>0). Then, the following as-
sertions are equivalent

(1) there exists α, β, γ ∈ Z, such that a = qα, b = qβ, c = qγ and
• either (α, α+ 1− γ) ∈ Z or (β, β + 1− γ) ∈ Z,
• either (α, β) ∈ Z or (α+ 1− γ, β + 1− γ) ∈ Z.

(2) (Ha,b,c) has a basis of solutions in C(x).

In the di�erential setting, we know from [G, Ch. III] that:

Theorem 9.2. The following assertions are equivalent:

(1) (Eα,β,γ) has a basis of solutions in C(x);
(2) α, β, γ ∈ Z and |1− γ|, |γ−α− β| and |α− β| are the lengths of the sides

of a triangle;
(3) the following conditions are satis�ed:

• either (α, α+ 1− γ) ∈ Z or (β, β + 1− γ) ∈ Z,
• either (α, β) ∈ Z or (α+ 1− γ, β + 1− γ) ∈ Z.

The Schwartz list for higher order basic hypergeometric equations has been
established by J. Roques (cf. [Roq09, �8]), and is another example of this phe-
nomenon of con�uences of rationality conditions. The framework describe below
could give a better insight on the properties of basic hypergeometric series explained
above.

9.1. Generalized di�erential rings

In �9.1, and only in �9.1, we adopt the following more general notation.

Definition 9.3 (cf. [And01, 2.1.2.1]). Let R be a commutative ring with
unit. A generalized di�erential ring (A, d) over R is an associative R-algebra A
endowed with an R-derivation d from A into a left A ⊗R A-module Ω1, i.e., such
that d(ab) = ad(b) + d(a)b, where the �rst product concerns the left A-module
structure of Ω1 and the second product the right A-module structure. The kernel
of d, denoted Const(A), is called the set of constants of A.

Example 9.4.

(1) Let k be a �eld and k(x) be the �eld of rational functions over k. Let
Ω1 := dx.k(x) with the k(x)-k(x)-bimodule structure given by λt = tλ,
for all λ ∈ k(x) and t ∈ Ω1. The ring (k(x), δ), with

δ : k(x) −→ Ω1 := dx.k(x)

f 7−→ dx.x
df

dx

,

is a generalized di�erential ring over k, associated to the derivation x d
dx .

(2) Let A be a q-di�erence ring of the form OK
[
x, 1

P (x) ,
1

P (qx) , ...
]
with K a

σq-constant �eld. Let Ω1 := dx.A with the A-A-bimodule structure given
by λt = tσq(λ), for all λ ∈ A and t ∈ Ω1. The ring (A, δq), with

δq : A −→ Ω1 := dx.A

f 7−→ dx.x
σq(f)− f
(q − 1)x

,

is also a generalized di�erential ring overOK , associated to the q-di�erence
algebra (A, σq).

(3) Let C denote the ring of constants of a generalized di�erential ring (A, d)
and let I be a non-trivial proper prime ideal of C. Then the ring AI :=
A ⊗ C/I is endowed with a structure of generalized di�erential ring (cf.
[And01, 3.2.3.7]). In the notations of the example 2) above and of �4.4,
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for almost any place v ∈ Pf of K, we obtain in this way a generalized
di�erential ring of the form (A⊗OK kv, δqv ).

Definition 9.5 (cf. [And01, 2.1.2.3]). A morphism of generalized di�erential
rings (A, d : A 7→ Ω1) 7−→ (Ã, d̃ : Ã 7→ Ω̃1) is a pair (u = u0, u1) where u0 : A 7→ Ã

is a morphism of R-algebras and u1 is a map from Ω1 into Ω̃1 satisfying{
u1 ◦ d = d̃ ◦ u0,

u1(aωb) = u0(a)u1(ω)u0(b), for any a, b ∈ A and any ω ∈ Ω1.

Example 9.6. In the notation of the Example 9.4, the canonical projection
p : A 7→ AI induces a morphism u of generalized di�erential rings from (A, d) into
(AI, d).

Let B be a generalized di�erential ring. We denote by DiffB the category of
B-modules with connections (cf. [And01, 2.2]), i.e., left projective B-modulesM
of �nite type equipped with a R-linear operator

∇ :M−→ Ω1 ⊗AM,

such that ∇(am) = a∇(m) + d(a)⊗m. The category DiffB is abelian, Const(B)-
linear, monoidal symmetric, cf. [And01, Theorem 2.4.2.2].

Example 9.7. We consider once again the di�erent cases as in Example 9.4:

(1) If B = (k(x), δ) then DiffB is the category of di�erential modules over
k(x).

(2) If B = (A, δq) then DiffB is the category of q-di�erence modules over
A. In fact, in the notation of the previous sections, it is enough to set
∇(m) = dx⊗∆q(m), where ∆q(m) =

Σq(m)−m
(q−1) for anym ∈M = (M,Σq).

Let B be a generalized di�erential ring. We denote by ηB the forgetful functor
from DiffB into the category of projective B-modules of �nite type. For any
object M of DiffB , we consider the forgetful functor ηB induced over the full
subcategory 〈M〉⊗ of DiffB generated by M and the a�ne B- group-scheme
Gal(M, ηB) de�ned over B representing the functor Aut⊗(ηB |〈M〉⊗).

Definition 9.8. The group scheme Gal(M, ηB) over B is called the intrinsic
Galois group ofM.

Let ConstrB(M) be the collection of all constructions of linear algebra ofM,
i.e., of all the objects of DiffB deduced fromM by the following B-linear algebraic
constructions: direct sums, tensor products, duals, symmetric and antisymmetric
products. Then one can show that Gal(M, ηB) is nothing else that the intrinsic
Galois group de�ned in Part 3 in a more restrictive setting (cf. [And01, 3.2.2.2]):

Proposition 9.9. Let B be a generalized di�erential ring and let M be an
object of DiffB. The a�ne groups scheme Gal(M, ηB) is the stabilizer inside
GL(M) of all submodules with connection of some algebraic constructions ofM.

This is not the only Galois group one can de�ne. If we assume the existence
of a �ber functor ω from DiffB into the category of Const(B)-module of �nite
type, we can de�ne the Galois group Aut⊗(ω|〈M〉⊗) of an object M as the group
of tensor automorphism of the �ber functor ω restricted to 〈M〉⊗ (cf. [And01,
3.2.1.1]). This group characterizes completely the objectM. For further reference,
we recall the following property (cf. [And01, Theorem 3.2.2.6]):

Proposition 9.10. The object M is trivial if and only if Aut⊗(ω|〈M〉⊗) is a
trivial group.
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In certain cases, the category DiffB can be endowed with a di�erential struc-
ture. Since DiffB is not necessarily de�ned over a �eld, we say that a category C
is a di�erential tensor category, if it satis�es all the axioms of [Ovc09, De�nition
3] except the assumption that End(1) is a �eld. We detail below the construction
of the prolongation functor associated to DiffB in some precise cases:

Semi-classic situation: Let us assume that (B, ∂) is a di�erential subring
of the di�erential �eld (L(x), ∂ := x d

dx ). Then DiffB is the category
of di�erential B-modules, equivalently, of left B[∂]-modules M , free and
�nitely generated over B. We now de�ne a prolongation functor F∂ for
this category as follows. If M = (M,∇) is an object of DiffB then
F∂(M) = (M (1),∇) is the di�erential module de�ned byM (1) = B[∂]≤1⊗
M , where the tensor product rule is the same one as in �2.2 (i.e., it takes
into account the Leibniz rule). If M is an object of DiffB given by
a di�erential equation ∂(Y ) = AY , the object M (1) is attached to the

di�erential equation: ∂(Z) =

(
A ∂A
0 A

)
Z.

Mixed situation: Let us assume that B is a generalized di�erential subring
of some q(resp. qv)-di�erence di�erential �eld (L(x), δq) (resp. (L(x), δqv )).
The category DiffB is the category of q-(resp. qv-)di�erence modules.
Applying the same constructions than in �2.2, we have that DiffB is a
di�erential tannakian category and we will denote by F∂ its prolongation
functor.

In both cases, semi-classic and mixed, we can de�ne, as in Chapter 6, the
parametrized intrinsic Galois group Gal∂(M, ηB) of an object M of DiffB . If
Constr∂B denotes the smallest family of objects deduced fromM by the construc-
tions of linear algebras and the prolongation functor F∂ , then the parametrized
analogue of Proposition 9.9 says that the di�erential group scheme Gal∂(M, ηB) is
the stabilizer inside GL(M) of all submodules with connection of some construc-
tions of linear di�erential algebra ofM.

Remark 9.11. In the semi-classic situation, the parametrized intrinsic Galois
group of a di�erential moduleM is nothing else than the intrinsic Galois group of
M. To see this it is enough to notice that there exists a canonical isomorphism:

Gal(F∂(M), ηK(x)) −→ Gal(M, ηK(x)).

In fact, such an arrow exists since M is canonically isomorphic to a di�erential
submodule of F∂(M). Since an element B ∈ Gal(M, ηK(x)) acts on F∂(M) via(
B ∂B
0 B

)
, the arrow is injective. Since an element of Gal(M, ηK(x)) needs to

be su�ciently compatible with the di�erential structure, it also stabilizes the dif-
ferential submodules of a construction of F∂(M). This last argument proves the
surjectivity.

The de�nition below characterizes the morphisms of generalized di�erential
rings compatible with the di�erential structure.

Definition 9.12 (cf. [And01, 2.4.5.1]). Let u = (u0, u1) : (A, d) 7→ (A′, d′)
be a morphism of generalized di�erential rings. This morphism induces a tensor-
compatible functor denoted by u∗ from the category DiffA into the category
DiffA′ . Moreover, let us assume that DiffA (resp. DiffA′) is a di�erential cate-
gory and let us denote by F∂ its prolongation functor. We say that u∗ is di�erentially
compatible if it commutes with the prolongation functors, i.e., F∂ ◦ u∗ = u∗ ◦ F∂ .
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9.2. Specialization of the parameter q and localization of the intrinsic

Galois group

We go back to the notation introduced in Chapter 5, in the case where q is
transcendent over the base �eld. So we consider a �eld K, which is a �nite exten-
sion of a rational function �eld k(q). We recall that when speaking of di�erential
algebraic groups, we implicitly require that k is of characteristic zero.

We denote by Pf the set of places of K such that the associated norms extend,
up to equivalence, one of the norms of k(q) attached to an irreducible polynomial
v(q) ∈ k[q], v(q) 6= q, by kv the residue �eld of K with respect to a place v and by
qv the image of q in kv.

Let M = (M,Σq) be a q-di�erence module over an algebra A of the form

OK
[
x, 1

P (x) ,
1

P (qx) , ...
]
. For almost all �nite place v ∈ Pf , we can consider the

kv(x)-module Mkv(x) = M ⊗A kv(x) with the structure induced by Σq. In this way,
for almost all v ∈ Pf , we obtain a qv-di�erence module Mkv(x) = (Mkv(x),Σqv ).
If we can specialize M modulo q − 1, then we get a di�erential module, whose
connection is induced by the action of the operator ∆q =

Σq−Id
(q−1) on M . We call

the module Mkv(x) = (Mkv(x),Σqv ) the specialization of M at v. It is naturally
equipped with an intrinsic Galois group Gal(Mkv(x), ηkv(x)), associated to the for-
getful functor ηkv(x). Then, we can ask how the intrinsic Galois group of the
specialization Mkv(x) is related to the specialization at the place v of the equa-
tions of the intrinsic Galois group of M. For v ∈ C, Theorem 7.13 proves that
one may recover Gal(MK(x), ηK(x)) from the knowledge of almost all of intrinsic
Galois groups of its reduction at φv. In general, for v ∈ Pf , the specialization of
the intrinsic Galois group gives only an upper bound for the intrinsic Galois group
of the specialized equation (see Proposition 9.15).

These problems have been studied by Y. André in [And01] where he shows,
among other things, that the groups of tensor automorphism of neutral �ber func-
tors have a nice behaviour with respect to the specialization.The results of this
chapter (see Proposition 9.15 for instance) are nothing more than an adaptation of
the results of André to our framework. Moreover, we want to underline the fact
that, unlike the neutral �ber functors considered by André, the forgetful functor is
automatically compatible with the base change. So that we are, in fact, in a much
easier situation than in [And01]. However, for sake of completeness, we detail
all the statements (since they are not exactly contained in [And01]) and proofs.
Moreover, we want to emphasize that considering intrinsic Galois group instead
of neutral Tannakian groups, allows us to give a description via curvatures of the
intrinsic Galois group of a di�erential equation (see Corollary 9.18).

The following lemma of localization relates the intrinsic (parametrized) Galois
group of a q-di�erence module over K(x). This lemma is a version of [And01,
Lemma 3.2.3.6] for (parametrized) intrinsic Galois groups.

Proposition 9.13. Let M be a q-di�erence module over K(x). Let A =

OK
[
x, 1

P (x) ,
1

P (qx) , ...
]
be a q-di�erence sub-algebra of K(x) such thatM is de�ned

over A. Let v ∈ Pf and let Av := A⊗OK kv. We have,

(1) Gal(M, ηA)⊗K(x) ' Gal(MK(x), ηK(x));

(2) Gal∂(M, ηA)⊗K(x) ' Gal∂(MK(x), ηK(x))
(3) Gal(M⊗A Av, ηAv )⊗ kv(x) ' Gal(Mkv(x), ηkv(x)).

(4) Gal∂(M⊗A Av, ηAv )⊗ kv(x) ' Gal∂(Mkv(x), ηkv(x)).

Remark 9.14. In the previous section, we have given a description of the intrin-
sic Galois group Gal(MK(x), ηK(x)) via the reduction modulo φv of the operators
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Σκvq . We are unable to give a similar description of Gal(M, ηA), essentially because
Chevalley theorem holds only for algebraic groups over a �eld.

Proof. We give the proof in the parametrized situation. The algebraic one
follows easily. First remark that A and Av are ∂-algebras. Moreover, (A, δq)
(resp. (Av, δqv )) is a simple di�erential ring, i.e., it has no non-trivial δq (resp.
δqv )-ideals. It comes from the fact that for a polynomial Q(x) of degree d, the
polynomials δq(Q), δqv (Q) have degree strictly inferior to d. However, one has
to pay attention that, even if A is δq-simple, it is not a σq-simple : the ideal
zA is a σq-ideal. Moreover, Ω1(A) (resp. Ω1(Av)) is a projective A (resp. Av)
module of rank 1 (see Example 9.4). In that conditions, the functor of localization
Loc : DiffA → DiffK(x),N 7→ N⊗K(x) (resp. Locv : DiffAv → Diffkv(x),N 7→
N ⊗ kv(x)) is full and faithful by [And01, 2.5.1.2 and 2.5.2.1]. Moreover, the
localization functors commute with the prolongation and forgetful functors so that
one can consider their restriction to the di�erential Tannakian category generated
by M (resp M ⊗A Av). Then, the localization Loc : 〈M〉⊗,∂ →

〈
MK(x)

〉⊗,∂
(resp. Locv : 〈M⊗A Av〉⊗,∂ →

〈
Mkv(x)

〉⊗,∂
) is an equivalence of di�erential tensor

category. The essential surjectivity comes from the fact that if N ′ is a sub-object
of some

⊕
M⊗iK(x) ⊗M

∗
K(x)

⊗j ⊗ F l∂(M⊗rK(x) ⊗M
∗
K(x)

⊗s) then N ′ = N ⊗A K(x)

where N := N ′ ∩ (
⊕
M⊗i ⊗M∗⊗j ⊗ F l∂(M⊗r ⊗M∗⊗s) is an object of DiffA.

The same reasoning yield modulo v. Finally, we get the isomorphism between the
intrinsic Galois groups from these equivalence of di�erential tensor categories and
the fact that they commute with the forgetful functor. �

Finally, we investigate the compatibility of the intrinsic Galois groups with
respect to the specialization at the place v. This proposition relies on [And01,
�3.3]

Proposition 9.15. Let (A, δq) be the generalized di�erential ring as in Propo-
sition 9.13. Let v be a �nite place of K. For anyM object of DiffA, we have

Gal(M⊗A Av, ηAv ) ⊂ Gal(M, ηA)⊗Av
and

Gal∂(M⊗A Av, ηAv ) ⊂ Gal∂(M, ηA)⊗Av.

Proof. Once again, we do the proof only in the parametrized case. First, we
can remark that since kv is a quotient of OK , we have kv ⊗OK kv is isomorphic
to kv. Thus, we are in the situation studied in [And01, 3.2.3.4]. Moreover, since
kv ⊗OK kv = kv, the constructions of di�erential linear algebra of M commutes
with the base change −⊗OK kv :(⊕

M⊗i ⊗M∗⊗j ⊗ F l∂(M⊗r ⊗M∗⊗s)
)
⊗A Av

=
⊕

(M⊗A Av)⊗i ⊗ (M⊗A Av)∗⊗j ⊗ F l∂((M⊗A Av)⊗r ⊗ (M⊗A Av)∗⊗s).

By de�nition, Gal∂(M⊗A Av, ηAv ) = Aut⊗,∂(ηAv |〈M⊗Av〉⊗) is the stabilizer
inside GL(M⊗A Av) = GL(M)⊗A Av of the sub-objects W of a construction of
di�erential linear algebra ofM⊗AAv =M⊗OKkv. The groupGal∂(M, ηA) admits
a similar description. Thus, we deduce the inclusion between the intrinsic Galois
groups from the compatibility of the construction of di�erential linear algebra with
respect to the base change and from the de�nition of the parametrized intrinsic
Galois group in terms of stabilizer of objects inside the constructions of di�erential
linear algebra . �

Remark 9.16. Similar results hold for di�erential equations (cf. [Kat90, �2.4]
and [And01, �3.3]). In general one cannot hope for a semicontinuity result. In
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fact, the di�erential equation y′

y = λ
y , with λ complex parameter, has di�erential

Galois group equal to C∗. When one specializes the parameter λ on a rational value
λ0, one gets an equation whose di�erential Galois group is a cyclic group of order
the denominator of λ0. For all other values of the parameter, the Galois group is
C∗.

The situation appears to be more rigid for q-di�erence equations when q is a
parameter. In fact, we can consider the q-di�erence equation y(qx) = P (q)y(x),
with P (q) ∈ k(q). If we specialize q to a root of unity and we �nd a �nite intrinsic
Galois group �too often�, we can conclude using Theorem 7.13 that P (q) ∈ qZ/r,
for some positive integer r, and therefore that the intrinsic Galois group of y(qx) =
P (q)y(x) over K(x) is �nite.

9.3. Upper bounds for the intrinsic Galois group of a di�erential

equation

Let us consider a q-di�erence module M = (M,Σq) over A that admits a
reduction modulo the (q − 1)-adic place of K, i.e., such that we can specialize the
parameter q to 1. To simplify notation, let us denote by k1 the residue �eld of K
modulo q − 1.

In this case the specialized module Mk1(x) = (Mk1(x),∆1) is a di�erential
module. We can deduce from the results above that:

Corollary 9.17.

Gal(Mk1(x), ηk1(x)) ⊂ Gal(M, ηA)⊗ k1(x).

and

Gal∂(Mk1(x), ηk1(x)) ⊂ Gal∂(M, ηA)⊗ k1(x).

Proof. Proposition 9.15 says that:

Gal(M⊗A A/(q − 1), ηA/(q−1)) ⊂ Gal(M, ηA)⊗A/(q − 1),

and
Gal∂(M⊗A A/(q − 1), ηA/(q−1)) ⊂ Gal∂(M, ηA)⊗A/(q − 1),

We conclude applying Proposition 9.13:

Gal(M⊗A A/(q − 1), ηA/(q−1))⊗A/(q−1) k1(x) ∼= Gal(Mk1(x), ηk1(x)),

and

Gal∂(M⊗A A/(q − 1), ηA/(q−1))⊗A/(q−1) k1(x) ∼= Gal∂(Mk1(x), ηk1(x)).

�

On the other hand, given a k(x)/k-di�erential moduleM = (M,∇), we can �x
a basis e of M such that

∇(e) = eG(x),

where we have identi�ed ∇ with ∇
(
d
dx

)
. The horizontal vectors for ∇ are solutions

of the system Y ′(x) = −G(x)Y (x). Then, if K/k(q) is a �nite extension, we can
de�ne a natural q-di�erence module structure over MK(x) = M ⊗k(x) K(x) setting

Σq(e) = e (1 + (q − 1)xG(x)) ,

and extending the action of Σq to MK(x) by semi-linearity. The de�nition of Σq

depends on the choice of e, so that we should rather write Σ
(e)
q , which we avoid to

not complicate the notation. Thus, starting from a di�erential moduleM we can
�nd a q-di�erence module MK(x) such that M is the specialization of MK(x) at
the place of K de�ned by q = 1. The q-deformation we have considered here is
somehow trivial and does not correspond, for instance, to the process used to deform
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a hypergeometric di�erential equation into a q-hypergeometric equation. Anyway,
we just want to show that a q-deformation combined with our results gives an
arithmetic description of the intrinsic Galois group of a di�erential equation. This
description depends obviously of the process of q-deformation and its re�nement is
strongly related to the sharpness of the q-deformation used.

Using the �trivial� q-deformation, we have the following description

Corollary 9.18. The intrinsic Galois group of M = (M,∇) is contained
in the �specialization at q = 1� of the smallest algebraic subgroup of GL(MK(x))
containing the reduction modulo φv of Σκvq :

Σκvq e = e

κv−1∏
i=0

(
1 + (q − 1)qixG(qix)

)
,

for almost all v ∈ CK .

Corollary 9.19. Suppose that k is algebraically closed. Then a di�erential
module (M,∇) is trivial over k(x) if and only if there exists a basis e such that
∇(e) = eG(x) and for almost all primitive roots of unity ζ in a �xed algebraic

closure k of k we have:[
n−1∏
i=0

(
1 + (q − 1)qixG(qix)

)]
q=ζ

= identity matrix,

where n is the order of ζ.

Proof. If the identity above is veri�ed, then the Galois group of (M,∇) is
trivial, which implies that (M,∇) is trivial over k(x). On the other hand, if (M,∇)
is trivial over k(x), there exists a basis e of M over k(x) such that ∇(e) = 0. This
ends the proof. �
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CHAPTER 10

Preface to Part 5. The Galois D-groupoid of a

q-di�erence system, by Anne Granier

We recall here the de�nition of the Galois D-groupoid of a q-di�erence system,
and how to recover groups from it in the case of a linear q-di�erence system. This
appendix thus consists in a summary of Chapter 3 of [Gra09].

10.1. De�nitions

We need to recall �rst Malgrange's de�nition ofD-groupoids, following [Mal01]
but specializing it to the base space P1

C × Cν as in [Gra09] and [Gra], and to ex-
plain how it allows to de�ne a Galois D-groupoid for q-di�erence systems.

Fix ν ∈ N∗, and denote by M the analytic complex variety P1
C × Cν . We call

local di�eomorphism of M any biholomorphism between two open sets of M , and
we denote by Aut(M) the set of germs of local di�eomorphisms of M . Essentially,
a D-groupoid is a subgroupoid of Aut(M) de�ned by a system of partial di�erential
equations.

Let us precise what is the object which represents the system of partial di�er-
ential equations in this rough de�nition.

A germ of a local di�eomorphism of M is determined by the coordinates de-
noted by (x,X) = (x,X1, . . . , Xν) of its source point, the coordinates denoted
by (x̄, X̄) = (x̄, X̄1, . . . , X̄ν) of its target point, and the coordinates denoted by
∂x̄
∂x ,

∂x̄
∂X1

, . . . , ∂X̄1

∂x , . . . ,
∂2x̄
∂x2 , . . . which represent its partial derivatives evaluated at

the source point. We also denote by δ the polynomial in the coordinates above,
which represents the Jacobian of a germ evaluated at the source point. We will
allow us abbreviations for some sets of these coordinates, as for example ∂X̄

∂X to

represent all the coordinates ∂X̄i
∂Xj

and ∂X̄ for all the coordinates ∂X̄i
∂xj

, ∂X̄i
∂x̄j

, ∂X̄i
∂Xj

and ∂X̄i
∂X̄j

.
We denote by r any positive integer. We call partial di�erential equation,

or only equation, of order ≤ r any fonction E(x,X, x̄, X̄, ∂x̄, ∂X̄, . . . , ∂rx̄, ∂rX̄)
which locally and holomorphically depends on the source and target coordinates,
and polynomially on δ−1 and on the partial derivative coordinates of order ≤ r.
These equations are endowed with a sheaf structure on M ×M which we denote
by OJ∗r (M,M). We then denote by OJ∗(M,M) the sheaf of all the equations, that is
the direct limit of the sheaves OJ∗r (M,M). It is endowed with natural derivations
of the equations with respect to the source coordinates. For example, one has:
Dx.

∂X̄i
∂Xj

= ∂2X̄i
∂x∂Xj

.
We will consider the pseudo-coherent (in the sense of [Mal01]) and di�eren-

tial ideal 1 I of OJ∗(M,M) as the systems of partial di�erential equations in the

1We will say everywhere di�erential ideal for sheaf of di�erential ideal.

75
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de�nition of D-groupoid. A solution of such an ideal I is a germ of a local dif-
feomorphism g : (M,a) → (M, g(a)) such that, for any equation E of the �ber
I(a,g(a)), the function de�ned by (x,X) 7→ E((x,X), g(x,X), ∂g(x,X), . . .) is null
in a neighbourhood of a in M . The solutions of I is denoted by sol(I) and forms
a set groupoid.

The set Aut(M) is endowed with a groupoid structure for the composition c
and the inversion i of the germs of local di�eomorphisms of M . We thus have to
characterize, with the comorphisms c∗ and i∗ de�ned on OJ∗(M,M), the systems
of partial di�erential equations I ⊂ OJ∗(M,M) whose set of solutions sol(I) is a
subgroupoid of Aut(M).

We call groupoid of order r on M the subvariety of the space of invertible jets
of order r de�ned by a coherent ideal Ir ⊂ OJ∗r (M,M) such that (i): all the germs of
the identity map ofM are solutions of Ir, such that (ii): c∗(Ir) ⊂ Ir⊗OJ∗r (M,M) +
OJ∗r (M,M) ⊗ Ir, and such that (iii): ι∗(Ir) ⊂ Ir. The solutions of such an ideal Ir
form a subgroupoid of Aut(M).

Definition 10.1. According to [Mal01], a D-groupoid G onM is a subvariety
of the space (M2,OJ∗(M,M)) of invertible jets de�ned by a reduced, pseudo-coherent
and di�erential ideal IG ⊂ OJ∗(M,M) such that

(i') all the germs of the identity map of M are solutions of IG ,
(ii') for any relatively compact open set U of M , there exists a closed complex

analytic subvariety Z of U of codimension ≥ 1, and a positive integer
r0 ∈ N such that, for all r ≥ r0 and denoting by IG,r = IG ∩ OJ∗r (M,M),
one has, above (U \ Z)2: c∗(IG,r) ⊂ IG,r ⊗OJ∗r (M,M) +OJ∗r (M,M) ⊗ IG,r,

(iii') ι∗(IG) ⊂ IG .

The ideal IG totally determines the D-groupoid G, so we will rather focus on
the ideal IG than its solution sol(IG) in Aut(M). Thanks to the analytic continu-
ation theorem, sol(IG) is a subgroupoid of Aut(M).

The �exibility introduced by Malgrange in his de�nition of D-groupoid allows
him to obtain two main results. Theorem 4.4.1 of [Mal01] states that the reduced
di�erential ideal of OJ∗(M,M) generated by a coherent ideal Ir ⊂ OJ∗r (M,M) which
satis�es the previous conditions (i),(ii), and (iii) de�nes a D-groupoid on M . The-
orem 4.5.1 of [Mal01] states that for any family of D-groupoids on M de�ned by a
family of ideals {Gi}i∈I , the ideal

√∑
Gi de�nes aD-groupoid onM called intersec-

tion. The terminology is legitimated by the equality: sol(
√∑

Gi) = ∩i∈Isol(Gi).
This last result allows to de�ne the notion of D-envelope of any subgroupoid of
Aut(M).

Fix q ∈ C∗, and let Y (qx) = F (x, Y (x)) be a (non-linear) q-di�erence system,
with F (x,X) ∈ C(x,X)ν . Consider the set subgroupoid of Aut(M) generated by
the germs of the application (x,X) 7→ (qx, F (x,X)) at any point of M where it is
well de�ned and invertible, and denote it by Dyn(F ). The Galois D-groupoid of
the q-di�erence system Y (qx) = F (x, Y (x)) is the D-enveloppe of Dyn(F ), that is
the intersection of the D-groupoids on M whose set of solutions contains Dyn(F ).

10.2. A bound for the Galois D-groupoid of a linear q-di�erence system

For all the following, consider a rational linear q-di�erence system Y (qx) =
A(x)Y (x), withA(x) ∈ GLν(C(x)). We denote by Gal(A(x)) the GaloisD-groupoid
of this system as de�ned at the end of the previous section 10.1, we denote by
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IGal(A(x)) its de�ning ideal of equations, and by sol(Gal(A(x))) its groupoid of so-
lutions.

The elements of the dynamics Dyn(A(x)) of Y (qx) = A(x)Y (x) are the germs
of the local di�eomorphisms of M of the form (x,X) 7→ (qkx,Ak(x)X), with:

Ak(x) =


Idn if k = 0,∏k−1
i=0 A(qix) if k ∈ N∗,∏−1
i=k A(qix)−1 if k ∈ −N∗.

The �rst component of these di�eomorphisms is independent on the variablesX and
depends linearly on the variable x, and the second component depends linearly on
the variables X. These properties can be expressed in terms of partial di�erential
equations. This gives an upper bound for the Galois D-groupoid Gal(A(x)) which
is de�ned in the following proposition.

Proposition 10.2. The coherent ideal:〈
∂x̄

∂X
,
∂x̄

∂x
x− x̄, ∂2x̄,

∂X̄

∂X
X − X̄, ∂

2X̄

∂X2

〉
⊂ OJ∗2 (M,M)

satis�es the conditions (i),(ii), and (iii) of 10.1. Hence, thanks to Theorem 4.4.1 of
[Mal01], the reduced di�erential ideal ILin it generates de�nes a D-groupoid Lin.
Its solutions sol(Lin) are the germs of the local di�eomorphisms of M of the form:

(x,X) 7→ (αx, β(x)X),

with α ∈ C∗ and locally, β(x) ∈ GLν(C) for all x.
They contain Dyn(A(x)), and therefore, given the de�nition of Gal(A(x)), one has
the inclusion

Gal(A(x)) ⊂ Lin,
which means that:

ILin ⊂ IGal(A(x)) and sol(Gal(A(x))) ⊂ sol(Lin).

Proof. cf proof of Proposition 3.2.1 of [Gra09] for more details. �

Remark 10.3. Given their shape, the solutions of Lin are naturally de�ned
in neighborhoods of transversals {xa} × Cν of M . Actually, consider a particu-
lar element of sol(Lin), that is precisely a germ at a point (xa, Xa) ∈ M of a
local di�eomorphism g of M of the form (x,X) 7→ (αx, β(x)X). Consider then a
neighborhood ∆ of xa in P 1C where the matrix β(x) is well de�ned and invertible,
consider the �cylinders� Ts = ∆× Cν and Tt = α∆× Cν of M , and the di�eomor-
phism g̃ : Ts → Tt well de�ned by (x,X) → (αx, β(x)X). Therefore, according to
the previous Proposition 10.2, all the germs of g̃ at the points of Ts are in sol(Lin)
too.

The de�ning ideal ILin of the bound Lin is generated by very simple equa-
tions. This allows to reduce modulo ILin the equations of IGal(A(x)) and obtain
some simpler representative equations, in the sense that they only depend on some
variables.

Proposition 10.4. Let r ≥ 2. For any equation E ∈ IGal(A(x)) of order r,
there exists an invertible element u ∈ OJ∗r (M,M), an equation L ∈ ILin of order r,
and an equation E1 ∈ IGal(A(x)) of order r only depending on the variables written
below, such that:

uE = L+ E1

(
x,X,

∂x̄

∂x
,
∂X̄

∂X
,
∂2X̄

∂x∂X
, . . .

∂rX̄

∂xr−1∂X

)
.



7810. PREFACE TO PART 5. THE GALOIS D-GROUPOID OF A Q-DIFFERENCE SYSTEM, BY ANNE GRANIER

Proof. The invertible element u is a convenient power of δ. The proof consists
then in performing the divisions of the equation uE, and then its succesive remain-
ders, by the generators of ILin. More details are given in the proof of Proposition
3.2.3 of [Gra09]. �

10.3. Groups from the Galois D-groupoid of a linear q-di�erence system

We are going to prove that the solutions of the Galois D-groupoid Gal(A(x))
are, like the solutions of the bound Lin, naturally de�ned in neighbourhoods
of transversals of M . This property, together with the groupoid structure of
sol(Gal(A(x))), allows to exhibit groups from the solutions of Gal(A(x)) which
�x the transversals.

According to Proposition 10.2, an element of sol(Gal(A(x))) is also an element
of sol(Lin). Therefore, it is a germ at a point a = (xa, Xa) ∈ M of a local
di�eomorphism g : (M,a) → (M, g(a)) of the form (x,X) 7→ (αx, β(x)X), such
that, for any equation E ∈ IGal(A(x)), one has E((x,X), g(x,X), ∂g(x,X), . . .) = 0
in a neighbourhood of a in M .

Consider an open connected neighbourhood ∆ of xa in P1
C on which the matrix

β is well-de�ned and invertible, that is where β can be prolongated in a matrix
β ∈ GLν(O(∆)). Consider the �cylinders� Ts = ∆ × Cν and Tt = α∆ × Cν of M ,
and the di�eomorphism g̃ : Ts → Tt de�ned by (x,X)→ (αx, β(x)X).

Proposition 10.5. The germs at all points of Ts of the di�eomorphism g̃ are
elements of sol(Gal(A(x))).

Proof. For all r ∈ N, the ideal (IGal(A(x)))r = IGal(A(x)) ∩OJ∗r (M,M) is coher-
ent. Thus, for any point (y0, ȳ0) ∈ M2, there exists an open neighbourhood Ω of
(y0, ȳ0) in M2, and equations EΩ

1 , . . . , E
Ω
l of (IGal(A(x)))r de�ned on the open set

Ω such that:(
(IGal(A(x)))r

)
|Ω =

(
OJ∗r (M,M)

)
|ΩE

Ω
1 + · · ·+

(
OJ∗r (M,M)

)
|ΩE

Ω
l .

Let a1 ∈ Ts = ∆× Cν . Let γ : [0, 1] → Ts be a path in Ts such that γ(0) = a and
γ(1) = a1. Let {Ω0, . . . ,ΩN} be a �nite covering of the path γ([0, 1])× g̃(γ([0, 1]))
in Ts×Tt by connected open sets Ω ⊂ (Ts×Tt) like above, and such that the origin
(γ(0), g(γ(0))) = (a, g(a)) belongs to Ω0.
The germ of g at the point a is an element of sol(Gal(A(x))). Therefore, one has
EΩ0

k ((x,X), g(x,X), ∂g(x,X), . . .) ≡ 0 in a neighbourhood of a, for all 1 ≤ l ≤ k.
Moreover, by analytic continuation, one has also EΩ0

k (x,X, g̃(x,X), ∂g̃(x,X), . . .) ≡
0 on the source projection of Ω0 in M . It means that the germs of g̃ at any point
of the source projection of Ω0 are solutions of (IGal(A(x)))r.
Then, step by step, one gets that the germs of g̃ at any point of the source projection
of Ωk are solutions of (IGal(A(x)))r and, in particular, the germ of g̃ at the point a1

is also a solution of (IGal(A(x)))r. �

This Proposition 10.5 means that any solution of the Galois D-groupoid Gal(A(x))
is naturally de�ned in a neighbourhood of a transversal of M , above.

Remark 10.6. In some sense, the �equations� counterpart of this proposition
is Lemma 11.12.

The solutions of Gal(A(x)) which �x the transversals of M can be interpreted
as solutions of a sub-D-groupoid of Gal(A(x)), partly because this property can
be interpreted in terms of partial di�erential equations. Actually, a germ of a
di�eomorphism of M �x the transversals of M if and only if it is a solution of the
equation x̄− x.
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The ideal of OJ∗0 (M,M) generated by the equation x̄− x satis�es the conditions
(i),(ii), and (iii) of 10.1. Hence, thanks to Theorem 4.4.1 of [Mal01], the reduced
di�erential ideal it generates de�nes a D-groupoid:

Definition 10.7. We call T rv the D-groupoid generated by the equation x̄−x.

Its solutions, sol(T rv), are the germs of the local di�eomorphisms of M of the
form: (x,X) 7→ (x, X̄(x,X)).

Definition 10.8. We call ˜Gal(A(x)) the intersection D-groupoid Gal(A(x))∩
T rv, in the sense of Theorem 4.5.1 of [Mal01], whose de�ning ideal of equations
I ˜Gal(A(x))

is generated by IGal(A(x)) and IT rv.

The solutions of sol( ˜Gal(A(x))) coincide with sol(Gal(A(x))) ∩ sol(T rv), that
are exactly the solutions of Gal(A(x)) of the form (x,X) 7→ (x, β(x)X). They are
also naturally de�ned in neighbourhoods of transversals of M .

Proposition 10.9. Let x0 ∈ P1
C. The set of solutions of ˜Gal(A(x)) de�ned in

a neighbourhood of the transversal {x0}×Cν of M can be identi�ed with a subgroup
of GLν(C {x− x0}).

Proof. The solutions of the D-groupoid ˜Gal(A(x)) de�ned in a neighbour-
hood of the transversal {x0} × Cν can be considered, without loosing any infor-
mation, only in a neighbourhood of the stable point (x0, 0) ∈ M . At this point,

the groupoid structure of sol( ˜Gal(A(x))) is in fact a group structure because the
source and target points are always (x0, 0). Thus, considering the matrices β(x)

in the solutions (x,X) 7→ (x, β(x)X) of ˜Gal(A(x))) de�ned in a neighbourhood of
{x0} × Cν , one gets a subgroup of GLν(C {x− x0}). More details are given in the
proof of Proposition 3.3.2 of [Gra09]. �

In the particular case of a constant linear q-di�erence system, that is with
A(x) = A ∈ GLν(C), the solutions of the Galois D-groupoid Gal(A) are in fact
global di�eomorphisms of M , and the set of those that �x the transversals of M
can be identi�ed with an algebraic subgroup of GLν(C). This can be shown using
a better bound than Lin for the Galois D-groupoid of a constant linear q-di�erence
system (cf Proposition 3.4.2 of [Gra09]), or computing the D-groupoid Gal(A)
directly (cf Theorem 2.1 of [Gra] or Theorem 4.2.7 of [Gra09]). Moreover, the
explicit computation allows to observe that this subgroup corresponds to the usual
q-di�erence Galois group as described in [Sau04b] of the constant linear q-di�erence
system X(qx) = AX(x) (cf. Theorem 4.4.2 of [Gra09] or Theorem 2.4 of [Gra]).





CHAPTER 11

Comparison of the parametrized intrinsic Galois

group with the Galois D-groupoid

A. Granier has de�ned a D-groupoid for non-linear q-di�erence equations, in
analogy with Malgrange D-groupoid for non-linear di�erential equations (see the
previous chapter). Roughly, this D-groupoid corresponds to the largest sheaf of
analytic di�erential equations that kill the dynamics of the non-linear q-di�erence
equation.

In this section we prove that the Malgrange-Granier D-groupoid, in the special
case of a linear q-di�erence equation, essentially �coincides� with the parametrized
intrinsic Galois group of the equation. This result, which is Corollary 11.10, is not a
priori straightforward because one has to compare a D-groupoid de�ned as a sheaf
of di�erential ideal over an analytic variety and a di�erential algebraic group à la
Kolchin. This answers a question of Malgrange ([Mal09, page 2]).

Our proof is divided in three main steps. The �rst one relies on Theorem 7.13
and allows us to compare the parametrized intrinsic Galois group with the smallest
di�erential algebraic variety that contains the dynamic, namely its Kolchin closure.
Then, we shea�fy the de�ning equations of the Kolchin closure in order to get an
algebraic D-groupoid, which is de�ned by the largest set of algebraic di�erential
equations that kill the dynamic. Finally thanks to GAGA arguments, we show
that the de�ning equations of the Malgrange-Granier D-groupoid are global and
algebraic and thus coincide with the ones of our algebraic D-groupoid. In the
di�erential case, the problem of the algebraicity of the D-groupoid has been tackled
in more recent works by B. Malgrange himself.

In the special case of a linear di�erential equation, Malgrange proves that his
D-groupoid, allows to recover the Picard-Vessiot Galois group (see [Mal01]). The
foliation associated to the solutions of the non-linear di�erential equation, which
exists due to the Cauchy theorem, plays a central role in his proof, and actually in
the whole theory. There is a true hindrance to prove a Cauchy theorem and de�ne
a foliation over C attached to a q-di�erence system. First of all, the solutions of a
q-di�erence equation must be de�ned over a q-invariant domain and they usually
have an essential singularity at 0 and at ∞. This fact prevents the existence of a
local solution on a compact domain and therefore a transposition of the Cauchy
theorem. To overcome the lack of local solutions, we use Theorem 7.13 as a crucial
ingredient of our proof. However, some steps of our proof are similar to Malgrange
theorem (cf. [Mal01]) and Granier's proof in the case of q-di�erence system with
constant coe�cients (see [Gra, �2.1]). In �11.4 below, we show how in Malgrange
or Granier's former comparison results, a parametrized intrinsic Galois group is
hidden and why the parametrized structure is inherent to Malgrange's D-groupoid
constructions.

Our results shall give some hints to compare the algebraic de�nitions of Morikawa
of the Galois group of a non-linear q-di�erence equation and the analytic de�nitions
of A.Granier (cf. [Mor09], [MU09], [Ume10]).

81
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11.1. The Kolchin closure of the Dynamics and the Malgrange-Granier

groupoid

Let q ∈ C∗ be not a root of unity and let A(x) ∈ GLν(C(x)). We consider the
linear q-di�erence system

(11.1) Y (qx) = A(x)Y (x).

We set:

Ak(x) := A(qk−1x) . . . A(qx)A(x) for all k ∈ Z, k > 0;
A0(x) = Idν
Ak(x) := A(qkx)−1A(qk+1x)−1 . . . A(q−1x)−1 for all k ∈ Z, k < 0,

so that Y (qkx) = Ak(x)Y (x), for any k ∈ Z. Following Chapter 10, we denote by
M the analytic complex variety P1

C × Cν , by Gal(A(x)) the Galois D-groupoid of
the system (11.1), i.e., the D-envelop of the dynamics

(11.2) Dyn(A(x)) =
{

(x,X) 7−→ (qkx,Ak(x)X) : k ∈ Z
}

in the space of jets J∗(M,M). We keep the notation of Chapter 10, which is
preliminary to the content of this section.

Warning. Following Malgrange and the convention in Chapter 10, we say that a
D-groupoid H is contained in a D-groupoid G if the groupoid of solutions of H
is contained in the groupoid of solutions of G. We will write sol(H) ⊂ sol(G) or
equivalently IG ⊂ IH, where IG and IH are the (sheaves of) ideals of de�nition of
G and H, respectively.

Notation. In this section we introduce many tools that we use to get the proof of
our main result Corollary 11.10. For the reader convenience we make a list of them
here, with the reference for their de�nitions:

Dyn(A(x)), (11.2);

Gal(A(x)), �10.2; ˜Gal(A(x)), De�nition 10.8;

Galalg(A(x)), De�nition 11.1; ˜Galalg(A(x)), De�nition 11.6;

Kol(A(x)), De�nition 11.1; ˜Kol(A(x)), De�nition 11.3;
Lin, Proposition 10.2; T rv, De�nition 10.7.

11.2. The groupoid Galalg(A(x))

Let C(x)
{
T, 1

detT

}
∂
, with T = (Ti,j : i, j = 0, 1, . . . , ν), be the algebra of dif-

ferential rational functions over GLν+1(C(x)). We consider the following morphism
of ∂-C[x]-algebras

τ : C[x]
{
T, 1

detT

}
∂

−→ H0(M ×C M,OJ∗(M,M))


T0,0 T0,1 . . . T0,ν

T1,0

... (Ti,j)i,j
Tν,0

 7−→


∂x
∂x

∂x
∂X1

. . . ∂x
∂Xν

∂X1

∂x
...

(
∂Xi
∂Xj

)
i,j

∂Xν
∂x


from C[x]

{
T, 1

detT

}
∂
to the global sections H0(M ×C M,OJ∗(M,M)) of OJ∗(M,M),

that can be thought as the algebra of global partial di�erential equations over
M ×M . The image by τ of the di�erential ideal

I = (T0,1, . . . , T0,ν , T1,0, . . . , Tν,0, ∂(T0,0)) ,
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that de�nes the di�erential algebraic group{
diag(α, β(x)) :=

(
α 0
0 β(x)

)
: where α ∈ C∗ and β(x) ∈ GLν(C(x))

}
,

is contained in the ideal ILin de�ning the D-groupoid Lin (cf. Proposition 10.2).

Definition 11.1. We call Kol(A(x)) the smallest di�erential subvariety of
GLν+1(C(x)), de�ned over C(x), which contains{

diag(qk, Ak(x)) :=

(
qk 0
0 Ak(x)

)
: k ∈ Z

}
,

and has the following property: if we call IKol(A(x)) the di�erential ideal de�n-
ing Kol(A(x)) and I ′Kol(A(x)) = IKol(A(x)) ∩ C[x]

{
T, 1

detT

}
∂
, then the (sheaf of)

di�erential ideal 〈ILin, τ(I ′Kol(A(x)))〉 generates a D-groupoid, that we will call

Galalg(A(x)), in the space of jets J∗(M,M).

Remark 11.2. The de�nition above requires some explanations:

• The phrase �smallest di�erential subvariety of GLν+1(C(x))� must be un-
derstood in the following way. The ideal of de�nition of Kol(A(x)) is
the largest di�erential ideal of C(x)

{
T, 1

detT

}
∂
which admits the matri-

ces diag(qk, Ak(x)) as solutions for any k ∈ Z and veri�es the second
requirement of the de�nition. Then IKol(A(x)) is radical and the Ritt-
Raudenbush theorem (cf. Theorem 7.7 above) implies that IKol(A(x)) is
�nitely ∂-generated. Of course, the C(x)-rational points of Kol(A(x)) may
give very poor information on its structure, so we would rather speak of
solutions in a di�erential closure of C(x).
• The structure of D-groupoid has the following consequence on the points
of Kol(A(x)): if diag(α, β(x)) and diag(γ, δ(x)) are two matrices with
entries in a di�erential extension of C(x) that belong to Kol(A(x)) then
the matrix diag(αγ, β(γx)δ(x)) belongs to Kol(A(x)). In other words,
the set of local di�eomorphisms (x,X) 7→ (αx, β(x)X) of M ×M such
that diag(α, β(x)) belongs to Kol(A(x)) forms a set theoretic groupoid.
We could have supposed only that Kol(A(x)) is a di�erential variety and
the solutions of Kol(A(x)) form a groupoid in the sense above, but this
wouldn't have been enough. In fact, it is not known if a sheaf of di�erential
ideals of J∗(M,M) whose solutions forms a groupoid is actually a D-
groupoid (cf. De�nition 10.1, and in particular conditions (ii') and (iii')).
B. Malgrange told us that he can only prove this statement for a Lie
algebra.

The di�erential varietyKol(A(x)) is going to be a bridge between the parametrized
intrinsic Galois group and the Galois D-groupoid Gal(A(x)) de�ned in the previous
chapter, via the following theorem.

Definition 11.3. Let M(A)
C(x) := (C(x)ν ,Σq : X 7→ A−1σq(X)) be the q-

di�erence module over C(x) associated to the system Y (qx) = A(x)Y (x), where

σq(X) is de�ned componentwise. We call ˜Kol(A(x)) the di�erential group over
C(x) de�ned by the di�erential ideal 〈IKol(A(x)), T0,0 − 1〉 in C(x)

{
T, 1

detT

}
∂
.

Notice that, as for the Zariski closure, the Kolchin closure does not commute

with the intersection, therefore ˜Kol(A(x)) is not the Kolchin closure of {Ak(x)}k.
Then we have:

Theorem 11.4. Gal∂(M(A)
C(x), ηC(x)) ∼= ˜Kol(A(x)).
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Remark 11.5. One can de�ne in exactly the same way an algebraic subvariety
Zar(A) of GLν+1(C(x)) containing the dynamics of the system and such that

{(x,X) 7→ (αx, β(x)X) : diag(α, β(x)) ∈ Zar(A)}

is a subgroupoid of the groupoid of di�eomorphisms of M ×M . Then one proves

in the same way that Z̃ar(A) coincide with the intrinsic Galois group, introduced
in Chapter 6.

Proof of Theorem 11.4. Let N = constr∂(M) be a construction of di�er-
ential algebra ofM. We can consider:

• The basis denoted by constr∂(e) of N built from the canonical basis e of
C(x)ν , applying the same constructions of linear di�erential algebra.
• For any β ∈ GLν(C(x)), the matrix constr∂(β) acting on N with respect
to the basis constr∂(e), obtained from β by functoriality. Its coe�cients
lies in C(x)[β, ∂(β), ...]
• Any ψ = (α, β) ∈ C∗×GLν(C(x)) acts semilinearly on N in the following
way: ψe = (constr∂(β))−1e and φ(f(x)n) = f(αx)n, for any f(x) ∈ C(x)
and n ∈ N . In particular, (qk, Ak(x)) ∈ C∗ × GLν(C(x)) acts as Σkq on
N .

A sub-q-di�erence module E ofN correspond to an invertible matrix F ∈ GLν(C(x))
such that

(11.3) F (qkx)−1constr∂(Ak)F (x) =

(
∗ ∗
0 ∗

)
, for any k ∈ Z.

Now, (1, β) ∈ C∗ ×GLν(C(x)) stabilizes E if and only if

(11.4) F (x)−1constr∂(β)F (x) =

(
∗ ∗
0 ∗

)
.

Equation (11.3) corresponds to a di�erential polynomial L(T0,0, (Ti,j)i,j≥1) belong-
ing to C(x)

{
T, 1

detT

}
∂
and having the property that L(qk, (Ak)) = 0, for all k ∈ Z.

On the other hand (11.4) corresponds to L(1, (Ti,j)i,j≥1)). It means that the solu-
tions of the di�erential ideal 〈IKol(A(x)), T0,0−1〉 ⊂ C(x)

{
T, 1

detT

}
∂
stabilize all the

sub-q-di�erence modules of all the constructions of di�erential algebra, and hence
that

˜Kol(A(x)) ⊂ Gal∂(MC(x), ηC(x)).

Let us prove the inverse inclusion. In the notation of Theorem 7.19, there exists a
�nitely generated extension K of Q and a σq-stable subalgebra A of K(x) of the
forms considered in �7.2 such that:

(1) A(x) ∈ GLν(A), so that it de�nes a q-di�erence moduleM(A)
K(x) overK(x);

(2) Gal∂(M(A)
K(x), ηK(x))⊗K(x) C(x) ∼= Gal∂(M(A)

C(x), ηC(x));
(3) Kol(A(x)) is de�ned overA, i.e., there exists a di�erential ideal I in the dif-

ferential ringA{T, 1
det(T )}∂ such that I generates IKol(A(x)) in C(x)

{
T, 1

detT

}
∂
.

For any element L̃ of the de�ning ideal of ˜Kol(A(x)) over A, there exists

L(T0,0;Ti,j , i, j = 1, . . . , ν) ∈ I ⊂ A
{
T,

1

det(T )

}
∂

,

such that L ∈ IKol(A(x)) and L̃ = L(1;Ti,j , i, j = 1, . . . , ν). If q is an algebraic
number, other than a root of unity, or if q is transcendental, then, for almost all
places v ∈ C, we have

L̃(Aκv ) ≡ L(1, Aκv ) ≡ L(qκv , Aκv ) ≡ 0 modulo φv.
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This shows that ˜Kol(A(x)) is a di�erential subgroup of GLν(C(x)) which contains
a non-empty co�nite set of v-curvatures, in the sense of Theorem 7.19. Therefore,

˜Kol(A(x)) contains the parametrized intrinsic Galois group ofM(A)
C(x). �

Definition 11.6. We call ˜Galalg(A(x)) the intersection of Galalg(A(x)) and
T rv.

It follows from the de�nition that the D-groupoid ˜Galalg(A(x)) is generated by

its global equations, i.e., by Lin and the image of the equations of ˜Kol(A(x)) by
the morphism τ . Therefore we deduce from Theorem 11.4 the following statement:

Corollary 11.7. As a D-groupoid, ˜Galalg(A(x)) is generated by its global sec-

tions, namely the D-groupoid Lin and the image of the equations of Gal∂(M(A)
C(x), ηC(x))

via the morphism τ .

Remark 11.8. The corollary above says not only that a germ of di�eomorphism

(x,X) 7→ (x, β(x)X) of M is solution of ˜Galalg(A(x)) if and only if β(x) is solution
of the di�erential equations de�ning the parametrized intrinsic Galois group of
M(A)

C(x) = (C(x)ν , X 7→ A(x)−1σq(X)), but also that the two di�erential de�ning
ideals �coincide�.

The D-groupoid ˜Galalg(A(x)) is a di�erential analog of the D-groupoid gener-
ated by an algebraic group introduced in [Mal01, Proposition 5.3.2] by B. Mal-
grange.

11.3. The Galois D-groupoid Gal(A(x)) vs the intrinsic parametrized
Galois group

Since Dyn(A(x)) is contained in the solutions of Galalg(A(x)), we have

sol(Gal(A(x))) ⊂ sol(Galalg(A(x)))

and

sol( ˜Gal(A(x))) ⊂ sol( ˜Galalg(A(x))).

as already mentioned, the solution are to be found in some di�erential closure of
(C(x), ∂).

Theorem 11.9. The solutions of the D-groupoid ˜Gal(A(x)) (resp. Gal(A(x)))

coincide with the solutions of ˜Galalg(A(x)) (resp. Galalg(A(x))).

Combining the theorem above with Corollary 11.7, we immediately obtain:

Corollary 11.10. The solutions of the D-groupoid ˜Gal(A(x)) are germs of
di�eomorphisms of the form (x,X) 7−→ (x, β(x)X), such that β(x) is a solution of

the di�erential equations de�ning Gal∂(M(A)
C(x), ηC(x)), and vice versa.

Remark 11.11. The corollary above says that the solutions of ˜Gal(A(x)) in
a neighborhood of a transversal {x0} × Cν (cf. Proposition 10.9 below), rational
over a di�erential extension F of C(x), correspond one-to-one with the solutions
β(x) ∈ GLν(F) of the di�erential equations de�ning the parametrized intrinsic
Galois group.

It does not say that the two de�ning di�erential ideals can be compared. We
actually don't prove that Gal(A(x)) is an �algebraic D-groupoid� and therefore that
Galalg(A(x)) and Gal(A(x)) coincide as D-groupoids.
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Proof of Theorem 11.9. Let I be the di�erential ideal of Gal(A(x)) in
OJ∗(M,M) and let Ir be the sub-ideal of I of order ≤ r. We consider the mor-
phism of analytic varieties given by

ι : P1
C × P1

C −→ M ×C M

(x, x) 7−→ (x, 0, x, 0)

and the inverse image Jr := ι−1Ir (resp. J := ι−1I) of the sheaf Ir (resp. I) over
P1
C × P1

C. We consider similarly to [Mal01, Lemma 5.3.3], the evaluation ev(ι−1I)

at X = X = ∂iX
∂xi = 0 of the equations of ι−1I and we denote by ev(I) the direct

image by ι of the sheaf ev(ι−1I).
The following lemma is crucial in the proof of the Theorem 11.9:

Lemma 11.12. A germ of local di�eomorphism (x,X) 7→ (αx, β(x)X) of M is
solution of I if and only if it is solution of ev(I).

Proof. First of all, we notice that I is contained in Lin. Moreover the so-
lutions of I, that are di�eomorphisms mapping a neighborhood of (x0, X0) ∈ M
to a neighborhood of (x0, X0), can be naturally continued to di�eomorphisms of a
neighborhood of x0 × Cν to a neighborhood of x0 × Cν . Therefore it follows from
the particular structure of the solutions of Lin, that they are also solutions of ev (I)
(cf. Proposition 10.2).

Conversely, let the germ of di�eomorphism (x,X) 7→ (αx, β (x)X) be a solution
of ev (I) and E ∈ Ir. It follows from Proposition 10.4 that there exists E1 ∈ I of
order r, only depending on the variables x,X,∂x̄∂x ,

∂X̄
∂X , ∂

2X̄
∂x∂X , . . .,

∂rX̄
∂xr−1∂X , such that

(x,X) 7→ (αx, β (x)X) is solution of E if and only if it is solution of E1. So we will
focus on equations on the form E1 and, to simplify notation, we will write E for
E1.

By assumption (x,X) 7→ (αx, β (x)X) is solution of

E

(
x, 0,

∂x̄

∂x
,
∂X̄

∂X
,
∂2X̄

∂x∂X
, . . .

∂rX̄

∂xr−1∂X

)
and we have to show that (x,X) 7→ (αx, β (x)X) is a solution of E. We consider
the Taylor expansion of E:

E

(
x,X,

∂x̄

∂x
,
∂X̄

∂X
,
∂2X̄

∂x∂X
, . . .

∂rX̄

∂xr−1∂X

)
=
∑
α

Eα (x,X) ∂α,

where ∂α is a monomial in the coordinates ∂x̄
∂x ,

∂X̄
∂X ,

∂2X̄
∂x∂X , . . .

∂rX̄
∂xr−1∂X . Developing

the Eα (x,X) with respect to X = (X1, . . . , Xν) we obtain:

E =
∑(∑

α

(
∂kEα
∂Xk

)
(x, 0) ∂α

)
Xk,

with k ∈ (Z≥0)ν . If we show that for any k the germ (x,X) 7→ (αx, β (x)X) veri�es
the equation

Bk :=
∑
α

(
∂kEα
∂Xk

)
(x, 0) ∂α

we can conclude. For k = (0, . . . , 0), there is nothing to prove since B0 = ev (E).
Let DXi be the derivation of I corresponding to ∂

∂Xi
, The di�erential equation

DXi (E) =
∑
α

(
∂Eα
∂Xi

)
(x,X) ∂α +

∑
α

Eα (x,X)DXi (∂α)
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is still in I, since I is a di�erential ideal. Therefore by assumption (x,X) 7→
(αx, β (x)X) is a solution of

ev (DXiE) =
∑
α

(
∂Eα
∂Xi

)
(x, 0) ∂α +

∑
α

Eα (x, 0)DXi (∂α) .

Since DXi (∂α) ∈ Lin and (x,X) 7→ (αx, β (x)X) is a solution of Lin, we conclude
that (x,X) 7→ (αx, β (x)X) is a solution of∑

α

(
∂Eα
∂X

)
(x, 0) ∂α

and therefore ofB1. Iterating the argument, one deduce that (x,X) 7→ (αx, β (x)X)
is solution of Bk for any k ∈ (Z≥0)ν , which ends the proof of the lemma. �

We go back to the proof of Theorem 11.9. Lemma 11.12 proves that the solu-
tions of Gal(A (x)) coincide with those of the D-groupoid Γ generated by Lin and
ev (I), de�ned on the open neighborhoods of any x0 × Cν ∈ M . By intersection

with the equation T rv, the same holds for the transversal groupoids ˜Gal(A (x)) and
Γ̃.

Since P1
C×P1

C and M ×CM are locally compact and Ir is a coherent sheaf over
M×CM , the sheaf Jr is an analytic coherent sheaf over P1

C×P1
C and so is its quotient

ev(ι−1(Ir)). By [Ser56, Theorem 3], there exists an algebraic coherent sheaf Jr
over the projective variety P1

C × P1
C such that the analyzation of Jr coincides with

ev(ι−1(Ir)). This implies that ev (I) is generated by algebraic di�erential equations
which by de�nition have the dynamics for solutions.

We thus have that the sol(Γ) = sol(Gal(A(x))) ⊂ sol(Galalg(A(x))). Since both
Γ and Galalg(A(x)) are algebraic, the minimality of the variety Kol(A(x)) implies
that sol(Galalg(A(x))) ⊂ sol(Γ). We conclude that the solutions of Gal(A(x)) coin-

cide with those Galalg(A(x)). The same hold for ˜Gal(A(x)), Γ̃ and ˜Galalg(A(x))).
This concludes the proof. �

11.4. Comparison with known results

In [Mal01], B. Malgrange proves that the Galois-D-groupoid of a linear di�er-
ential equation allows to recover, in the special case of a linear di�erential equation,
the Picard-Vessiot Galois group over C. This is not in contradiction with the result
above, since:

• due to the fact that local solutions of a linear di�erential equation form
a C-vector space (rather than a vector space on the �eld of elliptic func-
tions!), [Kat82, Proposition 4.1] shows that the intrinsic Galois group
and the Picard-Vessiot Galois group in the di�erential setting become iso-
morphic above a certain extension of the local ring. For more details on
the relation between the intrinsic Galois group and the usual Galois group
see [Pil02, Corollary 3.3].
• it is not di�cult to prove that, in the di�erential setting, the Picard-
Vessiot Galois group and parametrized Galois group with respect to d

dx
coincide. See Remark 9.11.

Therefore B. Malgrange actually �nds a parametrized intrinsic Galois group, which
is hidden in his construction. The steps of the proof above are the same as in his
proof, apart that, to compensate the lack of good local solutions, we are obliged
to use Theorem 7.13. Anyway, the application of Theorem 7.13 appears to be
very natural, if one considers how close the de�nition of the dynamics of a linear
q-di�erence system and the de�nition of the curvatures are.
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In [Gra], A. Granier shows that in the case of a q-di�erence system with con-
stant coe�cients the groupoid that �xes the transversals in Gal(A(x)) is the Picard-
Vessiot Galois group, i.e., an algebraic group de�ned over C. Once again, this is not
in contradiction with our results. In fact, under this assumption, it is not di�cult
to show that the parametrized intrinsic Galois group is de�ned over C. Moreover
the parametrized intrinsic Galois groups and the intrinsic Galois group coincide, in
fact ifM is a q-di�erence module over C(x) associated with a constant q-di�erence
system, it is easy to prove that the prolongation functor F∂ acts trivially on M,
namely F∂(M) ∼= M⊕M. Finally, to conclude that the intrinsic Galois group
coincide with the usual one, it is enough to notice that they are associated with the
same �ber functor, or equivalently that they stabilize exactly the same objects.

Because of these results, G. Casale and J. Roques have conjectured that �for
linear (q-)di�erence systems, the action of Malgrange groupoid on the �bers gives
the classical Galois groups� (cf. [CR08]). In loc. cit., they give two proofs of
their main integrability result: one of them relies on their conjecture. Here we
have proved that the Galois-D-groupoid allows to recover exactly the parametrized
intrinsic Galois group. By taking the Zariski closure one can also recover the
algebraic intrinsic Galois group. The comparison theorems in Part 4 imply that
we can also recover the Picard-Vessiot Galois group (cf. [vdPS97], [Sau04b]),
performing a Zariski closure and a convenient �eld extension, and the parametrized
Galois group (cf. [HS08]), performing a �eld extension.
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