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Appendix 1.
Newton-Ramis polygons

and formal Fourier transforms

of ¢-difference equations

In this appendiz K is a field of characteristic zero and q is a non zero element of K, which

s not a oot of unity.

For any positive integer n we set (n); = 1+ ...+ ¢" 2+ ¢"! = % and [n]!, =

. . P !
(n)q---(2)q- If i <n is another positive integer we set (’;)q = %

1.1. g-analogue of the formal Laplace transform.

In “g-analysis”, there are two ¢g-analogues of the formal Laplace transform, namely:
()*: K [z] — K [[z71]]

F=%>,az" — Ft=3% [n]ljape—""!

n=0

and:
()#: K [2] — K [[=71]

F:Z;’;Oanx" — F#:Zfzoq T,z "t

n(n=1)/2 are polynomial in ¢ of the same degree, if K is a normed field and the

Since [n]!y and ¢
norm of ¢ is greater than 1 the two Laplace transforms are equivalent (c¢f. [MZ, §8]), but this is
not the case we are interested in. We are interested in the arithmetic point of view, therefore
for us (-)* and (-)# have a completely different behavior, linked to the different p-adic behavior

n(n—1)

of g~z and of [n]!,.

In this appendix we are going to define two g-analogues of the formal Fourier transform,
associated to the two Laplace transforms (-)* and (-)# and study their action on the g-analogue
of the Newton-Ramis polygon (cf. for instance [M, Ch. V, §1] for the differential case).

The Laplace transforms (-)* and (-)# have the following properties:
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142 Newton-Ramis polygons and formal Fourier transforms

Lemma 1.1.1. For all F =Y ja,a" € K [z] we have

1
(xF)t = —=d, -1 FT | (d,F)T =aFT - F(0),
q

1 1
(zF)* = q—xgoqu# , (g F)* = agoqle# .

Proof. We deduce the first equality using the relation

1 1

1
—5dq—1x—n = (n)qW .

All the other formulas easily follow by the definitions.

1.2. ¢g-analogue of the formal Fourier transform.

App.1

By analogy with the differential case, the previous proposition justifies the definition:

Definition 1.2.1. We call the maps

Fpoo Kz, dy] — K [a:, dq”] and For 1 K[z,0] — K [%’QOT
d, — x ¥q — %90‘1_1
T — _%dqfl z — qlwgo‘fl

the g -Fourier transform and the q# -Fourier transform respectively.

Remark 1.2.2.
1) We notice that .’qu = Ao F(g-1)+, where

A Kz,d;] — Klz,dg
dg — —%dq
x —  —qz

2) We have
For (pg) = Fyr (g — Vzdy +1)

—(g—1) (—éd“) oz+1

1
a + 7$dq—1
1

Pg—1 -
qq

3) We notice that if £ = E?:o a;(1)pt

z/fq

exists a unique N € K [z, 4] such that F«(N) = L.

4 €K [%,@q—l] is such that deg% a; (%) <,

1]

there
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In the following lemma, we verify the expected compatibility between the formal Fourier
transform F,+ (resp. F,#) we have just defined and the Laplace transform (-)* (resp. (-)#):

Lemma 1.2.3.

1) Let F € K [z] be a series solution of a g-difference linear operator N' € K [z,d,] (resp.
K[z, p4]) such that p = degy N, then dl_, Fy+ (N)F"' =0 (resp. Fpu(N)F# =0).

2) If F* is a solution of L1 € K [a:, dqfl] then For (L) F =0.

3) If F# is a solution of Ly € K [%,goq ] then for alln € N, n >> 0, we have f(;#l(cpg_l o
L2)F = 0.

Proof. We prove the statements for (-)*. The proof for (-)# is quite similar.
Let

o v
N = Z a; ja'dy € K [x,dg) .
§=0 i=0

By (1.1.1), we deduce that F + (N)F™ is a polynomial of degree at most u, therefore
df;_l Fot (N)F+ =0.
Let

noov
Ly = ZZai,jxidz_l € K [z,d, "],
j=01¢

+
then (fq_f(ﬁl)F ) is a polynomial of degree at most x. We obtain

2, (f;l(cl)F)+ (a7 (e)F) =0
and finally (—qz)"F YLy F [ |

1.3. Newton-Ramis polygons.

Let us consider a linear g¢-difference operator
W
(1.3.0.1) N = Za, z'd) = Zb z)pt
=0

with b;(x), a;(xz) € K[z]. By [DVIII, (2.1.10)], we obtain

L
bj(x)z (z> (1_ )z i(i—1)/2 zd i

i q

H y . .

(1 z z(z 1)/2 Z( > quz ’

1=0 j=

(1.3.0.2)

therefore a;(z) = (1 — q)iq i(i-1)/2 ] —i (’:)qu(:c).
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Definition 1.3.1. We define the Newton polygon N Py(N) of N at zero to be the convex hull
of the following subset of R?

U u,v) € R% :u=14,v > ord,bi(z)} .
ERCS ()}

Remark 1.3.2. The set NPy(N) is a convex polygon with a finite number of finite sides.

Definition 1.3.3. We say that N is regular singular at zero (or that N has a regular singu-
larity at zero) if NPy(N') has only one finite side whose slope is equal to zero.

Definition 1.3.4. We say that N is irreqular singular at zero (or that N has an irregular
singularity at zero) if NPo(N') does not have a regular singularity at zero.

Definition 1.3.5. We say that N' has a regular singularity at oo (resp. an irregular singularity
at oo) if it has a regular singularity at zero (resp. an irregular singularity at zero) with respect
tot=1.

T

In the ordinary differential equations theory, one usually defines a more general polygon,
called the Newton-Ramis polygon, which gives at the same time informations about the slopes
at zero and at oo (c¢f. [M, V, §1]). Inspired by this construction, we introduce a modification
of the above definition of the Newton polygon.

First of all we notice that by setting t = £ in (1.3.0.1) we obtain the g-difference operator

T

m
1 —i
droN =S u () eh.
i=0
hence NP, (N) is obtain by shifting the polygon

1
convex hull of U {(u, v) €ER? :u=p —i,v > ordb; (_>} )
bi (x)#0 t

Since ordb; (%) = —deg, b;i(z), the following definition becomes natural:

Definition 1.3.6. Let N = Y  a;(z)zld,' = 31, bi(z)¢t, such that bj(x),a;(z) € K|z].
Then we define the Newton-Ramis polygon of N with respect to ¢, (and we write NRP,_(N))
(resp. with respect to d, (and we write NRP; (N'))) to be the convex hull of the following set

U {(u,v) € R? : u=1i,deg, b;(x) > v > ord,b;(x)} C R? .
bi(a:)¢0

(resp. (U);e {(u,v) € R? : 0u < 4,deg, a;(z) > v > ordga;(z)} C ]R2> :
a;(x)#0

We say that the vertical sides of NRP, (N')) (resp. NRP; (N')) have slope co.
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Remark 1.3.7. The reason why we define two different Newton-Ramis polygons is that
NRP, (N) is more adapted to describe the behavor of F # and NRPy, (N) is more adapted
to Fo+.

As expected we obtain:

Proposition 1.3.8. We have
NRP, (N)=NPy(N)N{(p—u,—v) € R : (u,v) € NP (N)},

therefore the slopes of the upper sides of NRP,, (N) are the finite slopes of N Poo(N) and the
slopes of the lower sides are the finite slopes of N Py(N).
Moreover we have

NRPs,(N) = J ’ S R?:u< .
dy(N) (uo,UO)ENRqu(N){(u v9) u < ug}

Proof. The first part of the proposition follows by the definition of NRP,,_ (N'). The second
part follows by (1.3.0.2). [ ]

1.4. Behavior of the Newton-Ramis polygon under the ¢g-analogue of
the formal Fourier transform.

The following proposition describes the behavior of the Newton-Ramis polygon with re-
spect to Fy+ and Fx.

Proposition 1.4.1. We denote NRP, _, (]:q# (N)) the Newton-Ramis polygon of Fyu (N)
defined with respect to @ and @1 and NRP; _, (F,+ (N)) the Newton-Ramis polygon of
Fy+ (N) defined with respect to z and d,-1. The map

NRP,,(N) — NRP, _, (Fu(N))
(u,v) — (u+v,—v)

NRqu (N) — NR-qufl (-,’:.q+ (N))
resp.
(u,v) — (u+ v, —v)

is a bijection between NRP, (N) and NRP, _, (Fy#e (N)) (resp. NRPy (N) and NRPy _,
(Fy+ (N))). Then Fy« (resp. Fy+) acts in the following way on the slopes of the Newton-Ramis
polygon:
{slopes of NRP, (N)} —» {s]opes of NRP, _, (Fyr (N))}
A

A —

TIEX
00 — ~1
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{slopes of NRP; (N)} —> {s]opes of NRPy _, (Fyr (N))}

resp. A ; 14):)\
00 — -1

Proof. As far as F » is concerned, it is enough to notice that

v
ZZbi,g‘ﬂi]Q@Z qu] G- 3)/2(] 7 QDH_{ .

1=0 j=0 =0 j=0
Let .
N = Zzai,jxjdqi .
=0 j=0
As for Fyu:
©noov
1)a;
fQJF(N):Z ( )j ’]dq]ox’
1=0 j=0 q
koopJ ; . .
:ZZZ%(J) iq! gU—mG=h) = hd] —h
i=0 =0 h=0 ¢ h) o (h =)}

(j —hyi—j) € NRPy_, (Fpr (N)) forallh=0,...,j
The statement easily follows by this remark. |

With the help of the Newton-Ramis polygon, we have described what happens at zero
and at oo under the Fourier transforms. Now we want to describe the situation at a point
¢ € PY(K) \ {0,00} when we consider the inverse image of a regular singular g-difference
operator by F# or Fu+.

Proposition 1.4.2. Let N € K [z, d,] be a linear g-difference operator such that NRP; (N')
has only the zero slope at co; then the operator F,+ N has a basis of solution in

Klz-¢],= {Zan(x—ﬁ)n:aneK} ,
n=0

with (z — &) = (z — €)(z — ¢€) -+~ (z — ¢"71¢), for all £ € P1(K) \ {0, 00}.

Remark 1.4.3. Since .7-"q_+1 (N) = Ao F(g-1)+(N), an analogous statement is true for .7-";43 (N).
Proof. Let

v
N = Zal(a: . —ZZamw d,t, i.e. ai(x ):Zamx’
j=0

1=0 j=0
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be a linear g-difference operator satisfying the hypothesis. Considering the Newton polygon
of N at 0o we deduce that

degai(z) < degay(z) , Vi=0,...,p—1,
thus a;, =0 for all = 0,...,u — 1. Since the coefficient of dZ_l in

B J
For(N) = ZZGW (—— q1> ozt

i=0 j=
v—1 u ’
T I
7=0 =0

does not vanish on {¢"¢ : n € Z~o}, we can conclude using the following lemma:

Lemma 1.4.4. Let £ = d,* + Z“ 5 ai(z)d,' € K(z)[d,] be a g-difference operator and let
£ € K. If ai1(z),...,au—1(z) have no pole in the set {q"¢ : n € Z¢}, then L has a basis of
formal solutions (i.e. p linearly independent solutions) in K [z — £] .

Proof. The g¢-difference equation Ly = 0 is equivalent to the linear g-difference system
(1.4.4.1)

y 0 y y
dqy : I, dq.y dgy
1 I e "~ Yo =ow |
"ty ag(x) | ar(z) -+ au-1(z) "1y "y
Let Go(z) = 1, Gi1(z) = G(z) and Gp41(x) = Gl(qx) n(z) + dgGp(z) for all n > 1. Then
the Gy (x)’s don’t have any pole in { and Y = Zn>0 o E)(a: — &)p is a formal fundamental

solution for (1.4.4.1). [ |

Proposition 1.4.5. Let £ =) % a; (—) <pq 1 €K [w,(Pq—l] such that deg a,( ) <i. We
suppose that NRP, _, (L) has no negative slope at oo, then F 1(£) has a basis of solutions
in K [z — €], for every £ € P'(K) ~\ {0, 00}.

Proof. By hypothesis we have

foralli=0,...,u—1. We set

u v
1

=Y S a ke

=0 j=v
Then we have
uw v
-1 -1 _

]:q# (£) = a* ZZ ] ;Icpz_{

i=0 j=v

Z bh(x)gofl +aupr’oy ™" € Kz, 04] -

We conclude by the previous lemma, writing ,7-'(;%1 (£) as an operator in d,. [ |






Appendix 2.
On the definition of the

arithmetic ¢-Gevrey series

In [DVIII, 8.4] we have presented a proof of the fact that a “G-function”, which is solution
of a g-difference equation (instead of a differential equation as usual), is necessarily the Taylor
expansion of a rational function € Q(z). In [A3], Y. André asks for a good definition of a
g-analogue of G-functions, applying to the so-called basic hypergeometric series and allowing
us to construct an arithmetic ¢-Gevrey series theory.

In this appendix we propose a tentative definition and prove that some basic expected
properties actually hold.

2.1. Definition of ¢~-size.

Let K be a number field, Vi its ring of integers, v a place of K. In the non-archimedean

case, we normalize | |, as follows:

|p|v :p_[Kv:Qp]/[K:Q] ,

where K, is the v-adic completion of K and v|p. Similarly, in the archimedean case, we
normalize | |, by setting
o[/ Y i K, =R

|$|U = . )
2|59 i K, = C

where | |g and | |c are the usual euclidean absolute values. We denote by X the set of finite
places K and by X, the set of archimedean places of K.

We fix a non zero element ¢ € K, which is not a root of unity. We suppose that for all
immersion K —C, the image of q in C do not have norm 1.

Notation 2.1.1. For every a € , we set
2(¢*) ={v e Zf:|gly =1, v|p and p splits totally in Q(¢%)/Q} U U{v € Ty :|qly # 1} .

We remark that if ¢* € Q then ¥(¢%) = X5 U X

149



150 On the definition of the arithmetic g-Gevrey series App.2

Definition 2.1.2. Let y(z) = > .2 a,a" € K [z] be a formal power series. Let o € Q,
a # 0; we call ¢*-size of y the number

. 1
() = Timsup T 3 tog* (suplaul )

n
n—oo vED(g%) s<n

where log™ (z) = logsup(1, z), for all z € R.
If ¢* € Q, we will say size instead of ¢®-size and write o instead of o gx.

Remark 2.1.3.

1) If ¢® € Q, the definition of ¢g*-size coincides with the classical definition of the size coming
from G-function theory (cf. [Al] or [DGS]).

2) Let us consider the basic hypergeometric series

b L (g% 1+k—1
1Pe(abigx) = kl_L:;(q O ((—1)"q"("—1)/2) z"
n=0 Hj:l(q 350 (G Dn

where [,k € Z>o, a = (a1,...,0a;) € @l , b= (b1,...,bx) € @k and (¢%;¢)n =(1—4¢%)---(1—
g**t"~1) is the g¢-Pochhammer symbol. We think that ;®4(a,b;q, =) has finite ¢”-size, for a
choice of v € Q such that ¢%,¢% € Q(¢q”) forany i =1,...,l and j = 1,...,k. A direct proof
seems difficult, but a proof of the type [DGS, IV, 8], relying on the Dwork-Robba theorem,
should work: this is work in progress.

Proposition 2.1.4. Let y1,y2 € K [z] and let 1,02 be two rational numbers such that
0421 (y1) < 00 and oge2 (y2) < co. Then there exists v € Q such that

o (Y1 +y2) < o (Y1) + g (y2) -
Moreover the sub-algebra of K [z] of power series, which have finite ¢®-size for some o € Q,
is stable by Hadamard product.

Proof. We notice that it is enough to choose v € Q such that Q(g”) is an extension of Q(g**)

and Q(¢*?) and adapt the classical proof concerning the case ¢® € Q (c¢f. for instance [DGS,
VIIL, 1.3)). n

2.2. Definition of arithmetic ¢-Gevrey series.

1—q"
1—q

For any positive integer n, we set (n), = 1+ ... + ¢" 2+ ¢" ! =

(n)q---(2)q- If i < n is another positive integer, we set ('i’)q = [i]!q[m“_!i]!q.

and [n]!, =

Definition 2.2.1. A series y(z) = > oo ,anz™ € K [z] is arithmetic g-Gevrey of (double)
order (s1,82) € Q? if and only if there exists o € Q such that

ad 4]
n n
Z n(n—1) \ 51 z
()

n=0 ([n]lg)™

2
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has finite q*-size.

Remark 2.2.2.

1) We notice that being an arithmetic g-Gevrey series of order (s1, s2) implies being a ¢-Gevrey
series of order s + s, in the sense of [B] and [BB] for all v € £, U X such that |g|, > 1. If
v € Xy and |g|y, < 1, then |(n),|y, = 1, therefore an arithmetic g-Gevrey series of order (s, s2)
is a ¢-Gevrey series of order s; in the sense of [BB].

2) The presence of a double order is motivated by the existence of two different analogues of
the Laplace transform, which have a completely different arithmetical nature (¢f. Appendix

1).

Definition 2.2.3. We denote by K{xz}{ ... the set of all arithmetic q-Gevrey series of order
(s1, s2) with coefficients in K solution of a g-difference equation with coefficients in K (x).
We note also K{z}"3 the set of all y(z) = Y,,v o anz" € K{z}Z ,, . such that

81,8234
[
> z"
n(n )
=1Cms ) (Inlta)™

has finite size.

Remark 2.2.4. The K{z}# 51,80;¢ 15 naturally a K-vector space, but not a K-algebra. In fact
Yot [:f]"!q is an arithmetic ¢-Gevrey series of order (0, —1) but

Ea) -SE0)

is mot an arithmetic g-Gevrey series. For this reason, an arithmetic ¢g-Gevrey theory may have

applications to the irrationality theory but may hardly have applications to the transcendance
theory, contrary to the case of arithmetic Gevrey theory in the differential case (c¢f. [A2] and
[A3]).

We remark that, as in the differential case, the Hadamard product of g-Gevrey series of
order (s1,s2) and (t1,t3) respectively is a g-Gevrey series of order (sy + t1, s3 + t2).

As far as K{z}27% is concerned the notation is motivated by [DVIII, (8.4)].

81,8234

It is clear that we can always consider an arithmetic g-Gevrey series of order (s,0), with
s # 0, as an arithmetic ¢~°-Gevrey series of order (—1,0). This doesn’t seem to be true that
an arithmetic ¢-Gevrey series of order (0, s) is an arithmetic ¢g-Gevrey series of order (0, —1).






References.

[A1]

[A2]

[A3]

[B]

[BB]

[CC]

[DGS]

[DVI]

[DVII]

[GR]

[M]

[MZ]

[Z]

André Y.: “G-functions and Geometry’, Aspects of Mathematics E13, Vieweg, Braun-
schweig/Wiesbaden, 1989.

André Y.: “Séries Gevrey de type arithmétique (I: théorémes de pureté et de dualité)”,
Ann. of Math. (2) 151 (2000), no. 2, 705-740.

André Y.: “Séries Gevrey de type arithmétique (II: transcendance sans transcendance)”,
Ann. of Math. (2) 151 (2000), no. 2, 741-756.

Bézivin J.P.: “Sur les équations fonctionnelles aux g-différences”, Aequationes math. 43,
(1992).

Bézivin J.P., Boutabaa A.: “Sur les équations fonctionnelles p-adique aux g¢-différences”,
Collect. Math. 43, 2 (1992).

Chudnovsky D.V., Chudnovsky G.V.: “Application of Padé approximation to diophantine
inequalities in value of G-functions”, Lect.Notes in Math. 1052, Springer-Verlag, 1985,
1-51.

Dwork B., Gerotto G., Sullivan F.: “An Introduction to G-functions’, Annals of Mathe-
matical Studies 133, Princeton University Press, Princeton N.J., 1994.

Di Vizio L.: “On arithmetic size of linear differential equations”, a para.i‘tre dans Journal
of Algebra, (Section I).

Di Vizio L.: “Arithmetic theory of g-difference equations I. The g-analogue of Grothen-
dieck’s conjecture on p-curvatures”, (Section IIT).

Gasper G., Rahman M.: “Basic hypergeometric series”, Cambridge Univ. Press, Cam-
bridge, 1990.

Malgrange B.: “Equations diffientielles a coefficients polynémiauz”, Progress in Math.
96, 1991.

Marotte F., Zhang C.: “Multisommabilité des séries entireres solutions formelles d’une
équation aux g-différences linéaire analytique”, preprint 1998.

Zhang C.: “Développements asymptotiques g-Gevrey et séries Gg-sommables”, Ann. Inst.
Fourier, Grenoble 49,1 (1999), 227-261.

153



