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Section III.

The g-analogue
of Grothendieck’s conjecture

on p-curvatures

Introduction.

The Grothendieck conjecture on p-curvatures is related to the classical problem of finding
algebraic solutions of differential equations. More precisely, when we consider a differential

equation
Ly = a”(x)Ty +ay_1(z)——— +... +ao(z)y=0,

with coefficients in the field (z) of rational function in the variable z over the field of rational
numbers, for almost all prime p € Z we can reduce the equation Ly = 0 modulo p; then the
Grothendieck conjecture predicts:

Grothendieck’s conjecture on p-curvatures. The equation Ly = 0 has a full set of
algebraic solutions if and only if for almost all primes p € 7Z the reduction modulo p of Ly =0
has a full set of solutions in F,(x).

The conjecture is proved essentially for differential equations of order one over a Riemann
surface and for connections coming from geometry: the general case is still open.

In the present paper we prove an analogue of Grothendieck’s conjecture on p-curvatures
for g-difference equations. Let ¢ be a non zero rational number. We consider the operator

Pq - Qz) — Q=)
f@) — flgx)

and the g¢-difference equation
Ly = au(z)y(ghz) + ay_1(x)y(¢" ) + ... + ap(x)y(z) =0, au(z) #0,

with a;(z) € Q(z). For almost all rational primes p the image g of ¢ in [F, is non zero and
generates a cyclic subgroup of [} of order «,. For almost all p there exists a positive integer £,
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82 The g-analogue of Grothendieck’s conjecture on p-curvatures II1. §0

such that 1 — ¢g*» = ptr %, with h, g € Z primes to p and we can consider the reduction L,y = 0

of Ly = 0 modulo p’». Let as consider a Z-algebra A = Z [:1:, %,i > 1], with P(z) € Z[z],

such that a;(z) € Z [:1:, m,i > 1], foralli=0,...,pu.
Our main result is (¢f. (7.1.1) below):

Theorem 1. The g-difference equation Ly = 0 has a full set of solutions in Q(z) if and
only if for almost all rational primes p the equations L,y = 0 has a full set of solutions in
ARy Z / plpZ.

The techniques employed in the proof of Theorem 1 are borrowed from the theory of G-
functions. There are essentially two properties of arithmetic g-difference equations which
allow us to obtain stronger results than in the differential case:

1) A formal power series with a non zero radius of convergence solution of a g-difference equa-
tion has infinite radius of meromorphy whenever |g| > 1. If the algebraic number ¢ is not a
root of unity, we can always find a place, archimedean or not, such that the associated norm of
q is greater than 1. This is the very key-point of the proof: if we had good meromorphic uni-
formization of solutions of arithmetic differential equations, Grothendieck’s conjecture would
become a corollary of G-functions theory.

2) An arithmetic differential equation, whose reduction modulo p can be written as a product
of trivial factors for almost every p, is regular singular and has rational exponents (c¢f. [K1,
13.0]). A g-difference equation, whose reduction modulo p can be written as a product of
trivial factors for almost every p, is not only regular singular, but its “exponents” are in ¢”.
If, moreover, its reduction is trivial for almost every p the equation has a complete system of
solutions in K((z)).

In one instance the techniques used in G-function theory give a weaker result in the
g-difference case: the g-analogue of the Katz’s estimates for the p-adic generic radius of con-
vergence is very unsatisfactory (cf. §5 below). This is at the origin of many complications in
the text (¢f. (8.1)): actually the naive g-analogue of the notion of nilpotent reduction does
not allow us to conclude the proof of our main result. A deeper analysis of the definition of
p-curvatures for arithmetic differential equation has shown that we can define two g-analogue
of the notion of trivial reduction (¢f. §1). Both of them are natural and useful. The first one
permits only to obtain the triviality over K((z)), the second one leads to the triviality over

Finally, we want to put the accent on the fact that we have very poor information on the
sequence of integers (kp), and no control at all on (£,),. We are just able to prove (cf. (6.1.2))
that the sequence (k,), determines completely ¢g. The difficulties linked to these numbers and
their distribution are the arithmetical counterpart of the classical (archimedean) problem of
small divisors. This becomes more clear if we translate the definition of x, and ¢, as follows:

kp =min{m € Z: m >0, [1-¢™|, <1}

and p~% = |1 — ¢*|,, where | |, is the p-adic norm over Q, such that |p|, = p~1.
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In this arithmetical framework it would seem natural to assume that for all embeddings
Q «——C, the image of ¢ in C does not have complex norm 1, in order to avoid the problem
of small divisors. Actually, this assumption is not needed since ¢ is an algebraic number. In
(8.3) we need to show that a formal power series y(z) € C[z] solution of a regular singular
g-difference equation with coefficients in C(z) is convergent. In [Be], the author gives some
technical sufficient conditions on the estimate of |1 — ¢"|c to assure the convergence of the
power series y(z). It is a consequence of the Baker’s theorem on linear forms in logarithms
that these conditions are always verified when ¢ is an algebraic number. It is possible that the
technique of (8.3) can be applied to more general problems of small divisors.

The Grothendieck conjecture on p-curvatures is a classical problem in arithmetic theory
of differential equations. Gothendieck proved the conjecture [Ho| for differential equations of
order 1 on the affine line and G. and D. Chudnovsky [CC] proved it for differential equations
on the affine line, coming from differential equations of order one on curves of higher genus.
Recently Y. André [A2] has proved the conjecture for connections coming from geometry and
their deformations, generalizing previous results of Katz [K2]. Finally we mention a very recent
result by J-B. Bost about some arithmetic criteria of algebraicity for foliations, which is deeply
linked to the conjecture above. The general case of the conjecture is still open.

On the other hand, the arithmetic theory of g-difference equations is still at its beginning,
and the literature on this topic is not very ample. About the problem of finding rational
solutions of g-difference equations, we cite the following theorem:

[BB, 7.1] Let Q be the algebraic closure of Q and let q1,q» € Q be multiplicatively
independent. If the formal power series y(x) with coefficients in Q is solution of the
system:
{au(x)y(q’fm) +ay1(z )y(ql_lx) +... +ag(z)y(z) = 0
bu(2)y(gh) + bu-1(z)y(ds ™ @) + ... + bo(z)y(z) = 0
with ag(z),...,a,(z),bo(z),...,bu(z) € Qz], and ao(z)bo(z) # 0, then y(z) is the Taylor
expansion of a rational function € Q(z).

In any case, our approach is completely different from the one in [BB].

We think that the topic of the present paper may be developped much further. As in the
differential case, we can formulate an analogue of Katz’s conjectural description of the generic
Galois group (¢f. [K3], and [DV] for the g-difference case) and prove that it is equivalent to
theorem 1. In some cases, it permits to calculate in a quite simple way the Galois group of
a g-difference module. It is quite surprising to remark that the conjectural description of the
differential Galois group in [K3| doesn’t seem as powerful as its g-analogue.

Another problem related to our results is the construction of an analogue of the theory
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of G-functions for g-difference equations, including Heine’s series having rational coefficients:
the problem is that by (8.4) any G-function solution of a g-difference equation is a rational
function. This question is already proposed in [A3] and it is fundamental in the construction
of an arithmetic Gevrey theory for g-difference equations.

Finally, we recall that, in [PS], a counterexample is shown to the naive analogue of
Grothendieck’s conjecture for finite difference equations. However the authors suggest a link
between the property of having p-curvature zero for almost all primes and arithmetic proper-
ties of the solutions, but they do not formulate any precise statement. It seems to us that the
proof of theorem 1 should partially work in the case of finite difference equations and that it
is reasonable to conjecture:

Conjecture. Let us consider the finite difference equation:

Ly(z) = ap(@)y(e + p) + apa(@)y(z + p—1) + ... + ao(2)y(z) =0,

with a;(z) € Q(z) and let Lyy(z) = 0 be the reduction of Ly(z) = 0 modulo p, existing for
almost all primes p € Z. If Lpy(xz) = 0 has a full set of solutions in F,(x) then the equation
Ly(xz) = 0 has a full set of solutions in Q[z], which are G-functions.

The paper is organized as follows.

The first section contains some considerations on arithmetic differential module, with
the purpose of motivating the choice of considering two different g-analogues of the notion of
nilpotent reduction.

In the second section we introduce some basic properties of g-difference modules, in par-
ticular a g-analogue of the cyclic vector lemma. Moreover we recall some results on the formal
classification of g-difference modules.

In §3 we prove a characterization of trivial ¢g-difference modules and of g-difference modules
which are extensions of trivial ones, when ¢ is a root of unity and K is a commutative ring.
This degree of generality is motivated by theorem 1, where we consider a g-difference equation
over a Z/p*»Z-algebra.

Sections §4and §5 are devoted to the p-adic situation. In §4 we introduce p-adic g-difference
modules and we establish their first properties. In particular we prove a g-analogue of the
Dwork-Frobenius-Young theorem. In §5 we introduce the two notions of nilpotent reduction
and revisit and translate some classical estimates for differential modules having nilpotent
reduction in the g¢-difference setting (c¢f. [DGS, page 96]). The results of this section are
crucial for the proof of the main theorem (7.1.1), together with the results of §6.

Finally, in sections §6, §7and §8 we consider the arithmetic situation. In §6 we prove a
g-analogue of [K1, 13.0]: as we have already pointed out we obtain a stronger result than in
differential setting. Section §7 contains the statement of the main theorem and §8 its proof.

Acknowledgements. I am very grateful to Y. André for suggesting this subject to me, and
for his assistance at every step in the preparation of this work. I would like to thank M. van der
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Put for a manuscript, containing a prove of (6.2.2, 1) and some notes on the reduction modulo

p of g-difference equations of rang 1, he gave to me in April 1999, and the many conversations
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1. Considerations on the differential case.

to

We would like to recall some properties of arithmetic differential modules that are supposed
motivate the structures we will introduce in the sequel. In particular the considerations

below show that the two notions of nilpotent reduction introduced in §5 are both natural

g-analogues of the notion of nilpotent reduction for differential modules.
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Let us consider the field of rational numbers Q. For all prime p € Z we consider the p-adic

1

norm | |, over , normalized so that |p|, = p~'. By the Gauss lemma, the norm | |, can be

extended to the p-adic Gauss norm | |y gquss Over Q(z), by setting

_ SUPi—g,...,n |%ilp

B SuP;—y,...,m |bj|p '

i= Oa’z

‘Z] Ob (17

p,Gauss

Let us consider a differential module (M, A) over Q(z), i.e. a Q(x)-vector space M of finite
dimension y equipped with a Q-linear morphism A : M — M such that A(fm) = %m +
fA(m), for all f € Q(x) and m € M. We fix a basis e of M over Q(z) and set A"e = eG,(z),
for all n > 1, where Gp(x) € Mux,(Q(z)) is a square matrix of order p with coefficients in
Q(z). The matrix 3>, 50 28 (z—t)" € M5, (Q(t)[x—t]) is a formal solution of 2¥ = Y G4 (z)

n!

at any t in the algebraic closure of Q, such that G1(z) has no pole at ¢.

G1i(z) in Myx,(Fp(x)). We usually say that (M, A) has p-adic nilpotent reduction of order n
if |Gpp(T)|p,Gauss < 1 or, which is equivalent, if Gpp(z) = 0 modulo p. If n =1 we say that

For almost all primes p € Z we have |G1()|p,Gauss < 1 and we can consider the image of

(M, A) has p-curvature zero.
Another equivalent statement of the Grothendieck conjecture is:

Grothendieck’s conjecture. If (M,A) has p-curvature zero for almost all primes p, then
(M, A) becomes trivial over an algebraic extension of Q(z).

Let us consider the p-adic generic radius of convergence
—-1/n
p,Gauss

Rp(M) > pl/npp—l/(p—l) :

Gn(z)

n!

n— o0

R,(M) = inf (1 lim inf

If (M, A) has p-adic nilpotent reduction we have:

in particular if (M, A) has p-curvature zero the previous inequality specializes to R,(M) >
p~Y/P(P=1) " An important property of arithmetic differential modules is that (cf. (8.1))

1 logp
2 SEROD S 2 -

p-curvature zero p-curvature zero

For the case of g-difference modules, a naive translation of these definitions gives deceiving
results. A more accurate analysis of the case of p-curvature zero leads to the following remark.
Let G1(z) be the image of G1(z) in M, ,(F,(z)). By imposing that G,(z) = 0 modulo p we
are actually requiring that the differential system in positive characteristic

day —

2 vy
dr Gi(2)
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has a fundamental matrix of solutions Y (x) € GI,(F,(x)). Since the derivation ﬁ% makes
sense in characteristic p this implies that I%‘g% = G‘;f(f)Y modulo p, with |Gp(2)|p,causs <

—1 _ |
p~t = |p!p-

The problem is that in the g-difference case one defines some g-analogue of factorials, but
they generally are p-adically smaller than the uniformizer p. It turns out that the g-analogue
of the condition Gp(xz) = 0 modulo p is not equivalent to the g-analogue of the condition

‘G’;f(,x) G < 1, but both of them are linked to the property of a suitable g-difference
) p,Gauss

system of having a fundamental matrix of solution in some polynomial ring over a quotient

of Z. Therefore for a g-difference module we have two natural notions of nilpotent reduction:
from a local point of view the notions are not equivalent (cf. §5), but we conjecture that they
are globally equivalent.

2. g¢-difference modules.

2.1. Summary of ¢-difference algebra.
Let R be a commutative ring.

2.1.1. g-binomials. For any a,q € R and any integer n > 1, we shall use the following
standard notation:

(0)g=0, (n)g=1+q+...+¢"",

0!, =1,[nl!=14---(n)g,

(@-ao=1, (@ a)p=(r—a)e—q0) - q"a),
(a,9)0 =1, (a;9)n = (1 —a)y, .

If ¢ # 1, we have (n), = %.

The g-binomial coefficients (’Z)q are the elements of R defined by the polynomial identity
(2.1.1.1) (1-2)p =3 (-1)! ( ) FD/255
; J
j=0 q

It was already known to Gauss that these are polynomials in ¢, which have the following
properties:

n) _ [n]q! _ (n)g(n—1)g---(n—i+1)
/) 4 [n — i]lq[i]!q [i]lq ’

(), (20) () o= o) e (157), ormz e
i/, i-1/, i/, i—1/, v )y
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2.1.2. g-dilatation. We fix a unit ¢ in R. We shall consider several rings of functions of one
variable z and uniformly denote by ¢, the automorphism “of dilatation” induced by z — gz.
We shall denote this automorphism either by f(z) — f(gz) or by f — ¢4(f).

We shall informally refer to a R-algebra F of functions endowed with the operator
¢, as a g-difference algebra over R. A morphism F — F' of g-difference algebra is a
morphism of R-algebra commuting to the action of ¢,. Moreover, we shall say that a g¢-
difference algebra F over R is essentially of finite type if there exist Pi,..., P, € F such that
F = R[Pi(¢'x), ..., Pa(g'x);i > 0].

Examples. Typical examples of g-difference algebras are:

(i) R((x)), with the obvous action of ¢,.

(ii) When R is a field, the subfield R(z) of R((x)) is a g¢-difference algebra over R.
(#ii) The R-algebra

o
Rz —a], = {Zan(a}—a)n:an ER} , fora € R, a # 0,
n=0
with p,(z — a)n = ¢"(z — a)n + ¢" 1 (¢" — Va(z — a)p_1.
Let us consider the g-difference algebra R[z] and Pi(z),...,P,(X) € R[z]. Then the
R-algebra

1 1
R |z, —— ..., — 1 >0
[ Pi(q'z) Pr(g'x) }

is a g-difference algebra essentially of finite type over R.
Definition 2.1.3. The ring C = {f € F : ¢(f) = f} is the subring of constant of F.

Example 2.1.4. Let F = R((z)). If ¢ is not a root of unity, then ¢,(f)(z) = 0 if and only if
f € R. If g is a primitive root of unity of order &, then ¢,(f)(z) = f if and only if f € R((z")).

Definition 2.1.5. A g-difference module M = (M, ®,) over a q-difference algebra F is a free
F-module M of finite rank together with a R-linear automorphism:

&, M —M
satisfying the rule

®,(f(x)m) = f(qzx)®4(m) , for every f(x) € F and every m € M.

Remark. The operator @, is nothing but a ¢,-semilinear automorphism of the F-module M.

Definition 2.1.6. A morphism ¢ : (M, ®,;) — (M',®}) is a R-linear morphism M — M’
which commutes with the semilinear automorphisms ®, and ®,,.
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Let us consider a morphism F — F' of g-difference algebras and a g-difference module
M = (M,®,) over F.

Definition 2.1.7. The g-difference module Mz obtained form M by extension of coefficients
from F to F' is the F'-module M ® x F' equipped with the operator ®, ® ¢,.

2.1.8. g-derivations. Let ¢ # 1. In this subsection, we assume that F is stable with respect

to the operator
dy: F — F

Remark. The operator d, verifies the twisted Leibniz rule:

dq(f9)(x) = do(f)(@)g(x) + f(gr)dy(g)(x) -
More generally, for any positive integer n, we have

n

(2.1.8.1) dy(f9)(@) =) (]

J=0

) () () di (9) (=)

Example 2.1.9.

1) Let us consider the g-difference algebra F = R((z)). For any positive integer n, d 2" =
(n)qz™~t. More generally

0 ifn<s

" = n .
[s]'q ( ) "% otherwise
q

2)Let F = Rz — a]y; then dy(z — a)p, = (n)q(z — a)n—_1.
We have the following relations between dg and ¢,:
Lemma 2.1.10. We set d) = ¢J = 1. For any integer n > 1 we obtain:
n
o7 = Z (7;) (¢ — 1)iqi(i—1)/2xidf1
i=0 q

and

(QOq _ 1) (_1)n n e _i@=1)
&= no— = - i
T (g-DrgrinmDi2gn (g - 1)nan =0( "\ ' -

J
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Proof. We remark that zd, o 2*d} = ¢'«**1dit! + (i) z'd}, for all i > 1. For n = 2 one has:
vy = (¢ —1)%qe?d] + (2)¢(qg — V)zd, + 1.

It follows by induction that

""’1 =((g—1Dzdy+1)p

n
= (7;) (¢ — 1)iqi(i—1)/2 ((q - 1)qixz’+1dz+1 +(q— 1)(i)qxidz + xzd;)
i=0 q

n
— _1)ntl n(n+1)/2, n+1 m+1 n 3 n 1 i 1(i—1)/2 1dz 1
(g—1)""q "t 4 ti+i—1q (g—1)'q +

i=1
n+1 . Iy . .
— Z ( > _ 1)zqz(z—1)/2xzdfl ]
q
The second formula in (2.1.10) holds for n = 1 by definition of d,. By induction we obtain

g+l — pg—1 o (‘Pq - 1)n
(g— 1z (g—1)rgn(n=1)/2gn

 (pg—d")(pg— 1),
- (g — 1)n+1qn(n+1)/2xn+1

- (‘Pq - 1)n+1
(q _ 1)n+1qn(n+1)/2xn+1
(-1~

- (g — 1)ntign+l (1= q) (1 - q_lﬁPq) (1 - q_nQOq) .
We conclude by using (2.1.1.1). [ |

Remark. Let M be a free F-module of finite rank. Let A, : M — M be a R-linear
endomorphism satisfying the twisted Leibniz rule:

(2.1.10.1) A, (f(z)m) = f(gz)Ay(m) + dy(f)(z)m , for every f(z) € F and every m € M.

Then &, = (¢—1)zA,+1 is p4-semilinear. Therefore, if it is invertible, it defines a g-difference
module.
Conversely, if (g— 1)z is a unit in F, any ®, gives rise to a twisted derivation A, as before.
We remark that A, satisfies the generalized Leibniz formula:

(2.1.10.2) A (f(z)m) = Z (?) d;’_i(f)(qix)Afl(m) , forall f € Fand m € M.
i=0 q

Lemma 2.1.11. The analogue of the formulas in (2.1.10) holds:

n

" i i i Ai
(2.1.11.1) ar=3" (Z) (g 1)igt-D/2gi Al
q

=0
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and
(®,-1) (C ) L (n) EEICEE
2.1.11.2 A" = n - i) e
( ) q ((] _ 1)nqn(n—1)/2xn (q — 1)nxn jzo( ) j o q
Proof. The proof is similar to the proof of (2.1.10). [

2.2. The ¢-analogue of the Wronskian lemma.

Lemma 2.2.1. We assume that q is not a primitive root of unity of order < p and that the
ring of constants C = {f € F : p,(f) = f} is a field. Let uy,...,u,—1 € F, then

p—1
dim¢ Z Cu; = rank Cas(ug,...,uu—1) ,
i=0
where Cas(uy, ..., u,—1) Is the so-called Casorati matrix
ug o Uy
Cas(ug,...,uy—1) = SOq‘UO . Soqu-u—l
@2‘;1“0 ‘Pff_l-uu—l

Remark. Of course, if (¢ — 1)z is a unit of F, (2.1.10) implies that

uO DR u”_l ’LLO e uu—l
dguo -+ dgupu—1 PqUo 1t Pqlp—1
rank . ) . = rank
-1 -1 -1 -1
e 1 ¢/ VP | e 1 R 7 o T |

Proof. Obviously we have

p—1
dimge Z Cu; > rank (@fluo, e ’(p?luu—l )j:0
i=0

yeeeyt—1 7

Let us suppose that the rank of Cas(uy,...,u,—1) is < g. Changing the order of uo, ..., u,—1,
we may assume that

(2.211) r= rank(wguo,---,wguﬂ_l )j = rank(soguo,---,@gur_l)

=0,...,u—1 j=0,...,u—1

with » < p. It is enough to show that u, is in Z::_ol Cu;. By (2.2.1.1), there exists
(ag,-..,ar—1) € F", such that:

Qg

(2.21.2) (Pqu - Pu,_, )jzo,...,u—l ; = (¢fur)j=0,.p-1 -

Qr_1
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If we apply ¢4 to (2.2.1.2) and substract the expression obtained to (2.2.1.2) we get

Qoq(G/O) — Qo
((P'ZIUO(:E)’""(P'Z]UT—l(x) )j:l,...,u—l =0

<Pq(ar—1) — Qr-1
Hence (¢qa0,---,¢qar-1) = (ag,...,ar—1) and therefore a; € C. [ ]
2.3. The ¢-analogue of the cyclic vector lemma.

The following g-analogue of the classical cyclic vector lemma for differential modules can
be deduced from the theory of skew fields (cf. for instance [Ch]) but we prefer to give here an
elementary proof.

Lemma 2.3.1. Let us assume that F is a field of characteristic zero and that ¢ is not a root
of unity. Let (M,®,) be a g-difference module of rank p over F. Then there exists a cyclic
vector m € M, i.e. an element m such that (m,®,(m),...,®4~1(m)) is a F-basis of M.

Remark. If (¢ — 1)z is a unit of F and m is a cyclic vector for M, then m is also a cyclic
vector with respect to the operator A,.

Proof. Let us denote by A the exterior product. Let
v=max{l €Z:3m € M st. mA®y(m) A... ANB(m) # 0} ;
we suppose that v is smaller than u. We choose m € M such that
m/\éq(m)/\.../\CPZ_l(m);éO .
Let \€ R,s€ 7Z,s>1,and m' € M. Then we have

0= (m+Az’m') A ®y(m + Az*m/) A ... A By (m + Az*m)
=mog+mA+...+my,A, forall A € R,

with m; € AYM. Since the field R is infinite, we have my = ... = m, = 0; in particular
v
m; = x° (Z mABg(m) A AR Hm)ABL(M) AR (M)A LA @Z(m)) =0
i=0
for all positive integers s. It follows that for all m’ € M and all i = 0,...,v we have
mA®;(m)A... ABT (M) AR (M) AR (M) AL AL (m) =0 .

In particular, for ¢ = v we obtain

mA ®,(m)A ... /\@Z“l(m) AN®7(m') =0, Vm' € M,
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which implies that m A ®¢(m) A ... A ®4~1(m) = 0. This contradictsthe premises and hence
V=L |

2.4. Formal classification of ¢-difference modules.

We recall the definition of regular singularity in the g-difference case, when K = R is a
field of characteristic zero and q is not a root of unity. Let M = (M, ®,) be a g-difference
module over K ((z)) of finite rank u.

Definition 2.4.1. One says that M is regular singular if there exists a K ((x))-basis e of M in
which the matrix A(z) of ®, (a priori an element of Gl, (K((x)))) belongs to Gl,(K[x]).

Remark 2.4.2. It is in fact equivalent to require the existence of a basis e in which the matrix
of ®, is a constant matrix (cf. [PS, Ch. 12]).

One can say more: if M is regular singular at zero and ®,(e) = eA(xr) with A(z) €
Gl,(K[z]), then we can find a basis f of M over K((z)) such that ®,(f) = fA(0). This
remark will be useful in §6.

Definition 2.4.3. The exponents of a reqular singular q-difference module M, with respect to
a given basis e as above, are the g-orbits q”a of the eigenvalues a of A(0).

Let us consider an extension of K ((x)) of the form L((t)), where = t? and L is a finite
extension of K containing a root g of g of order d. Then ¢, extends canonically to L((¢)) in

the following way:
p7: L((®) — L((®)

t — qt
The module L((t)) ®k((x)) M, equipped with the operator:
- L((t) ®k(en M — L) Ok ()) M

fem o e(f)® By(m)
is a g-difference module over L((¢)). We recall the following result, that will be useful in the
sequel:

Theorem 2.4.4. [P, Cor. 9 and §9, 3)] Let K be a field of zero characteristic, ¢ not a root
of unity, M a g-difference module over K ((z)) of rank p. There exists a divisor d of u! and a
finite extension L((t)) of K ((x)) as above, such that the g-difference module L((t)) ®x ((x)) M
has a L((t))-basis e with the following property: the matrix A(t) defined by @a(g) = eA(t) is
a diagonal block matrix and each block has the form

a 0 0 -+ 0
1 o 0 --- 0
e I
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where A\; € (1/d)Z, o; € ZZ:O ati,;h , with o , € L and o 4 # 0.
The matrix A(t) is unique up to permutation of the blocks.

Remark 2.4.5. One can prove that a g-difference submodule of a regular singular g-difference
module is regular singular (c¢f. [P]).

3. Unipotent ¢-difference modules.

In this section R is again an arbitrary commutative ring and ¢ € R is a root of unity. Let
K denote its order:

(3.0.5.1) k=min{m €Z:m >0, ¢ =1} .

Let F be a g-difference algebra over R and C = {f € F : ¢,(f) = f}. We notice that

Remark. Let M = (M, ®,) be a g-difference module over F. The x-fold iterate ®} is a
F-linear automorphism of M.

3.1. Trivial ¢-difference modules.

Definition 3.1.1. The g-difference module M = (M, ®,) over F is trivial if it is isomorphic
to a g-difference module of the form (N ®¢ F,idy ® ¢,), where N is a free C-module.

Proposition 3.1.2.
1) If M is trivial over F then ®[ is the identity morphism.
2) Let R be a field and F = R(x). If ®} is the identity, then M is trivial over F.

Proof.

1) Let us suppose that M is trivial over F. By hypothesis there exists a basis e of M over F
such that ®,(e) = e, which implies that &} = 1.

2) Since R is a field we can consider the operator A; = (2, —1)/(¢ — 1)z on M. When g is a
root of unity the formula (2.1.11.1) simplifies to

(3.1.2.1) 3% =1+ (¢ —1)"z"AL

Therefore, under the assumption &7 =1, A, is a C-linear nilpotent morphism of order x. Let
p = dimz M. There exists a basis m = (my,...,my,) of M over C such that the matrix of
A, with respect to m is a nilpotent matrix in the canonical form. If y = 1 then A;m; = 0.
Let us suppose g > 2. If for all i = 2,..., uk we have Ay(m;) = m;_1, then A, would be
a nilpotent C-linear morphism of order ux > k, therefore there exists j € {2,...,uk} such
that Agz(m;) = 0. We can suppose j = 2. Repeating the reasoning we find that A,(mq) =

= Ay(m,) = 0. We want to show that mq,...,m, is a basis of M over F. Let us
suppose that Y% ; a;(z)m; = 0 with a;(z) € R[z], a1(z) # 0 and that the degree deg, a1(z)
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of ay(x) with respect to = is minimal. Then Ay (34, a;(z)m;) = D8 dg(a;)(z)m; = 0, with
deg, d,(a1)(z) < deg, a1(z) — 1, so we get a contradiction.

Finally we have found a basis m’' = (m4,...,m,) of M over F such that Ag(m') = 0,
which is equivalent to ®,(m') = m'. This implies that M is trivial over F. [ |

If (¢ — 1)z is a unit of F, the operator A, is defined over M and (3.1.2.1) shows that:

Corollary 3.1.3. The operator ®j is unipotent if and only if A} is nilpotent.

3.2. Extensions of trivial ¢-difference modules.

Proposition 3.2.1.

1) If the g-difference module M is an extension of trivial g-difference modules then the F-linear
morphism ®j is unipotent.

2) If R is a field , F = R(z) and ®} is unipotent, then M is extension of trivial g-difference
modules.

Proof.
1) We have to prove that ®; — idy is a nilpotent endomorphism.

If M is extension of trivial ¢-difference modules over F, by (3.1.2) we can find a basis e of
M over F such that ®ye = e(l + H,(z)), where I is the identity matrix and H,(z) is a block
matrix with entries in F of the form

0 * *
H.,(x)=10 *
0 0 0

The matrix Hy(z) is nilpotent, hence @} is an unipotent endomorphism.

2) If R is a field we can consider the operator A, associated to ®,. Since ®; is unipotent,
the C-linear morphism A, is nilpotent (cf. (3.1.3)), therefore there exists m; € M such that
Aymy = 0. Let p = dimz M. If 4 = 1 there is nothing more to prove. Let p be greater than 1.
The operator A, induces a structure of g-difference module over the quotient F-vector space
M /Fm;, which satisfies the hypothesis. By induction we can find a filtration of M/Fm;

My={0}CM,C...C M;=M/Fm;,

such that:

1) for alli =0,...,[ the sub-vector space J\Z is stable by the operator induced by Ag;

2) for all 4 = 1,...,[ the quotient module J\Z /Az_l equipped with its natural structure of
g-difference module is trivial over F.

Let ¢« : M — M /Fm; be the canonical projection. Then

M_;={0}C My=1"Y(My)=Fmy C My =1"(M)C...CM=."YM)=M
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satisfies the conditions:

1) for all i = —1,0,...,! the sub-vector space M; is stable under the operator induced by Ag;
2) for all ¢ = 0,...,! the quotient module M;/M; | = J\Z/J\A/fi_l equipped with its natural
structure of g-difference module is trivial over F. [ |

Remark 3.2.2. In [H, Ch. 6] we can find a classification of g-difference modules over R(z)
when ¢ is a root of unity and R is a field of zero characteristic. The author defines the Galois
group associated to a linear ¢-difference module and proves that it is the smallest algebraic
group over R(z") containing ®;.

4. Introduction to p-adic ¢-difference modules.

Let K, be a field of characteristic zero, complete with respect to a non-archimedean norm
| |[,- Let V, be the ring of integers of K,, w, the uniformizer of V,, k, its residue field of
characteristic p > 0.

We fiz a non-zero element q € K,,, such that q is not a root of unity and |q|, = 1. Let g
be the image of ¢ in k,; we suppose that g is algebraic over the prime field IF, and we set

ky=min{m €Z:m>0,¢"=1}>1.

We notice that q € k, satisfies the assumption of the previous section.
In addition, we assume that

11— g, < |pls/®7V.
(If g is an element of @, C K, this holds automatically).
4.1. p-adic estimates of ¢-binomials.

Lemma 4.1.1. Let n > 7 > 0 be two integers. We have

(41.1.1) ()ally = [(o)gl7

where [z] is the integer part of x € R, and

(4.1.1.2)

Proof.
1) By the definition of k,, if k,, does not divide n, |1—¢"|, = 1. Since |1 —¢"*|, < |1 —¢"*|, <
|p|11,/(p_1) for all n € Z, n > 1, we have (cf. for instance [DGS, II, 1.1])

(4.1.1.3) |1 —¢"""|, = |log ¢"""|, = |nlog ¢®"|, = |n|u|1 — "]y ,
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l_quﬂu
1—¢q

50 |(nky)qlv = |n|v|(Ky)q|v- We obtain

[llglo = 1(0)gl% TT lile

Ky |t

— |(K/’U) [Nv]|nv|vﬁ]

Sy
Ky
Since K, is a divisor of p® — 1 for a suitable integer s > 1, we have (k,,p) = 1, which implies

that |Ky|y, = 1.

v

2) Since ¢ is an invertible element of the ring of integers V,,, we draw the inequality (';)q <1
using the relation !
n
(1-2) =319 (1) #7200 €.
|

4.2. The Gauss norm and the invariant y,(M).

By the Gauss lemma, one can extends the norm | |, to the so-called Gauss norm | |, ,Gauss
over K,(x) by setting
__ SUP;—y,...,n |l

B Sup;—y,....m |bj|v '

= Oal

‘Z] 0 bl

v,Gauss

Lemma 4.2.1. For any f(z) € K,(x) and any positive integer n, we have

< ‘f(w)|v,Gauss .

v,Gauss

Proof. By (2.1.9) and (4.1.1) the inequality holds for all f(z) € K,[z]. Furthermore we have

“(700)

By the g-analogue of the Leibniz formula (2.1.10.2) we have
4 (L) _ ~ dg”" (L) .
e (7)) = 7 Z (f O, @)

dgf(x)
v,Gauss f f(qx)

<

v,Gauss

e

v,Gauss

S ‘
v,Gauss f(.’E) v,Gauss
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Finally, if g(z) € K, [z] we obtain

i (50) v~ B 05 o, (700)

— [l [n—i]lg \ f(2)
Let M = (M, ®,) be a g-difference module over K, (z). Since K, is a field, we have well
defined operators

v,Gauss

$,—1
(g—1)z

Pqg — 1
d;=——— and A, =
CE !
acting over K, (z) and M, respectively (cf. (2.1.8)).
We fix a basis e of M over K, () and define a sequence of matrices G,(z) € My, (K, (z))

for any integer n > 0, with Go(z) = I, by setting
(4.2.1.1) A7 (e) = eGn(z)

The matrices G,(z) satisfy the inductive relation

(4.2.1.2) Go(z) =1,, G(z) = Gi(z), Gnt1(z) = G1(z)Gr(gzr) + d;Gr(z) -
We call
() d,Y =YG(z)

the g-difference system associated to M with respect to the basis e. If zero is not a pole of

G1(z), we obtain a formal solution of (.): Y7, (fg](!g) x™. More generally, if ¢"a is not a pole

of Gi(z) for all positive integers n, the matrix

3 D o) € My (Ko — al,)

ne1 [n]lq

is a formal solution of (.%).

One can easily check that if Y is a fundamental matrix for () with coefficients in some
fixed g-difference algebra F (i.e. an invertible matrix solution of (.#’) with coefficients in F),
any other fundamental matrix of (.*) in GI,(F) is of the form Y F', where F is an invertible
matrix with coefficients in the subring of constant of F.

In the following definition, the sup-norm of a matrix is the maximum of the norms of its
—1/n
v,Gauss

Gs(x)

[s]lq

entries:

Gr(z)

[n]'q

Definition 4.2.2. y,(M) = inf (l,lim inf

n—oo

Lemma 4.2.3. Let

= sup log

v,Gauss s<n

)
v,Gauss
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with log® z = logsup(z, 1), for all z € R. Then

imsup Y — 1o !
msup — = .
n—koop n 8 Xv (M)

Moreover, x,(M) is independent of the choice of the K, (z)-basis e of M.

Proof. We recall that Go(x) = [, and that therefore the two definition of h(x) are equivalent.
Let f = eF(z) be another K,(x)-basis of M, with F(z) € Gl,(K,(z)). For any integer
n > 0, we set:

Ag(e) = eGn(z), he(n) =suplog Gs(2) :
s<n [S].q v,Gauss
AB(f) = fHn(@), hy(n) = suplog| %)
s<n [S].q v,Gauss
By (21102) we have
Hy(x) Ag AT N
P = we= i F @)
= fF(z)~" Gl(f) % _(IT) (¢'z) ,
=0 [Z] q [n Z] q
and hence it follows
(423.1) hy(n) <1og|F () ™y, causs + 10g|F(2)|v,causs + he(n) -

By symmetry, we deduce that

) he(n) . hi(n)
lim sup = lim sup .
n—oo n n—oo n

Let h(n) = he(n). It is a general fact (cf. for instance the proof of [DGS, VII, Lemma 4.1])

that h(n) .
n
limsup——= =1lo .
n—>oop n 8 Xv (M)

Let a be an element of K, such that ¢"a is not a pole of G1(z) for any n > 1. We want to
oo Gp(a)
n=1 [n]lq
linear g-difference system associated to M, with respect to the basis e. First of all, we notice

that if |a|, < 1 we have

relate x, (M) and the radius of convergence of the matrix

(z — a)p, solution of the

Gn(x) S Grn(a)
[n]'q U,G’auss_ [n]'q v ’
and therefore we obtain
Gnla)| 7"

Xv(M) < liminf

n— 00

n]'q v
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oo Gp(0)
n=1 [n]l,

Xv(M). If a # 0 the situation is slightly more complicated:

Hence, if zero is not a pole of G1(z), the matrix » z" converges at least for |z|, <

Lemma 4.2.4. Let ) an(z — a), € K,[z — a]y and let o € (0,1] be a real number. Then
if
1—-L 1 .. —-1/n
sup(o, [aly)" " = sup(o, [alv|(Ky)glv) = < liminf|an|,
n— 00

(in particular, if sup(g, |al,) < liminf,, |an|;1/")

the series Y .-, an(® — a), converges in the disk {z € K, : |z — al, < o}

oo Gp(a)
n=1 [n]l,

Corollary 4.2.5. Let a € V, such that |a|, < xy(M), then >
the open disk {z € K, : |z — a|, < xo(M)}.

(z — a)n, converges in

Example 4.2.6. Let us consider the analogue of the exponential series

exp,(z) = Z_:O [z]!q .

Obviously exp,(z) is the solution at zero of the g-difference equation d,y = y, which is the
system associated to the g-difference module (K, (z),A,), with Ay(f(x)) = dy f(z) + f(gz) for
all f(z) € Ky(z). Then x,(K,(z),A,) coincides with the radius of convergence of exp,(z),

that is |(ko)gls’ ™" ps/* @™, by (4.1.1.1).

Proof of lemma 4.2.4. By the Maximum Modulus Principle [DGS, VI, 1.1] and (4.1.1.3) we
have

sup |(z — a)nly = sup |(x—a)(x—a+a(1—q))...(w_a+a(1_qn—1))‘v

|z—al,<e lz—al,<e
T o
= psup (Q,|a|v)(n— )= H sup (0, |aily|(Ky)qlv)
i=1
< osup (g, aly) "% sup (o, alu (k) o) lo) =)

Finally, >0 an(z — a), converges if

—1 1 . . —1
sup(e, aly)' ™= sup(o, [alo|(u)qlo) ™ < liminf |an|, "™ .

The following characterization of x,(M) is the g-analogue of a result by André (cf. [A,
Iv, §5):

Proposition 4.2.7. The sequence (M) . defined in (4.2.3) is convergent:
ne

n

. h(n) 1
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Proof. By (4.2.3) it is enough to prove the existence of the limit. Let s,n be two positive

integers; we have

ap N
[s +nlly (&)= [s +nlly (Aze) [s + n] (eGs(2))

[n)!y[s)ly Gi(e) 4 (Gs(q":v)>

i [s+n]ly [{!y [4]l [s]!

It follows that

Gsin(z) _ > [nllq[s)tq Gilz) fl?} (Gs(qiw))

[s +n]lq itj=n [s +nlly [dlg [1] [s]'q
and hence
log Gstn(2z) < log G ('x) + h(n) —log (n + S)
[S + n] ‘q lv,Gauss [S]'q v,Gauss s q,

For all £k € N and n > s, by induction we obtain

Gsirn(T) Gt (k—1)n(T) s+ kn
1 —_— <1 h — 1
o8 [3 + kn] ‘4 lv,Gauss %8 [8 + ( 1) ] ‘4 lv,Gauss * (n) %8 s+ (k - 1)n q
Gs(x) k s+1in
<log ‘ + kh(n) — log .
[8]!q v,Gauss ;E[ s+ (Z - 1)” al,

Let NeN, N >n;then N = [%] n+ s, with 0 < s < n, and the previous inequality becomes

([T ),

v

log

Since log < 0 is a decreasing function of N we obtain:

I (),

v

),
< (% + %) h(n) — log ([n]!il)\[f]%!? (]!,




102 The g-analogue of Grothendieck’s conjecture on p-curvatures II1. §4

Finally we deduce by (4.1.1.1) that

h(N 11 N! i
lim sup (V) < lim sup (— + —) h(n) —log [ Lq
Nevoo Nooo \\n N ()t [s]t, ,
1/Kky 1/k,(p—1
) ()l el P
S, 0g 1 \/n
|[]lql,,
and therefore WN ,
lim sup M < lim inf ﬂ
N — 00 n—00 n
From which it follows that the sequence (@) N is convergent. |
ne

Now we prove a first estimate for x,(M). In the following sections we will prove more
precise estimate linked to the notion of unipotent reduction.

Proposition 4.2.8. We have:

|(H’U)q|’ll)/nv |p‘11)/'%(17—1) |
sup (|G(x)|v,G’aussa 1)

Xv(M) >

Proof. By induction, we get

‘Gn(.’l?) Sup(‘G(xNv,Gaussal)n
[n]!q v,Gauss n |[n]!Q|U
and the conclusion follows by lemma (4.1.1.1). [ |

n(n—1)

Remark 4.2.9. We notice that if |g|, > 1 then |[n]!4], = |glv = for all n > 0, and therefore

G 1/n G (z 1/n
Xv (/\/l)_1 = lim sup ('a:) = lim sup | "( )nvl?auss
n—oo [’n]q v,Gauss n—00 |C]|v 3

This limit can be zero as well as co or a finite value. On the other hand, if |g|, < 1 then
|[n]!q] =1 for any n > 0, and therefore

1/n

(z)

. L/n < sup (|G(z)

v,Gauss —

= lim sup |G, (z) v,Gauss> 1) -

n—00

Xo (M)~ = lim sup

n— oo

v,Gauss

Proposition 4.2.10. If |¢|, =1 and |1 — ¢"*|, > |p|,1,/(p_1) then

sup (|G(x)|v,Gaussa 1) (M)_l > sup (|G(x)|v,Gaussa 1)
— - v .
Pl P71 — g oS ((s0)gl”™
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Proof. Obviously we have: |[n]!,], < |(Klv)q‘v%]- Let
e=inf{meZ:m>0,|1—-¢"|, < |p|;l)/(p—1)} ‘

For any positive integer n, there exist two positive integers r, s < e, such that n = se +r. We
obtain

1/(p—1 .
e e e e T e R el C B { > [pls* 7" ifr£0
= |8|y|1 — ¢***|, otherwise

from which we infer that
|(Ku)gle/* > limsup |[n]!y|2/"
n—oo

T D 1 |1/n
> liminf |[n]lg],

> lim inf (|p|g[%]_[#])p—1ll _ qe””\,[#]
n—0o0

> [ply/ =1 - g e

Finally we have:

Sup(|G($)|U,Gaussa1) >
1/ky (p—1) 1 — geko 1/eny — Xv
v | q |v

(M)—l > sup (|G(z)|v,Gausss 1) |

p| T (k)™

4.3. ¢-analogue of the Dwork-Frobenius Theorem.

The next proposition is the g-analogue of the Dwork-Frobenius-Young Theorem [DGS,
VI, 2.1], which establishes a relation between x, (M) and the coefficients of the g-difference
matrix associated to M = (M, ®,) with respect to a cyclic basis, when &, = 1:

Proposition 4.3.1. We suppose that k, = 1. Let M be a g-difference module over K,(z) of
rank p, m € M a cyclic vector (c¢f. (2.3.1)) such that

0 ... 0 | ao(x)
Aq(m’ Aq(m)a s ,Aff_l(m)) = (m7 Aq(m)a SRR Ag_l(m)) al(w)
I,-1 :
ap-1(z)
Ifsup;_g . ,—118i(%)|v,Gauss > 1 then
B |p|11)/(p—1)
Xo(M) = =

Sup;—y,...,u—1 |G,,' ($)|v,Gauss



104 The g-analogue of Grothendieck’s conjecture on p-curvatures II1. §4

It follows immediately by (4.2.8) that:
Corollary 4.3.2. x,(M) > |p\,£/(p_1) if and only if sup;—q 1 |2i(2)|v,Gauss < 1.

Proof of proposition 4.3.1. We recall that x, (M) is independent of the choice of the basis
of M over K,(x).
Let v € K, such that |y|, = sup;—o ., 1 |a,~(x)|1/(”_l) e = (m, Aq(m),...,Ag_l(m))

v,Gauss’
and et 0
H= e .
0 - 1

We set f = eH. By a direct calculation we obtain

0 ... 0 | ao(z)/4*

Aq(i) = H_lAq(Q)H = in(m) , with W(.’L‘) = ai (:13)/7“_1
]Iu—l :
au-1(z)/v

We set Ap(f) = fHn(z), with Hi(z) = yW(z). We want to prove by induction on n that
H,(z) = y""W(z)---W(g" 'z) mod y"~!. We remark that H,(z) = y"W(z)--- W(¢" 'z)
mod y"~! implies that |H,(z)|y,causs < |V|7, therefore |dyHp(T)|v.Gauss < [T (cf (4.2.1)).

Then we have
Hpi1(2) = Hi(2)Hn(g2) + dy Ho ()

= "W (z)---W(¢"x) mod 7"

We deduce that |Hy,()|y,causs < 7|4, for all n > 1, and hence that

11)/(1)—1)

Ip|
Xo(M) > 1/(p—1)
Sup;—o,...,u—1 Iaz(w)lv/c(;'fwil

Let us prove the opposite inequality. By induction on y one prove that the characteristic
polynomial of W(z) is

(4.3.2.1) xn— 1@y 7““""2(”’))(“—2 _ (@)

Y Y v
By our choice of v the reduction modulo w of (4.3.2.1) has a non zero root, hence W(x) has
an eigenvalue of norm 1. Then there exist
- an extension L of K, (z) equipped with an extension of | |, Gquss, still denoted by | |, ,Gauss;
- A € L, such that |A|, . causs = 1,
Ve L*, such that |V'|, Gauss = 1,
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satisfying the relation
W(z) - W(g" ! V} W(z ”? A"V in the residue field of L with respect to | |y,Gauss-
We deduce that

V" Ho(z)V = A"

Finally we obtain

—n

A7

H, 1
[n]'q v,Gauss [n]q v,Gauss [n]q v,Gauss [n]q v
and hence
Xo (M)~ = sup 1,limsup‘ n'
n—oo [n]q v,Gauss
n (1/n
> lim sup
n—00 [’I’I,]'q v
1/ (i
Sup;—y,...,u—1 |ai($)|v,/C(}lzm29
o |p|11)/(p—1)

In the previous proposition we have supposed that x, = 1. If k, > 1 we have:

Proposition 4.3.3. The g-difference module (M, ®,) equipped with the operator ®;* (and
consequently with Agx, = (@ —1,)/(¢"" — 1)z) is a ¢"v-difference module and

Xo(M, ®q) < xo(M, &) /5 .

Proof. Applying successively (2.1.11.1) and (2.1.11.2), we obtain
(4.3.3.1)

(_1)n [ _ . i(i—1) ih‘,v . iG—1) . .
AV, = ————— 1) . Kv =3 i —1)gT T g | AT
¢ (ghv — 1)nan P OZ: (=1) i q_,wq j q(q )4 z q

ety

Let f be a basis of M over K, () such that Ap., f = fH,(z) and A} f = fGp(z). We deduce
by (4.3.3.1) that

1
‘Hn(x)|v,Gauss S T o A sup |Gs(x)|v,Gauss .
g™ — 1[5

$<NKy
Recalling the estimations in (4.1.1) and same general property of limsup (c¢f. [AB, II, 1.8]) we

obtain
Hn (:L‘) 1/n

nqn,,!

1
— = limsup
X’U(M7 (}q"v) n— oo

v,Gauss

)l/n

- limsup,,_, o (SuPs<nn., Gs(z)lo,
g — 1fulple/ @
_ 1
Xv (M’ @q)m
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5. p-adic criteria of unipotent reduction.

We recall that K, is a field complete with respect to the norm | |, and that V), is its ring
of integers, tw, its uniformizer and k, the residue field.

Let q be an element of K, such that |q|, = 1, q is not a root of unity and that the order
Ky of its image in the multiplicative group k¢ is finite.

Let F C K,(x) be a g-difference algebra essentially of finite type over V, (c¢f. (2.1.2)).
Let a be an ideal of V, and g the image of ¢ in V, /a. The algebra F ®y, V,/a has a natural
structure of g-difference algebra. Let M = (M, ®,) be a g-difference module over F. We
consider the free F ®y, V, /a-module M ®y, V,/a equipped with the morphism ®; induced by
®,: it is a g-difference module over F ®y, V,/a, which satisfies the assumptions of §3.

We are especially interested in the following two cases:
- a is the maximal ideal of V,,, generated by w,. We will refer to (M ®y, V, /w,Vy, P7) as the
reduction of M modulo w, or over k.
- a is the ideal of V, generated by 1 — ¢*v. We will refer to (M ®y, V, /(1 — ¢**)V,, 3) as the
reduction modulo 1 — ¢"v.

Remark 5.0.4. We notice that |p!|, = |p|,, therefore both reductions are g-analogues of
the reduction modulo p in the differential case (c¢f. §1) and both of them are interesting. In
(§6) we analyses the reduction modulo w,, while in our main theorem (7.1.1) we consider the
reduction modulo 1 — ¢"».

Motivated by §3, we are particularly interested in g-difference modules M over F such
that the reduction modulo w, (resp. 1—¢"*) of the operator ®;v is unipotent. We will briefly
say that M has unipotent reduction of order n modulo w, (resp. 1 — ¢"v) if the reduction of
®%» modulo w, (resp. 1 —¢"*) is an unipotent morphism of order n.

The following example shows that M can have unipotent reduction modulo @, without
having unipotent reduction modulo 1 — ¢g*»:

Example. Let us consider the g-difference module over @, (z) associated to the g-difference

system
(5041 (o) = (0 1) ()
Then

(o) = (o %) ()

1 kpp
(b 7)-x

from which it follows

= |kpplp = IPlp -
p
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If we choose ¢ = 8 and p = 3 then s, = 2 and |1 — ¢*#|, = |1 — 82|, = |32|, < |3]|,, and
therefore (é Kll’p> = ((1) ?) = [ mod 3, but ((1) ?) # I, mod 32. Then by (3.1.2)
the g-difference module associated to (5.0.4.1) has trivial reduction modulo © = 3, but not

modulo 1 — g% = (—7)32.

We want to relate the property of having unipotent reduction modulo w, (resp. 1 — g"v)
to an estimate of the invariant x,(M) = xo(Mk, (z))-

5.1. ¢-difference modules having unipotent reduction modulo =,.

First we consider ¢-difference modules having unipotent reduction modulo w. The fol-
lowing proposition is a g-analogue of a classical estimate for p-adic differential modules [DGS,
page 96]:

Proposition 5.1.1. If M has unipotent reduction modulo w of order n then

(5:1.1.1) Xo(M) > [l /70 () 15 2/ 2P~

The proof of (5.1.1) relies on the following lemma:

Lemma 5.1.2. Let us assume that that M has unipotent reduction of order n modulo w. Let
e be a basis of M over F and let A'e = eG (), for any m > 1, with Gp(z) € My, (Ky(x)).
Then

|G sn, (x)|v,Gauss <@y,
for every integer s > 1.

Proof. By (2.1.10.2), for all s € N, s > 1 we have

QG(S-I-l)nK,y (z)
A" (eGsn, (7))

Nk nK . . .
3 ( ) ATR =i () (G, ) (67 ~2)
=0 q

?

A((]s+1)nn,, (Q)

nK

< (nK s »
e ( ) Gt (£) A (G ) (4% )
3 q

1

and hence

NkKy

. ) Cron i (@) (Gonm,) (47 2)
q

NKy
(5.1.2.1) G(st1)nk, (T) = ( ;

=0

By (3.1.3), the definition of unipotent reduction modulo w is equivalent to the condition

|Gnm, (m)|U,Gauss < |w|v .
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We shall prove the statement by induction, using (5.1.2.1). We suppose that

|G5n'iu (x)|v,Gauss S |W|Z .

Then all the terms occurring in the sum (5.1.2.1) are bounded by |w|$*!, in fact:

1) If (Ky, i) = 1, then
(nnv> (nky)q (nnv — 1)
i o T @ \i-1 ),

and the absolute value of the corresponding term in sum (5.1.2.1) is bounded by |w|ST!.
2) For all i = 1,...,n, we have |df1’*”f(x) v,Gauss < |(Kv)qlo|f(Z)|v,Gauss and therefore

< ‘("‘v)q|v <@l

< [(ko)glol@ly < J@ly

NKky 1K NKy—1IiK
(. )va_m(x)dqwamnv)(q =ik g)
q

W v,Gauss
foralli=1,...,n.
3) The term of (5.1.2.1) corresponding to i = 0 is Gy, (€)Gsnk, (¢"* ), and therefore it is

Haa

bounded by |w|$*!) by induction. Thus we have proved that |G (s+1)nk, (T)]v,Gauss < |@

Proof of proposition 5.1.1. By the recursive formula (4.2.1.2) we have

|Gm (w)|v,G’auss < G[%]nnv (il?)

v,Gauss

The estimate (5.1.1.1) follows from previous lemma, since

-1
|G[ m ]nnv (x)|v,G/c::LAss

nky
1/m

Xo(M) > inf | 1,1im inf —
e [[m]!qlv
> Timinf ]y 471 g
m— 00

= [l (ol bl O

v

Corollary 5.1.3. The g-difference module M has unipotent reduction modulo w if and only
if
Xo(M) > [(80)gly/ ™ pl3/ = 1.

Proof. If M has unipotent reduction modulo w, we immediately deduce by (5.1.1) that
Xo (M) > [ (0)gls ™ pl* 7).
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On the other hand, by hypothesis we have

|(Ro)gly/ = [ply/** @™V < xp (M)
Gn(x) —l/n
[n]'q v,Gauss

= iIlf (1, ‘(K/v)qh];/nu |p‘;|-)/fiv(1’—1) linniggflGn(xN—l/n ) )

v,Gauss

= inf (1, lim inf

n—o0

We deduce that
1/n
v,Gauss

<1.

lim sup |G, ()

n—o00

We conclude that there exists N € N such that |Gy (2)|y,Gauss < 1 for all n > N, which implies
that M has unipotent reduction modulo . |

5.2. ¢-difference modules having unipotent reduction modulo 1 — ¢*-.

Under the hypothesis of unipotent reduction modulo 1 — ¢**, we obtain a slight but crucial
improvement of (5.1.1), that will be fundamental in the proof of the main result (7.1.1) below:

Proposition 5.2.1. Let M be a g-difference module over K,(x), with unipotent reduction
modulo 1 — ¢*v of order n. Then

Xo (M) > [(o)g| =0/ i/ ke 0=

Proof. Let e be the basis of M such that Al'e = Gy (z), for all m > 1. Then

|G, ()

v,Gauss < |(l‘éu)q‘v .

The estimates in (5.1.2) show that
(5-2-1-1) |Gsnnv (x)|v,Gauss < |("5v)q|z , Vs 2>1,
therefore we conclude that

Xo(M) 2 |(“v)q|q(;n_1)/”"” |p|11}/nu(p—1) -

Corollary 5.2.2. The following assertions are equivalent:
1/ky (p—1
1) xu(M) > [pls/ =@~
2) ®pv induces the identity on the reduction of M modulo 1 — ¢*.

Proof. The implication “2)=-1)" is a consequence of the previous proposition.
We prove “1)=2)". The F-module M equipped with the operators ;v is a g®v-difference

module. It follows by (4.3.3) that x, (M, ®%5*) > [p|s/®~". We know by (2.3.1) that (M, ®%*)
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admits a cyclic basis e over F. Let ®fve = eAy,(z). We deduce by (4.3.1) that |4, (z) —
]Iu v,Gauss < |1 - qnu|v- |

6. Arithmetic ¢-difference modules and regularity.

We fix some notation that will be maintained until the end of the paper:
K= a number field.
Vi = the ring of integers of K.
| |o= a v-adic absolute value of K. In the non-archimedean case we normalize | |, as follow:
|p|v — p_[KW'QP]/[K:Q] ,

where K, is the v-adic completion of K and v|p. Similarly, in the archimedean case we

normalize | |, setting
|z B9 i K, =R

|$|v = . ’
2|59 i K, = C

where | |g and | |¢ are the usual absolute values of R and and of C respectively.
Y s= the set of finite places v of K.

wy,= uniformizer € V}, associated to the finite place v.

k,= residue field of K with respect to a finite place v.

Y. =the set of archimedean places of K.

6.1. On cyclic subgroups of Q* and their reduction modulo almost
every prime.

We fiz an element q of K which is not zero and not a root of unity. For each v € X such
that |g|, = 1, we define k, to be the multiplicative order of the image of ¢ in the residue field
of K with respect to v. We notice that for any integer n > 1 the set of places v € Xy, for
which k, = n, is finite.

We recall that the Dirichlet density d(S) of a set S of finite places of a number field K (cf.
for instance [N, VII, §13]) is defined by

Z’UES p_Sf”

d(S) = limsup =7
p v

s—1t vEXy

b

where f, = [k, : Fp], if v|p.

The proposition below is a particular case of a theorem by Schinzel [Sc, Th. 2]. We prefer
to give here a direct proof.
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Proposition 6.1.1. Let S C X a set of finite places of K of Dirichlet density 1 and let a,b be
two elements of K* = K ~ {0} such that for all v € S, the reduction of b modulo w, belongs
to the cyclic group generated by the reduction of a modulo w,. Then b € a”.

Corollary 6.1.2. Let a,b be two elements of K, which are not roots of unity, such that for
almost all v € ¥y the order of a modulo w, and the order of b modulo w, coincide. Then
eithera = b or a = b~ 1.

Remark 6.1.3. This shows that {g,¢~!} is uniquely determined by the family of integers

(Ko)o-

Proof of corollary 6.1.2. We recall that k) is a cyclic group and that, therefore, its
subgroups are determined by their order. By the previous proposition, we know that b = a™
and ¢ = b™ for some integers n and m. We deduce that @™ = a. Since a is not a root of
unity, we have mn = 1 and hence either m =n=1orm =n = —1. |

Proof of proposition 6.1.1 (following an argument of P. Colmez). We fix a rational
prime £. Let {; a £-th root of unity. We consider the following Galois extensions of K: K; =
K(a'¢,¢), Ko = K(b'/%,¢,) and Ky = K (a4, b'/¢, (). We will prove that K; = Kj5, and
hence that K, C K1, by applying the following corollary of the Cebotarev Density Theorem:

[N, VII, (13.6)] Let K be a Galois extension of the number field K and let P(K/K) be
the set of primes of K that split totally in K. Then the Dirichlet density of P(K/K) is

d(P(R/K)) = 7 1 G

Let v € ¥ be a prime of K and let {w1,...,w,} C Xy be the set of all primes w of K such
that w|v. Let e; be the ramification index of w;|v and f; be the residue degree. Since K;/K
is a Galois extension we have: e=e; =...=e, and f = f1 = ... = f, (¢f. [N, IV, page 55]).
Therefore, e = f =1 if and only if we have [K; : K] = )_!_, e;fi = : so v split totally in K
if and only if e = f = 1. Then P(K;/K) is the set of all primes v € ¥ of K such that:

- v|p and p =1 mod ¥;

- there exists a’ € k, such that a*=ain ky;

- v is not ramified in K.
For the same reason, P(K12/K) is the set of all the primes v € ¥ such that:

- v|p and p = 1 mod ¥;
- there exists a’ € k, such that a*=ain ky;
- there exists b’ € k, such that »'“ = b in ky;

- v is not ramified in K.
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Let v € P(K1/K)N S and let a’ € k, be such that a = a'* in k,. By hypothesis there exists

()¢ If v is not ramified

a positive integer n(v) such that b = a™(®*) in k, and hence b = (a
in Ki then v € P(K,2/K). Since S has density 1 and there are only a finitely many v € Xy

which ramify in K75 we have

1 1

d(P(K12/K)) = Ky K] > d(P(K1/K)) = & K]

We conclude that K;5 = K; and therefore Ky C K;.

We recall the following fact from Kummer theory:

[N, VII, (3.6)] Let n be a positive integer which is relatively prime to the characteristic
of the field K, and assume that K contains the group of n-th roots of unity. Then
the abelian extensions K /K of exponents n are in one-to-one correspondence with the
subgroups T' C K* = K ~ {0}, which contain K*", via the rule T — K = K(/T).

This statement applied to Ko C K; = K15 and n = £, says that
VKX c d2K7% = b e KX
Since £ was arbitrary, we conclude that b € aZ. [ |

6.2. Unipotent reduction and regularity.

Let M = (M, ®,) be a g-difference module over a g-difference algebra F C K (x) essentially
of finite type over Vg (cf. (2.1.2)).

Definition 6.2.1. The g-difference module M over F is reqular singular if both Mg ((5)) and
MK ((1/x)) are regular singular singular g-difference modules.

Let X1, be the set of finite place v of K such that the M has unipotent reduction modulo
Wy

The following result is a g-analogue of a well known result due to Katz (¢f. [K1, 13.0]).

Theorem 6.2.2.

1) If £y,41p is infinite, then M is regular singular.

2) If moreover ¥y, has Dirichlet density 1, the exponents of K((z)) @ 7 M with respect to
same basis e (and hence to any basis) over K ((z)) coincide with q¢”.

Proof.
1) It is enough to prove the statement at zero. Let e be a basis of M over F, such that
®.e = eA(x), with A(z) € Gl,(F). Then A(x) can be regarded as an element of GI,, (K ((x))):

1 ;1
>0
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for some | € Z and [ > 0. For all positive integers m, we have

_ AT
q x

2

For any v € %,;;,, there exist a positive integer n(v) > 1 such that we have
(A(z)A(gz)--- A(g™'z) — l)n(v) = 0 mod w,;

we deduce that Aj" = 0 modulo w, and hence that Ay is a nilpotent matrix.

We suppose that zero is not a regular singularity. By (2.4.4), there exists an extension
L((t)) of K((z)), with t* = z, such that we can find a basis f of L((t)) ® 7 M over L((t)) with
the following properties:

&(f) = fB(1)

and
By By B, =

B(t)= Zf+ bt 2 Bo(d),

with Bo(t) € Muxu(L[t]), & > 1 and By € Gl,(L) non nilpotent and in Jordan normal
form. Let F(t) = & + h.o.t € Gl,(L((t))) such that e = fF(t). This implies that A(z) =
F(t)~1B(t)F(gt). We get a contradiction since the matrix F' € Gl,(L) verifies Ag = F~'B}F.
2) We know by 1) that M has a regular singularity at zero. Then there exists a K ((z))-basis
e of K((z)) ®r M such that ®,(e) = eA, with A € Gl,(K) in Jordan normal form. By the
remark (2.4.2), we can chose e such that for all v € X, there exists n(v) > 1 satisfying the
equivalence

(A" — 1)) = 0 mod w,.

Therefore the matrix A" is unipotent modulo w, for all v € X,;;,. We deduce that the
reduction modulo w, of the eigenvalues of A are x,-th roots of unity for all v € X,;;,. This
means that the reduction modulo w, of the eigenvalues of A is an element of the cyclic group
generated by the reduction of g, for all v € ¥y;;,. The conclusion follows by applying lemma
(6.1.1). u

Proposition 6.2.3. Let us assume that the g-difference module M over F has the property
that for almost all finite places v of K the morphism ®v induces the identity on the reduction
of M modulo w,. Then M becomes trivial over K((z)).

Remark. The g-difference module M becomes trivial over K ((z)) if and only if there exists
a basis e of Mg (,) over K(z) such that the associated g-difference system has a fundamental
matrix of solutions with coefficients in K [z] and the matrix G(z) defined by A,(e) = eG(x)
has no pole at zero

Proof. By the theorem (6.2.2) we know that M is a regular singular g-difference module.
By the formal classification (2.4.4) there exists a K((x))-basis f of K((z)) ®x M such that
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®,(f) = fA, with A € Gl,(K) in the Jordan normal form. By (2.4.2), we can choose ¢ such
that for almost all v € Xy we have

Af* —1 =0 mod w,.

We deduce that A is actually a diagonal matrix and that the eigenvalues of A are in ¢%. We
can assume A = [, by applying a “shearing transformation” (cf. [PS, page 154]), i.e. a basis

change of the form
xz" 0,

n
z" 0,

where v, ..., v, are positive integers such that > v; = p and nq,...,n, € Z. Let e be a basis
of M over F. Then there exists F(x) € Gl, (K((z))) such that e = fF(z). It follows that

Be = fF(qz) = eF(z) " F(gz) .

Then F(z) is a fundamental matrix of solutions for the g-difference system associated to M
with respect to the basis e. After a change of basis of the form ¢/ = z™Ce, where m € Z and
C is a constant invertible matrix, we obtain a g-difference system having a solution Y (z) =
I+, 5, Yma™ € Gl (K[z]). Then Y(z) ' =T, 4+ 3, 5, Yma™ € Gl,(K[z]) and

G(z) =Y (@) ' dg(V)(x) = [T+ DY Vinz™ | [ D (m)g¥ina™

m>1 m2>1

has no poles at zero. |

7. Statement of the ¢-analogue of Grothendieck’s conjecture
on p-curvatures.

7.1. Statement of the main theorem.

We recall that K is a number field, Vg its ring of integers, v is a finite or an infinite place
of K and ¢ an element of K, which is not a root of unity. The uniformizer of the finite place
v is denoted by w,. For almost all finite places v, let k, be the the multiplicative order of the
image of g in the residue field of M modulo w,. Let @w,, be the integer power of w, such that
|@g0lo =1 — g% |o-

We consider a g¢-difference algebra F C K(z) essentially of finite type over Vk and a
g-difference module M = (M, ®,) over F.

We want to prove the following theorem, which we consider as the g-analogue of the
Grothendieck conjecture for differential equations with p-curvatures zero for almost all finite
places:
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Main Theorem 7.1.1. Let M = (M, ®,) be a g-difference module over F, such that

the operator 3 induces the identity on the reduction of M modulo w,,, for
(*) almost all finite places v.

Then M becomes trivial over K (x).

Remark 7.1.2. We recall that the g-difference module M over K(x) is trivial if and only if
the following equivalent conditions are satisfied:
1) there exists an isomorphism of g-difference modules M %« @i K () = M;
2) there exists a K(z)-vector space isomorphism ¢ : M — K(z)* such that for all m € M
we have: ¢(®4(m)) = pq(¥(m)), where ¢, is defined componentwise on K (z)*.
3) there exists a basis e of M over K (x) such that, if Aje = eG(z), we can find Y (z) € GI(K(z))
satisfying the g-difference linear system d,Y (z) = Y (z)G(z).

It is clear that if a ¢ difference module M over F becomes trivial over K (), the hypothesis
of the theorem above is satisfied.

By (3.1.2) we immediately obtain:

Corollary 7.1.3. Let M = (M, ®,) be a g-difference module over F, such that the reduction
of M modulo wg, is trivial for almost all v. Then (M, ®,) is trivial over K(x).

In (7.1.1) we have assumed that ¢ is not a root of unity: if ¢ is a root of unity, theorem
(7.1.1) is an easy consequence of the results in (§3). We notice that in this particular case, we
just need the hypothesis of trivial reduction modulo w,:

Proposition 7.1.4. Let q be a primitive k-root of unity, with k > 1. Then the g-difference
module M = (M, ®,) over F becomes trivial over K(z) if and only if M has trivial reduction
modulo w, for an infinite number of v € X¢.

Proof. Let ¢ be a basis of M over F and let ®7*(e) = eAn(z), for all m > 1. By (3.1.2) it is
enough to prove that

Ag(z) =1, Ay, (z) =1, modulo w,, for all v € S.

To conclude it is enough to notice that x, = x for almost all v € Xy. [ |

7.2. Idea of the proof.

The proof of (7.1.1) is inspired by the theory of G-functions, from which we derive the
definitions below. In the g-difference case they are not as interesting as in the differential one,
in fact, as we will see later, the two invariants that we are going to define are finite only in the
trivial case. In any case they will be useful in some intermediate steps of the proof.

Definition 7.2.1. Let y = > 7 ;a,z"™ € K[z]. We set h(y,n,v) = sup4<y, (log* |aa|s) and
we call size of y (cf. [A1, 1, 1.3]) the number

1
o(y) = limsup — Z h(y,n,v) .

n
"7 ERUS e
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Let M = (M,®,) be a g-difference module over a g-difference algebra F C K(zx). We
fix a basis e of M) over K(z) and we set as usual Afe = eGyn(z) and h(M,n,v) =

G () . We define the size of M to be

[s]'q v,Gauss

Supogsgn log

(M) = limsup 1 Z h(M,n,v) .

n—oo T ves

1/(p—1
|1*q'€vlv<lp|v/(p )

The proof, that will be detailed in the next section, is organized as follows:

M verifies the hypothesis ()

~

(6.2.3)ﬂ (8.1)ﬂ

(M, ®,) becomes trivial over K ((z)) o(M) < o0

~~

2|

There exists a basis e of Mg ;) over K (x) such that Aje = eG(x)
and an invertible matrix Y (z) € Gl (K [z]) such that d,Y (z) =
Y (2)G(z) and the entries of Y (z) have finite size.

|

Y(2) € Gl,(K(x))

8. Proof of (7.1.1).

8.1. Finiteness of the size of M.

Proposition 8.1.1. Let M be a g-difference module over F C K (z) satisfing (x). Then

o(M) < +o0 .
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Proof. By assumption there exists a basis e of M over F such that Al'e = eGp(z) and

|Gy, () < |(Ky)q|v for almost all v € X¢. For such a v by (5.2.1.1) we have
‘Gm) |G @ GO L

Pl ) P S (A

from which we obtain
h(M.n,0) < n 08Pl
Ko(p—1)

Let

Ty ={v € Sg:[1—q" |y < [ply/ ™Y, |G, (@)|v,Gauss < |(Ko)ql}
and

Ty = {1 = ¢"|v < [pls/ ™Y, |Gx, (2) s > [(Ko)ql} -

By (4.2.7.1) we deduce that

oM< Y log [p|; " + 3 logt

veT v(p_ 1 vET,

We recall that @7 induces the identity on the reduction of M modulo w,,, if and only if
|G, (£)|v,causs < |(Kv)qlv, SO the assumption () implies that 7% is finite.

Let us consider the set & of all finite places v of K such that |gly = 1. Then T} is cofinite
in f], hence, to conclude that o(M) is finite, it is enough to prove the lemma:

Lemma 8.1.2. Let g # 0 be an element of K which is not a root of unity, Y be the set of all
finite places v of K such that |q|, = 1 and k, be the multiplicative order of the image of q in
the residue field of K with respect to v € 3. Then

1 -1
Z 0og |P|v < 00
“v(p - 1)

vEXD

Proof. Let 0 < ¢ < 1. We consider the sets:
SOZ{UGEa ’%Zp—l}a
Slz{vei; Ky <p—1 aqu;Zpl_Fe}’
52:{1)6%, Ky <p—1,k2 <p'te}.
Then, for n = (1 —€)/(1+ €) and v € Sa, we have

p> RO 1> 2/(4e) _ oldn

and hence we obtain

log Ipl log Ipl log |p|," log |p|; !
> =T Z T et e
v €So vES: ves, v
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The sums over Sy and S; are clearly convergent. To conclude that the sum over S, is convergent

gt |t
it is enough to prove that Z logll 2+,, L g convergent for all n > 0, since for almost all

v € ¥ we have |1 — ¢®v |71 > |p|v . We recall that 3 is cofinite in Yt and that for all integers
n > 1 there exist only a finite number of v € X such that x, = n (since |1 — ¢"|, = 1 for
almost every v € X¢). Therefore by the Product Formula, we get

n,,l 1

Zlogll——q Z Z 10g|1nz—+;1] "

vVEXD ve::

Ky=n

_ i D log|l —¢",
- n2+77 ’
n=1 v GE, Ky#n

or VE(ZfUSoo)\E

For every v € Xy such that |g|, < 1 we have |1 — ¢"|, < 1. In particular |1 — ¢"|, = 1 for
almost all v € X ;. Therefore we obtain

Z log |1 - qn”|u < Z Z log Szlnqnb

=1 vesy, lgly>1

’UEE or vEX o
(8.1.2.1)
o0
log 2 log(1 + [ql)
<2 X mmt X —am | <
n=1 \ v€Suo, |glv<1 vEDUB0o
lgly>1

8.2. Finiteness of the size of a fundamental matrix of solutions.

We have already proven that a g-difference module M satisfying (*) becomes trivial over
K((z)) (cf. (6.2.3)) and that it has finite size (¢f. (8.1.1)).

Proposition 8.2.1. There exists a basis e of (M ®x K(z),®, ® ¢4 over K(zx) such that the
g-difference system associated to M () with respect to e has an invertible matrix of solution
Y (z) € Gl,(K[z]), whose entries have finite size.

Remark 8.2.2. We recall a property of the size of a formal power series, that we will use in
the proof below. We know (cf. for example [DGS, VI, 4.1]) that

limsu h n,v log™
msup (n,v,y) = log @)

where 7, (y) is the v-adic radius of convergence of y. Then o(y) < oo if and only if there exists
finite set S C ¥y U X such that y has non zero radius of convergence for all v € S and

1
lim sup — Z h(n,v,y) < oo .

n—roo VEL UL NS
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Proof. As in (6.2.3) we can find a basis e of Mg ;) such that the associated g-difference
system has a solution Y(z) € GI,(K[z]) such that Y (0) = I,. Let Afe = eG,(x). Since
Go =Y (0) =1, we conclude that Y(z) = 3,5 G[T’;](!S) z".

We want to prove that the entries of Y (x) have finite size. By (4.2.3) and (4.2.10), we
deduce that

1 1
lim sup — E sup log® |Yy|, < o(M)+ g log* <00 .
n—o00 ves; 0<s<n v vesy,lqlu<t Xv (M)
lalv<1

or 1>[1—gRv [y >|p|L/ (P71

By the previous remark it is enough to prove that the entries of Y (z) have non zero radius
of convergence for all v € X, and for all v € Xy such that |¢g|, > 1. Since M is a regular
g-difference module over K (z) each entry of Y () is solution of a regular singular ¢-difference
equation, by (2.4.5). Tt follows by [Be, IV] and [BB, IV](!) that the entries of Y (z) have non
zero radius of convergence for all v € ¥, such that |g[, # 1 and for all v € X such that
lqlo > 1.

The conclusion of the proof of (8.2.1) is the object of the next section.

8.3. How to deal with the problem of archimedean small divisors.

To conclude that the entries of Y (x) have finite radius of convergence for all infinite place
v such that |g|, = 1 we recall the following result:

[Be, 6.1] Let £L = > %, Z;:o ai,j:cjgof] € Clz,pq] be a g-difference operator and let
Q(z) = Y yai j,z be a polynomial such that jo = min{j = 0,...,v : a;; # 0}. We
suppose that |g|c = 1 and that there exist two positive real constants ¢i and ¢y such that
all the roots u of the polynomial (x — 1)Q(x) satisfy the inequality |q" — u|, > cin™°? for
n >> 0. Then a formal power series y € C[z] solution of Ly = 0 is convergent.

It is enough to prove that for any finite place v such that |g|, = 1, there exist two positive real
constant c¢;, and cz, such that

(8.3.0.1) lg" — uly > ¢1,,n "2

for n >> 0. To verify (8.3.0.1) we will use the following theorem by Baker(2):

(1) In [Be] and [BB] the authors assume |g| < 1. It is only a problem of convention and their

results translate to our situation.
(2) We can find a proof of the additive version of this theorem in [B], but we prefer to cite

the version in [Se], which is more suitable to our situation.
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[Se, 8.2, Corollary| Let K be a number field, ai,...,0; € K, 1,...,0 € Z and v a
place of K. If of* ---af’ # 1 then

a,fl ...alﬁl -1 Zsup(4,ﬁ1,-..,ﬁl)_con8t ’
v
where the constant depends only on v and on aq,...,o; € K.

Let ] =2, 004 =¢q, s =u, B1 =n and By = —1. Since for n >> 0 we have ¢"u~! # 1, we
obtain |¢" — ul, > |ul,n"¢®). Here c(u) is a constant depending on u, ¢ and v. We set

c1,0 = sup ({|uly : such that Q(u) =0} U {1})

and
2,0 = sup{c(u) : u such that Q(u) =0 or u = 1} ;

then we obtain the desired inequality. This concludes the proof of (8.2.1). [

8.4. Conclusion of the proof: a criterion of rationality.
We conclude the proof of (7.1.1) by applying the following proposition:

Proposition 8.4.1. (Y. André) Let y(z) € K[z] be a formal power series solution of a
g-difference equation

au(z)dl (y)(z) + au_l(:v)df;_l(y)(x) + -+ ag(z)y(x) =0,

with a;(z) € K(x) for all i = 0,...,u. If o(y) < oo then y(x) is the Taylor expansion of a
rational function € K(z).

Proof. It is a general property of g-difference equations that for all v € ¥y U X, such that
|g|ly # 1 the series y(z) with non zero radius of convergence has infinite radius of meromorphy
(c¢f. [BB, 7.2]). We remark that we can always find such a v since ¢ is not a root of unity. To
conclude that y(z) is a rational function it is enough to apply the more general result [A1, VIII,
1.1, Th.], but we prefer to sketch the proof, since it simplifies under the present assumptions.
First we prove that y(z) is an algebraic function following the proof of [A2, 2.3.1] adapted to
this particular case.

Step 1. We fix n € (0,1] and an integer v > 1. Let

Y =(Ly),...,y)" ) =Y Vma™ € K[2]” .

m2>0

Using the Siegel’s Lemma we can construct a polynomial vector

]T]V>(.’E) = (PN,O(x)7"'5PN,V 1 Z ﬁ(m) EK[.’L‘ s
m>0
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for all N € N, such that

) ordo(Py-Y)=M >N ;
. 5 1 1
i) deg, PN = sup (deg, Pn,(z)) < > (1 + 5) N+ o(N) ;
1=0,...,v—1
1
i) h(P_)N) = limsup — Z log* <sup |}7N)(m)|v> < T]NO'(?) +o(N) .
m=oo M s U m20

Step 2. Let us suppose that y(z) is not algebraic; then P_N> Y # 0 for all N > 1 and hence
M < co. We set

1 d¥
For all v € 3y we have
_>
(8.4.1.1) log|al, < log™ | PN (2)|v,Gauss + SEIX/I log™ |?m|v .
m_

Step 3. Let V a finite subset of Xy U X, containing Y. Then V contains at least one place
v such that the radius of meromorphy M,(y) is infinite, since ¢ is not a root of unity. For all
v € V the formal power series y(z) is the germ at zero of a meromorphic function, therefore we
can write y(z) = f,(x)/gy(z), where f,(z) and g,(x) are v-adic analytic functions converging
for |z|, < M,(y). We can suppose that g,(0) = 1. We set:

Z (@) = (9,(2)" 1, 9o (@) 2 fu(@), - ., ful@)"™Y),
() = PN(z) - Z o();

from which follows

— B 1 -
Pr(e)- Y (@) = —ote(@)
We deduce that: .
1 d
a= MM—M(‘”“W) .

Step 4. Let us fix m, < M,(y) for all v € V. By Cauchy’s estimates we obtain

log|al, < —M logm, + log (| |sup |¢U(x)\v)
|y =m0y

(8.4.1.2)

< —M logm, + log* ( sup |17N)(m)|v) + m, deg, P—)N +o(N) .
m<N
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Step 5. Summing (8.4.1.1) for v € (¥ U Xf) NV and (8.4.1.2) for v € V, by the Product
Formula we obtain

MY logm, < ) log" (sup |JTN’(’“’|U)

vev VED;US o0 ms<N
=
+3° sup log* ¥ mly +deg, Py Y my + o(N) ;
vgy MM vev

dividing by M > N and taking the lim sup for N — oo we have

1 1
Zlogmv <(n+1)o(y)+ » (1+ E) va .

veV veV

Finally we can take the limit for v — co and 7 — 0 and obtain:

> logm, < o(y) .

Since o(y) < o0, we get a contradiction by letting m, — My(y).

Then we have proved that y(z) is an algebraic function. Let us fix v € X, such that
lgls # 1, hence such that y(z) has infinite v-adic radius of meromorphy. By choosing the
place v, we have fixed an isometry K < C,. The field C,(z,y) is the field of meromorphic
functions over a surface E. The immersion C, (z) —C, (z,y) determines an algebraic covering
p: E — Aév. Since y(z) is a meromorphic function over E, p is an étale covering of A}C”.
Such a covering is necessarily trivial, hence C, (z,y) = C, (). |

This achieves the proof of the main theorem (7.1.1).

8.5. A corollary.
We point out that we can deduce the following corollary by the proof of (7.1.1):

Corollary 8.5.1. Let S be a subset of ¥y having Dirichlet density 1 and M a g-difference
module over a g-difference algebra F C K (z) essentially of finite type over V,. We assume
that for allv € S the operator ®3v induces the identity over the reduction of M modulo wy,,.
We assume moreover that:

1
Z log——— < 0.
uE)I]f\S XD(M)
1/(p—1)

[1—ghv |y <|ply
Then M becomes trivial over K(z).
Proof. We notice that in the proof of (8.1.1) we have actually shown that:

1
limsup — Z h(M,n,v) < oo .

n
n—00 ves

1 —1
[1—ghv |y <|ply/ P~Y)
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Let

T={ve YpN S |G(x)|v,Gauss <land|l-¢g"|, < ‘p|11}/(p_1)} ;

If we prove that

1 1
8.5.1.1 lim sup — h(M,n,v) < log ————
(8:5.1.1) mawp 2, W) £ 3 loe < gy

then we obtain that o(M) < oo, since x,(M) > |mv|11,/n|p|,1,/'{”(p_1) and |G(z)|v,Gauss < 1 for
almost all v € ;. Then we can conclude the proof as the proof of (7.1.1).

To prove (8.5.1.1) we just need to notice that for all v € £ \ S such that |1 — ¢**|, <
|p\i/(p_1) and |G()|y,Gauss < 1 and for all n > 1 we have

n n ]_1_ 1
h(M,n,v) <lo K U"”] ,[J"”]"‘1> <nlo .
(04,1,0) < 10g () <nlog i
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Section IV.
The ¢-analogue of Katz’s

conjectural description of

differential (GGalois group

Introduction.

In the introduction of [K3], N. Katz asks the following question:

“if one is explicitly given an n’th order differential
equation, how can one “tell at a glance” what its dif-
ferential Galois group Gga i5%”

This question is said to be the starting point for the articles [K1], [K2] and [K3] and it still
has not received a satisfactory answer.

In this paper we prove an analogue for ¢-difference equations of the conjectural description
of the Lie algebra of the generic Galois group in [K2|. In some cases, this g-analogue turns
out to be an effective instrument to “tell at a glance” what the differential Galois group of a

g-difference equation is.

Let us recall the conjecture in [K2]. Let Q be the field of rational numbers, Q(z) be
the field of rational functions with coefficients in Q and M = (M, V) be Q(z)-vector space
with a Q(x)/Q-connection. We define the generic Galois group Gal(M) of M to be the
algebraic subgroup of GL(M) stabilizing all the sub-subspaces in the mixed tensor spaces
@i,j(M‘gi ®Q(x) (M*)®’). We can consider a lattice M of M over a finite type algebra over
Z, stable under the connection, and we can reduce M modulo p, for almost all primes p. The
operator ¢, = V(%)p acting over M ®z Fp, is called the p-curvature. Beside it makes sense
to consider the reduction modulo p for almost all p of Gal(M) and its Lie algebra. The Katz
conjecture says:

Katz’s conjecture. The Lie algebra of Gal(M) is the smallest algebraic Lie sub-algebra of
Endg(,)(M) whose reduction modulo p contains v, for almost all p.

It is proved in [K2] that this conjecture is equivalent to Grothendieck’s conjecture on p-curva-

127
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tures:

Grothendieck’s conjecture. The differential module (M, V) becomes trivial over a finite
extension of Q(z) if and only if the p-curvatures 1, are zero for almost all p.

We recall that for a differential module over F,(z) the condition 1, = 0 is equivalent to
the triviality.

We consider now the g-difference case. Let ¢ # 0,1, —1 be a rational number and

pg: Q) — Q=)
fle) — f(gz)

a g-difference operator. Let M be a finite dimensional Q(x)-vector space equipped with a
g-difference operator ®;, : M — M, i.e. with a (Qlinear invertible morphism such that
®,(fm) = @qa(f)®q(m) for all f € Q(z) and all m € M. As in the differential module theory,
we can attach to M = (M, ®,) an algebraic closed subgroup Gal(M) of GL(M), that we call
g-difference generic Galois group. It is the stabilizer of all g-difference sub-modules of all finite
sums of the form @i,j(M@)i ®q(z) (M*)®j), equipped with the operator induced by @,.

For almost every prime p we can define a non negative integer x, by setting:

kp =min{n € Z:n >0, ¢" =1 mod p} .
We define £, to be the positive integer such that
1—gfr = pel’%, with h, g € Z primes to p.

We can consider the reduction modulo p®» of M for almost all p, by reducing a lattice M of
M defined over a Z-algebra of finite type and stable by ®,. Also the algebraic group Gal(M)
can be reduced modulo p‘» for almost all p. Then our description of Gal(M) is the following:

Main theorem. The algebraic group Gal(M) is the smallest algebraic subgroup of GL(M)
whose reduction modulo p% contains the reduction of ®;° modulo p*» for almost all p.

Taking into account the fact that ®, is a ¢4-linear endomorphism (which is easier to handle
than the higher derivations occurring in the differential case), sometimes it happens that one
can calculate all &7 at once and therefore determines the generic Galois group.

The proof of the theorem relies on the g-analogue of Grothendieck’s conjecture on p-curvatures
proved in [DVIII, (7.1)]:

Theorem. The g-difference module (M, ®,) is trivial over Q(z) if and only if ®4” is the
identity modulo p® for almost all p.

To solve this technical problem we exploit a specific property of ¢g-difference modules. One
can attached to M a ¢"-difference module M,., replacing ®, by ®;: it follows that instead of a
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single Galois group attached to M, we have a family of algebraic group GalM, for all integers
r > 1, partially ordered by inclusion.

Table of contents

§1. Definition of the generic Galois group associated to a g-difference module
1.6. g-difference modules
1.7. Some algebraic constructions
1.8. Definition of the Galois group of a g¢-difference module
1.9. Definition of the generic Galois group of a g-difference module
§2. An arithmetic description of the generic Galois group
2.1. Algebraic groups “containing ®v for almost all v”
2.2. Statement of the main theorem
§3. The g-analogue of Grothendieck’s conjecture on p-curvatures
84. Proof of the main theorem

§5. Examples of calculation of generic Galois groups

1. Definition of the generic Galois group associated to a ¢
difference module.

1.1. ¢-difference modules.

Let R be a commutative ring. We fix a unit ¢ in R. We shall informally refer to a R-algebra
F of functions of the variable z endowed with the operator ¢,, such that ¢,(f(z)) = f(qz),
as a g-difference algebra over R. A morphism F — F' of q-difference algebras is a morphism
of R-algebra commuting to the action of ¢,.

We shall say that a g-difference algebra F over R is essentially of finite type if there exist
P,,...,P, € F such that F = R[P;(q'z), ..., Py(q¢'x);i > 0].

We denote by C = {f € F : ¢,(f) = f} the subring of constants of F.

Example 1.1.1. We are particularly interested in the following two cases:

i) R = K is a field and q is a non zero element of K, which is not a root of unity. Then K (z)
is a g-difference algebra with respect to ¢,(f(z)) = f(qz). It is easy to verify that the subfield
of constants of K (z) is:

K(z)?1 ={f € K(z): po(f) =} =K .
it) Let R be a sub-ring of the field K and and Pi(z),...,P,(z) € K(z). Then

1 1

R |z, —— ..., ——:
Pyi(¢ix) P,(¢'x)

1 >0

)
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endowed with the restriction of ¢, is a g-difference algebra essentially of finite type over R.

Definition 1.1.2. A g-difference module M = (M, ®,) over F is a free F-module M of finite
rank equipped with a y4-semilinear automorphism ®,, i.e. a C-linear automorphism of M,
such that ®,(f(z)m) = f(qx)®4(m), for any m € M and any f(z) € F.

Definition 1.1.3. A morphism ¢ : (M, ®,) — (M',®;) of g-difference modules a C-linear
morphism ¢ : M — M' commuting with the action of ®; and ‘I>;.

Definition 1.1.4. A g-difference module M = (M, ®,) over F is trivial if there exists a free
C-module N such that M is isomorphic to (N Q¢ F,idn ® ¢4) as a g-difference module.

Let us consider a morphism F — F’ of g¢-difference algebras and a g-difference module
M = (M,®,) over F.

Definition 1.1.5. The g-difference module Mz obtained from M by extension of coefficients
from F to F' is the F'-module M ® x F' equipped with the operator ®; ® ¢,.

1.2. Some algebraic constructions.

We consider the following algebraic constructions on the category of g-difference modules
over a fixed g-difference algebra F:

Dual g-difference module. Let M = (M, ®,) be a g-difference module over F. Let us consider
the dual F-module M = Hom F(M,F) of M: M is naturally a g-difference module equipped
with the g-difference operator éq = t<I>q_1, defined by

< @4(h), m >=<m, éq_l(m) >, for all 7h € M and m € M.
The g-difference module M = (M, ®,) over F is the dual g-difference module of M.

Tensor product of g-difference modules. Let M' = (M',®,) and M" = (M",®]) be two ¢-
difference modules of finite rank over F. The tensor product M'® » M" has a natural structure

of g-difference module defined by:
By(m' @m") = & (m') @ &;(m") , for all m' € M’ and m" € M".

The g-difference module M' @ r M" = (M' @ 7 M", &, ® ®;) over F is the tensor product of
M’ and M".

We denote by <M >® the full subcategory of the category of the g-difference modules
over F containing all the subquotients of the ¢-difference modules obtained as finite sums of
the form @; ;T%(M), where T%/(M) = M® @ M®’.

1.3. Definition of the Galois group of a ¢-difference module.
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Let K be a field and q be a non zero element of K which is not a root of unity. Let
M = (M, ®,) be a g-difference module over K(z).
Sometimes, the tensor category <M>® comes equipped with a K-linear fiber functor

w :<M>®—; {finite dimensional K-vector spaces} .

In fact, such a fiber functor always exists after replacing K by some finite extension. Here is an
explicit construction. The g-difference module M admits a “model” M over some g-difference
algebra F C K (x) essentially of finite type over Vg . This provides a corresponding “model” N
for any N in <M>®. Consider a K-valued point z of F (which exists after passing to a finite
extension of K'). Then the fiber at = provides a “fiber functor”. The corresponding tannakian
group may be interpreted as Picard-Vessiot group of a g-difference systems, as considered in
[PS] (this interpretation is not used in the sequel).

It follows (cf. [DM, 2.11] and [A2, III, 2.1.1]) that there exists an algebraic closed subgroup
Gal(M,w) of GL(w(M)), such that w induces a tensor equivalence of categories between
<M>® and the category of of finite type representations of Gal(M,w) over K.

Definition 1.3.1. The algebraic group Gal(M,w) is the Galois group of M pointed at w.
We recall the following results:

Lemma 1.3.2. [A2, III, 2.1.1] The algebraic group Gal(M,w) is the subgroup of Gl(w(M))
which stabilizes w(N') for all sub-object N of a finite sum T/ (M) = M® @ M®’.

Remark 1.3.3. We notice that Gal(M,w) is a stabilizer in the sense of algebraic groups.

Lemma 1.3.4. [A2, III, 2.1.4] The group Gal(M,w) is trivial if and only if M is a trivial
g-difference module over K (z) (c¢f. (1.1.4)).

1.4. Definition of the generic Galois group of a ¢-difference module.

Let M = (M, ®,) be a g-difference module over K(z). Let us consider the forgetful fiber
functor “underlying vector space”

n :<M>®— {K(z)-vector spaces} .

The functor Aut® (1) defined on the category of commutative K (x)-algebras is representable
by an algebraic group Gal(M,n) over K(z).

Definition 1.4.1. The algebraic group Gal(M,n) is the generic Galois group of M.

Remark 1.4.2. The generic Galois group Gal(M,n) admits the following concrete descrip-
tion: it is the closed subgroup of GL(M) which stabilizes all the g-difference sub-modules in
finite sums &®; ;757 (M) (cf. [A2, §III, 2.2]), in the sense of algebraic groups. Since GL(M)



132 The g-analogue of Katz’s conjectural description of differential Galois group  IV. §2

is a noetherian algebraic variety, Gal(M,n) is defined as the stabilizer of a finite number of
g-difference sub-modules N, ..., N, of some finite sums @i,jTi’j (M): this is equivalent to ask
that Gal(M,n) is the stabilizer of the maximal exterior power of ®_;N; (cf. [W, A.2]). This
shows that Gal(M,n) can be define as the stabilizer of a g-difference sub-module of rank 1 of
a finite sum @, T¢7r (M).

Warning. A sub-K(z)-vector space of a finite sum @; ;7%/(M) stabilized by the generic
Galois group Gal(M,n) is not necessarily a g-difference module.

Remark 1.4.3. If w is a fiber functor over < M >®, with values in K-spaces, the func-
tor Isom®(w ®k lx(z),n) is representable by a K(z)-group scheme £(M,w), which is a
torsor over Gal(M,w) @k K(z) (c¢f. [DM, 3.2] and [A2, III, 2.2]), such that Gal(M,n) =
AutGay(Mw)@ x K (2) B(M, w).

Lemma 1.4.4. A g¢-difference module M over K (z) is trivial if and only if Gal(M,n) is the
trivial group.

Proof. If a fiber functor exists, this follows from the previous remark and (1.3.4). In general, w
exists after replacing K by a finite extension, and the result follows by an easy Galois descent.
[ |

2. An arithmetic description of the generic Galois group.

Let K be a number field and Vg the ring of integers of K. We denote by X; the set of
all finite places v of K, by w, € Vi the uniformizer associated to v, and by V), the discrete
valuation ring of K associated to v.

We choose an element ¢ € K which is not a root of unity. For every finite place v such
that ¢ is a unit of V,, we denote by &, the order of the cyclic group generated by the image of
q in the residue field of V,, i.e.:

Ky =min{m € Z: m >0 and 1 — ¢™ € w,V,} .

Let w,, be the power of w, satisfying 1 — ¢"* € w, 4V, and 1 — ¢"** & w, @, (Vy. We set
kgo = Vi /wgwVk-

2.1. Algebraic groups “containing &+ for almost all »”.

Let M = (M, ®,) be a g-difference module over K(z). One can always find a g-difference
algebra F C K (z) essentially of finite type over the ring of integers Vi of K and a g¢-difference
module M = (M, ®,) over F such that M is isomorphic to Mg ).

Remark. Since ¢® = 1 modulo 7, ,, ®¥* induces a (F ®y, kq,)-linear morphism on M@vK

q
kgo.
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Let G be a closed algebraic subgroup of GL(M). By Chevalley’s theorem, G is the
stabilizer of a one dimensional sub-K (z)-vector space L in a finite sum @©,TJ*(M). Up to
enlarging F a little, there exists an F-free module L, such that L = L ®  K(x).

Definition 2.1.1. The closed algebraic subgroup G of GL(M) contains ®;v for almost all
v € Xy if, for almost every finite place v, L®vy, ky q is stable by ®{v in SRT I (M) @y, ky q-

Remark 2.1.2. We notice that the notion of an algebraic group over K(z) containing ®%v
for almost all v € X is well defined:

Independence of the choice of F and L: let L' and F' be a different choice for L and F
in the previous definition. Then there exists a third Vg-algebra F" of the same form with
F,F" C F". So by extension of scalars, we may suppose that F = F' and that L and L' are
two different F-lattices of L. By enlarging F, we may suppose that there exists an F-linear
isomorphism ¢ : L — L. For almost allv € ¥ # the morphism 1) induces a (F @y kq v )-linear
isomorphism L Qv kg — I ®yy kg, commuting to the action of 7.

Independence of the choice of L: it follows by the fact that L is a direct factor of a F-lattice

of ®p Tt In (M), hence any F ®y,. k, »-linear automorphism @, Tt (M) ®y), ky 4 stabilizing
L ®y, k4 comes from an F-linear automorphism of ®,TJ» (M) stabilizing L.

Lemma 2.1.3. The smallest closed algebraic subgroup Gg~ of GL(M) which contains ®}"
for almost all v € Xy exists.

Proof. Let G; and G2 be two closed algebraic subgroup of GL(M ) containing &7 for almost
allv. Let Gy (resp. G2) be defined as the stabilizer of a line Ly (resp. L) in some @, T Jr(M).
Then the intersection of G; and G> is the algebraic group stabilizing the lines L; and Lo, or
equivalently the line A2(L; @ L) (cf. [W, A2]). This implies that the intersection of two
algebraic subgroups of GL(M) containing the ®}v for almost all v € Xy is still an algebraic
subgroup of GL(M ) containing the k,-curvature for almost all v € X, in the sense of definition
(2.1.1).

Moreover GL(M) is an algebraic variety of finite dimension, hence any descending chain
of closed algebraic subgroups containing the ®;v for almost all v € ¥y is stationary. |

Lemma 2.1.4. Let N = (N, ®,) be an object of <M>®. Then the natural morphism
Qg : qu(M) — qu(./\/)

is surjective.

Proof. Since the action of &, on A is induced by the action of &, on M, the image of natural
morphism Qgx : Ggx (M) — GL(N) contains ®%v for almost all v, hence contains G~ (N).

Let us choose a line L in some finite sum @57 J»(N), such that Gg«(N) is the stabilizer
of L. Let L be an F-lattice of L, defined over a g¢-difference algebra F C K(z) essentially of
finite type over Vk. Since N is an object of <M>® L is a line in a suitable subquotient of a
finite sum @, T (M). Since L @y, ky,q is stable by ®;v for almost all v, L is stabilized by
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Garx (M), by construction of Gg«(M). It follows that the image of Qgx is precisely Gex(N).
|

2.2. Statement of the main theorem.

Main theorem 2.2.1. The algebraic group Gal(M,n) is the smallest closed subgroup of
GL(M) containing ®3v for almost all v € Xy.

1/2

Example. Let us consider the g¢-difference equation y(qr) = ¢'/“y(z), associated to the

g-difference module:
®,: K(z) — K(z)

f@) — ¢'flgz) "
The g-difference module (K (z),®,) is trivial over K (z!/2), hence the generic Galois group of
(K(z),®,) is the group us = {1, —1}. For all v such that |g|, = 1 and that the image of ¢*/2
is an element of the cyclic group generated by the image of ¢ in kg4, the module (K(z), ®,)
has k,-curvature zero. For every other v such that |g|, = 1, we have ¢3M = 1 over kg,
which means that ¢gv = 1. So the Galois group is the smallest algebraic subgroup of the
multiplicative group K (z)* = GL(K(z)) containing ®v for almost all v.

The proof of the last statement relies on the g-analogue of Grothendieck’s conjecture on
p-curvatures proved in [DVIII], that we are going to recall in the following section.

A part of the statement is very easy to prove:

Proposition 2.2.2. The algebraic group Gal(M,n) contains the ®}> for almost allv € Xy.

Proof. The algebraic group Gal(M,n) is defined as the stabilizer of a ¢-difference module L
of rank one over K (z). The choice of an F-lattice M of M determines an F-lattice L of L of
rank one. The reduction over kg, of L is stable by the morphism induced by ®;v since Lisa
g-difference module, hence stable under @,. |

3. The ¢-analogue of Grothendieck’s conjecture on p-curva-
tures.

We recall that K is a number field, Vg its ring of integers, ¢ a non zero element of K
which is not a root of unity and that, for almost every v, k, is the order of the image of ¢ in
the residue field of K with respect to v.

We consider a g-difference module M = (M , i)q) over a g-difference algebra F C K(z)

essentially of finite type over Vi, and we denote M = M, the g-difference module obtained
by Mk (z) by extension of coefficients from F to K (x).

Theorem 3.0.3. [DVIII, (7.1)] The g-difference module M is trivial if and only if 3 induces
the identity on M ®y, ky 4.
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4. Proof of the main theorem.

Let M = (M, ®,) be a g-difference module over K(z) and let Gal(M,n) be its generic
Galois group. We denote by Gg~(M) the smallest algebraic subgroup of GL(M) containing
®7v for almost all v. Our purpose is to prove that Gal(M,n) = Ga~(M) (cf. (2.2.1)).

We recall that we have already proved that G~ C Gal(M,n) in (2.2.2).

We choose a K (x)-vector space L of dimension 1 in a finite sum of the form @7 (M),
such that Gg~(M) is the stabilizer of L.

We denote by W = (W, ®,) the smallest g-difference sub-module of &, T (M) contain-
ing L.

Let F C K(z) be a g¢-difference algebra essentially of finite type and M an F-lattice of
M, stable by ®,. Let m be a basis of the F-lattice L of L determined by M. Then m is a
cyclic vector for a suitable F-lattice W of W. For almost all v € ¥ 5 L ®vy kq,v 1s stable with
respect to the morphism induced by @7, which means that:

;" (m) = ay(x)m in L®y, kq v, with ay(z) € F @py kg o-
If v is the rank of W, we obtain:

B (m, Bg(m),..., 85" (m))
oy () 0
= (m, ®,(m),..., 3" (m)) in W @y, kqo-
0 Ol (q"_l.'c)

We deduce that the reduction modulo w, 4 of the sub-F-module of W generated by 3! (m),
for any i = 0,...,v — 1, is stable by ®7v, for almost all v. This implies that the K (x)-vector
space generated by ®;(m), for any i = 0,...,v — 1, is stable by Ggx(M). Let us call U
the sub-K (z)-vector space of W generated by (®,(m),...,®5"'(m)). Then W = L@ U is a
decomposition of W in subspaces stable by Gg~(M). Let us consider the dual decomposition
of W: W =LaU. It follows that G~ (M) is the group fixing the line L® L in W @ W (cf.
for instance the proof of theorem [D, 3.1]).

Let us consider the line L ® L instead of the line L to define G4« (M) as a stabilizer. Then
we are in the following situation: Ggx(M) is the group fixing the line L and W = (W, ®,)
is the smallest g-difference module containing L. The F-lattice L of L is direct factor in a
suitable F-lattice of @, T (M), hence L ®y, ky,q is fixed by @+, for almost all v € Ty:

®;"(m) =m in L ®yg kg, for all m € L.
Let us fix a cyclic vector m € L for W. Then we have:

35 (m, By(m), ..., 8071 (m)) = (m, Bg(m),..., 8L (m)), in W vy, kq,o-
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By (3.0.3), the g-difference module W is trivial and hence Gal(W,n) = 1. Since W €e<M>®,
we have a natural morphism

Gal(M,n) — GalW,n) =1,
which prove that Gal(M,n) stabilizes each line of W. In particular Gal(M,n) stabilizes L,
hence Gal(M,n) = Gy~(M). This achieves the proof.

5. Examples of calculation of generic Galois groups.

We conclude by some examples of arithmetic calculations of the generic Galois group.
Example 5.0.4. Let us consider the g-difference equation
T 1 a(z T
(041 (i) = (0 52) (05
with a(z) # 0. Then for all positive integers n we obtain:
(yl(q"x)) _ (1 * ) <y1(w)>
y2(q"x) 0 b(g"~'z)---b(x) ) \yalz) )

Let us consider the g-difference modules M generated by (e1, e2) with

oenen = (e (ofy 1)

Then the g-difference linear system (5.0.4.1) is associated to M with respect to the basis e.
We can distinguish several cases:

1) y(gz) = b(x)y(z) has a solution in K(x)

Then the generic Galois group of M is:

Gal(M,n) = {(C(lx) ‘1)) : c(:z:)eK(x)} .

2) the equation y(qz) = b(z)y(x) has a solution in an extension K(q'/?)(z'/?) of K(z),
for a suitable integer d > 1. We choose d minimal with respect this property. We obtain:

1
c(z

Gal(M,n):{< ) 2) : c(x)EK(x),CEud} .

3) none of the previous conditions is satisfied.

We find the algebraic group:

Gal(M,n) = {(C(x) d(x)) : c(x),d(x)eK(m),d(a:);éO} .
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Example 5.0.5.
Let us consider the g-difference linear system of order two:

() = G ) ()

with r(z) € K(z) and r(z) # 0. We can easily calculate by induction that for all positive
integers n we have:

yi(¢®"x) \ _ (r(@® T a) - r(dPr)r(ge) 0 y1(z)
(i) = ( ) (02)

y2(¢°"x)

and

(56553) = (g S ™ T) (53) -

It follows that for the generic Galois group of the g-difference module M of rank 2 such that
for a fixed basis (e1, e2) we have:

there are two possibilities:
1) y(¢%z) = r(z)y(z) has a solution in K (z)

Then Cbz"" = 1 modulo w,, for almost all v and the generic Galois group of M is represented
as the algebraic linear subgroup Gla(K(z)) of the form:

Gal(M,n):{H2’_H2’((1) (1))(_01 _01>}'

2) y(¢%z) = r(z)y(x) has a solution in an extension K(g*?)(z'/?) of K(z),
for a suitable integer d > 1. We choose d minimal with respect this property. Then:

Gamn ={(§ 2) awaenpu{(l §) e}

3) none of the previous conditions is satisfied.

then the generic Galois group of M is represented as the infinite algebraic linear subgroup
Gl2(K(z)) of the form:

Gal(M,n) = {(”(0””) b&) : a(2),b(z) € K(2), a(z)b(z) # o}

U { (d(ox) C(g)) (@), d(z) € K (x), c(z)d(z) £ 0} .

Moreover this example shows that we can have Gal(Ms) # Gal(M,n), since Gal(Ms) is
represented as a diagonal matrix.
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