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Most people are familiar with the study of solutions of
homogeneous linear differential equations

q(z) =

m∑
i=0

pi(t)D
iF (t) = 0,

where D is differentiation with respect to t and the pi(t) and q(t)
are rational functions (not all zero). A power series that satisfies
such an equation is called D-finite and this class includes
algebraic power series and famous series such as et.

Slide 2

Difference and differential equations



Slightly less well-known are the class of solutions to difference
equations, where one uses an endomorphism σ instead of a
derivation. The class we’ll look at is Mahler series, where one
takes the continuous endomorphism of K[[t]] induced by t 7→ tk

and studies power series solutions to equations

q(z) =

m∑
i=0

pi(t)F (tk
i
).
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Such a solution is called a k-Mahler power series and this
includes many nice classes of series. Most notably, this class
contains the “k-automatic power series”, which we’ll now define.

Let k be a positive integer ≥ 2. Then every nonnegative integer
has a unique base-k expansion on the digits 0, . . . , k − 1 with
no “leading zeros”.

For example, if k = 3, then the base-k expansion of 17 is 122,
since 17 = 1 · 32 + 2 · 31 + 2 · 30.

In general, if w is a word on the alphabet {0, . . . , k − 1} with no
leading zeros that is the base-k expansion of n, we write
[w]k = n and (n)k = w.

Convention: [ε]k = 0 and (0)k = ε, where ε is the empty word
(the identity in the free monoid on the set {0, . . . , k − 1}.
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Definition
A finite-state k-automaton with output is a finite directed graph
where each vertex has out-degree k with labels 0, 1, 2, . . . , k− 1,
along with a special distinguished vertex (the initial state) and
each vertex has an “output value” from some finite set ∆.

Note: if we have a finite-state k-automaton with output, we can
associate a function from f : N→ ∆ as follows. Given n ∈ N,
we find (n)k ∈ {0, . . . , k − 1}∗; we start at the initial state,
reading the digits of (n)k from right-to-left, using the arrows to
tell us where to go at each step. Once this process finishes, we
look at the output value of the vertex we finish at and that is
τ(n).
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Example: The Thue-Morse automaton

q0/3start q1/0

0

1

1

0

Here: k = 2; If we look (13)2 = 1101 and the output is 0, so the
associated map τ has τ(13) = 0. In general, we see that
τ(n) = 3 if and only if n has an even number of 1’s in its binary
expansion.
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Then we say that a power series F (z) =
∑
τ(n)zn ∈ C[[z]] is a

k-automatic power series.

Theorem
A k-automatic power series is k-Mahler.

In our example, we had k = 2 and the function τ(n) takes the
values 0 and 3 and is 3 if and only if n has an even number of
1’s in its binary expansion. So why is F (z) =

∑
τ(n)zn a

2-Mahler series in this case?
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Notice that n has an even number of 1’s in its binary expansion
if and only if 2n does too and if and only if 2n+ 1 does not, so
τ(2n) = τ(n) and τ(2n+ 1) = 3− τ(n).

F (z) =

∞∑
j=0

τ(2j)z2j +

∞∑
j=0

τ(2j + 1)z2j+1,

and we can rewrite the right side Notice that n has an even
number of 1’s in its binary expansion if and only if 2n does too
and if and only if 2n+ 1 does not. So

F (z2) +
(
3z/(1− z2)− zF (z2)

)
.
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Well, that doesn’t prove the theorem, but in fact one can show
that one can do similar constructions more generally by using
the fact that the k-kernel of an automatic sequence is finite.

Definition
Given a sequence f : N→ ∆, we define the k-kernel of f to be
the set of distinct subsequences of the form

f(kan+ b)

with a ≥ 0 and 0 ≤ b < ka.

In our Thue-Morse example, we see the 2-kernel is just the two
maps τ(n) and 3− τ(n), which follows from induction and the
fact that τ(2n) = τ(n) = 3− τ(2n+ 1). In fact, finiteness of the
k-kernel characterizes k-automaticity.
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Allouche and Shallit extended the notion of automaticity to
regular sequences. Here K is a field and f : N→ K is a
K-valued sequence. Then we can look at the K-vector space
spanned by the elements of the K-kernel.

Definition
We say that f is k-regular if the K-vector space spanned by the
sequences in the k-kernel is finite-dimensional as a K-vector
space.

We see that k-automatic =⇒ k-regular, since if the k-kernel is
finite, the K-vector space generated by the elements of the
k-kernel will be finite-dimensional.
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Let f(n) be the number of 1’s in the binary expansion of n.

Then f(2n+ 1) = f(n) + 1 and f(2n) = f(n), so now we see
that the vector space spanned by the 2-kernel of f is spanned
by the constant map g(n) = 1 and f(n).

So f is 2-regular, but it is not 2-automatic, since it takes
infinitely many values.

In general: g(n) is k-automatic ⇐⇒ g(n) is k-regular and the
range of g is finite.
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Just as with automatic power series, regular power series
(generating series of k-regular sequences) are also k-Mahler.
So we have the inclusions

k − automatic series ⊆ k − regular series ⊆ k −Mahler series.

These containments are all proper.
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One of the most natural ways of studying and understanding
integer power series is via their asymptotics. We use this to get
both a sense of how the coefficients grow as well as how
complicated the series is.

This approach has been especially fruitful in the study of
solutions to differential equations, although there has
apparently been less work in the realm of solutions to
difference equations.

Still, it is a natural question as to what the asymptotics are of
solutions to Mahler series. We’ll look at a few examples of
Mahler series.
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• For automatic power series the coefficients are O(1).
• For regular series with integer values the coefficients are

known to have a gap: either the coefficients are O(log(n)d)
or infinitely often they are O(nκ) and are at least Cnκ for
infinitely many n for some C > 0.
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For example the sum of the 1’s in the binary expansions of n
jumps around, but it is at most log2(n). On the other hand, the
sequence f(n) = n2 + 1 is k-regular for every k and it grows
like a polynomial in n.

Notice that if f(n) = n2 + 1, then f(kan+ b) is a quadratic
polynomial in n, so the k-kernel is spanned by the maps 1, n,
n2, so f is indeed k-regular.

Slide 15



Let F (z) denote the infinite product of cyclotomic polynomials

∞∏
n=0

1

1− zkn
=

∞∑
n=0

anz
n .

Then F (zk) = (1− z)F (z), so F (z) is k-automatic.
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The integer an is equal to the number of partitions of n into
k-powers. The asymptotics of an were first studied by Mahler
who proved that

log an ∼
log2 n

2 log k
·

These results of Mahler have been refined and generalized by
de Bruijn and most recently by Dumas–Flajolet.

The asymptotics immediately show that F (z) cannot be regular.
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There’s one obvious type of Mahler series we haven’t consider.
Notice that 1/(1− 2z) is k-Mahler for every k. Since we have

F (z) = 1/(1− 2z).

Notice the coefficients are growing exponentially in this case.
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So we’ve shown there are some different possibilities of how
coefficients in a Mahler series. So far we’ve seen examples
with growth of the following types:
• O(1) (automatic series);
• Not O(1) but O((log n)d) (certain regular series);
• Not O((log n)d) and O(nκ) (other regular series);

• Growth “like” log2 n
2 log k ;

• Exponential growth.
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Because coefficients can bounce around a lot, we find it
convenient to use Landau notation: We write an ∈ Ω(bn) when
an 6∈ o(bn), that is, when there exists a positive number c such
that an > cbn for infinitely many positive integers n.

Theorem
(B-Coons-Hare/B) We can refine the gaps for regular series
and say that if an is an integer-valued k-regular series then
either: there is some nonnegative integer d such that

an ∈ O ∩ Ω((log n)d))

or an ∈ O ∩ Ω(nκ), for some κ = logk(α), with α > 1 a real
algebraic number.

So in some sense we understand how coefficients of regular
power series can grow.
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Are there other growth types? No! We’ll make this precise, but
in general one is often interested in Mahler series with
coefficients in Q̄ and asymptotic information is not always so
relevant as far as measuring the complexity of the coefficients.
A much better way of capturing complexity in this context is via
heights.

The height is a map h : Q̄→ [0,∞), which has the property that
h(n) = |n| for n an integer, so we can think of the height as
giving us a coarse analogue of asymptotics for general
algebraic numbers.
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A crash course on heights

We give a quick overview of the ideas involved.
• Let K be a number field of degree d := [K : Q] that is

Galois.
• Let M(K) denote the set of places of K. Recall that each

place v ∈M(K) is either finite or infinite and, in either
case, determines a normalized absolute value
| · |v : K → [0,∞).
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• (finite places) If v ∈Mfin(K) ⊂M(K) is finite, it
corresponds to a prime ideal p of the ring of integers OK of
K, then the order ordpx of x ∈ OK is the largest power
m ≥ 0 such that x ∈ pm. If more generally x ∈ K, then one
writes x = a/b for some a, b ∈ OK and
ordpx := ordpa− ordpb.

|x|v := 0 if x = 0, and |x|v := N(p)−ordp(x) if x 6= 0, where
N(p) is the cardinality of the finite field OK/p.
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• If v ∈Minf(K) ⊂M(K) is an infinite place, v is either real
or complex. In the first case, v corresponds to a real
embedding τ : K → R, and we take |x|v = |τ(x)|, where | · |
is the ordinary absolute value on R. In the second case, v
corresponds to a distinct pair τ, τ̄ : K → C of complex
embeddings, and we take |x|v = |τ(x)|2 = |τ̄(x)|2.

Slide 24



With these definitions we then have a product formula∏
v∈M(K)

|c|v = 1

for c ∈ K∗. (And I should add that |c|v = 1 for all but finitely
many places when c ∈ K∗.)
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Now we can define the height of an algebraic number a ∈ K
number as follows:

h(a) =
1

d

∑
v∈M(K)

log(max(|c|v, 1))
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Let’s look at a few examples.

What is h(2/9)? Here K = Q and |2/9|v = 1 except for the
2-adic place, the 3-adic place, and the infinite place (Euclidean
absolute value). Notice |2/9| < 1 and |2/9|2 < 1 so they don’t
contribute anything to∑

v∈M(Q)

log(max(|2/9|v, 1)),

so we just get log |2/9|3 = log(9). In general

h(a/b) = max(log |a|, log |b|)

for gcd(a, b) = 1, a, b nonzero integers.
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What is h(
√

3)?

Here we are working in K = Q(
√

3) and most places of Q lift to
exactly two places of K. For example, we have two
Archimedean absolute values on K:

|a+ b
√

3|1 := |a+ b
√

3|, |a+ b
√

3|2 = |a− b
√

3|.

In this case, |
√

3|v ≤ 1 for all finite places and so the height of√
3 is log |

√
3|.

This is somehow a more “democratic” notion of asymptotics.
For example 17− 12

√
2 is small, but this is because we’ve

chosen the positive square root of
√

2. Had we chosen the
negative square root, the number would be pretty big, and the
height is in some sense attempting to average over all
conjugates.
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If we recast our examples of different types of growths of
integer Mahler series ∑

anz
n

in terms of heights, we see we get the following possibilities:
• an = O(1) ⇐⇒ h(an) = O(1).
• an = O∩Ω((log n)d), d > 0 ⇐⇒ h(an) ∈ O∩Ω(log log n).
• an = O ∩ Ω(nκ) ⇐⇒ h(an) ∈ O ∩ Ω(log n);
• h(an) ∈ O ∩ Ω((log n)2).
• exponential growth =⇒ h(an) ∈ O ∩ Ω(n)
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In fact, we’re able to show that one has to fall into one of these
cases.

Theorem
(Adamczewski-B-Smertnig) Let F (z) =

∑∞
n=0 anz

n be a
k-Mahler series with coefficients in Q̄. Then exactly one of the
following properties holds.

1. h(an) ∈ O ∩ Ω(n).

2. h(an) ∈ O ∩ Ω(log2 n).

3. h(an) ∈ O ∩ Ω(log n).

4. h(an) ∈ O ∩ Ω(log log n).

5. h(an) ∈ O(1).
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We make a remark that it is not in general possible to replace
lower bounds of the type Ω by stronger ones. For instance, the
2-Mahler function

∑∞
n=0 2nz2n belongs to class (3), but most of

its coefficients vanish.
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How did this project get started?

What gave really gave impetus to this project is that at the time,
I had been interested in the concept of “height gaps” due to
noting they held in many contexts: differential equations,
arithmetic dynamics, etc. Daniel Smertnig was a postdoc at the
University of Waterloo and each time I would suggest some
idea, he was always able to do incredible things. In this case
the idea I suggested we look at was ...
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Every k-Mahler series with coefficients in K satisfies a
homogeneous Mahler equation with polynomial coefficients:

p0(z)F (z) + p1(z)F (zk) + · · ·+ pd(z)F (zk
d
) = 0.

Notice that
p0(z)F (z) ∈

∑
j≥1

K[z]F (zk
j
),

but in general there might be smaller degree polynomials that
do this as well.
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Definition
Let F (z) be a k-Mahler power series, and let

I =
{
p(z) ∈ K[z] : p(z)F (z) ∈

∞∑
i=1

K[z]F (zk
i
)
}
.

The k-Mahler denominator of F (z) is the unique generator
d(z) ∈ K[z] of the ideal I, with the lowest nonzero coefficient of
d being 1.
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This somehow seems to what really controls the
asymptotics/height growth of Mahler series.

Example

The equation

(z − 1/2)F (z)− (z − 1/8)(z3 − 1/2)F (z3) = 0

has a unique nonzero power series solution (up to a scalar) and
is minimal with respect to this solution. However, we can see
the Mahler denominator is 1.

F (z) = (z − 1/8)(z2 + 1/2z + 1/4)(z9 − 1/2)F (z9) .

The expected pole at 1/2 disappears after one iteration of the
equation.
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If we look at some examples ...

F1(z) = 1/(1− 2z) d(z) = 1− 2z

F2(z) =
∏
j(1− z2j )−1 (k = 2) d(z) = 1− z

F3(z) =
∏
j(1 + z2j )−1 (k = 2) d(z) = 1 + z

F4(z) = (1 + z)2(1 + zk)2(1 + zk
2
)2 · · · d(z) = 1

Maybe you’ve seen this trick before:

F3(z) =
∏

(1 + z2j )−1 =
∏ (1− z2j )

(1− z2j+1)
= (1− z).
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Theorem
Let f(z) =

∑∞
n=0 anz

n be a k-Mahler function. The following
statements are equivalent.

1. We have h(an) ∈ o(log2 n).

2. Every non-zero root of the k-Mahler denominator of f is a
root of unity that is not periodic under repeated iteration of
the map ζ 7→ ζk

3. The power series f is k-regular.

4. We have h(an) ∈ O(log n).
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Theorem
Let F (z) =

∑∞
n=0 anz

n be a k-Mahler function. The following
statements are equivalent.

1. We have h(an) ∈ o(n).

2. Every non-zero root of the k-Mahler denominator of f is a
root of unity.

3. The power series f has radius of convergence one with
respect to all places.

4. We have h(an) ∈ O(log2 n).
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It’s not hard to show that every Mahler series
∑
anz

n satisfies
h(an) = O(an), so this really explains the first three gaps:

• h(an) ∈ O ∩ Ω(n).

• h(an) ∈ O ∩ Ω(log2 n).

• h(an) ∈ O(log n).
So we’re left to deal with classifying height gaps for k-regular
series. As mentioned before, there were already some
precedents, which indicated that there should be a sort of
trichotomy: growth like log n; growth like log log n; and O(1)
growth.
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Although Allouche and Shallit introduced k-regular series, they
existed in an equivalent form, studied in depth by Berstel and
Reutenhauer, called noncommutative series. As far as the
relevance to k-regular series, one takes k ≥ 2, K a field, and a
monoid homomorphism Φ : {0, . . . , k − 1}∗ →Md(K), and
column vectors v, w ∈ Kd. Then one can associate a function

f : N→ K

via the rule
n 7→ wTΦ((n)k)v.
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Let

A0 =

(
1 0
0 1

)
,

and

A1 =

(
0 1
1 0

)
.

Then one can make a map f : N→ Z via

f([id · · · i0]2) = eT1 Aid · · ·Ai0e1.

What is f(n)?
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Theorem
A series is k-regular if and only if f can be realized as a map

n 7→ wTΦ((n)k)v

as above.
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Now what we can see occurs is that if we have some nonzero
eigenvalue that is not a root of unity then h(an) ∈ O ∩ Ω(log n)
and if all eigenvalues are roots of unity or zero then
h(an) = O(log log n).
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Now luckily Michael Coons, Kevin Hare, and I had shown that
there was a fundamental gap for the growth of coefficients of
integer regular series between log(n) and O(1) (automatic
case) and a variation of this argument can be used to show that
if h(an) = O(log log n) then either h(an) ∈ O ∩ Ω(log log n) or
h(an) = O(1) and is automatic.
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Theorem
Let K be a field of characteristic 0 and let F (z) =

∑
anz

n be a
k-Mahler power series. Then an is k-automatic if and only if
{an : n ≥ 0} is finite.

This is not true in characteristic p.

Why is this true? You can first use a specialization argument to
assume that the an are in Q̄. Then h(an) = O(1) =⇒ F (z) is
automatic!
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One last corollary



Thanks!
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