On small height and local degrees

Sara Checcoli (joint work with Arno Fehm)
(*) Institut Fourier, Université Grenoble-Alpes
Séminaire différentiel October 19th, 2021

Heights

(Weil, Northcott, Arakelov, Faltings, ...)

§l. Introduction

Def. Let $\alpha \in \overline{\mathbb{Q}}^{*}$ and let $p_{\alpha}(x)=a\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{d}\right) \in \mathbb{Z}[x]$ Be its minimal polynomial (with coprime coefficients).
§l.I The Well height
Def. Let $\alpha \in \overline{\mathbb{Q}}^{*}$ and let $p_{\alpha}(x)=a\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{d}\right) \in \mathbb{Z}[x]$ Be its minimal polynomial (with coprime coefficients).
The (absolute logarithmic) Well height of α is the number

$$
h(\alpha)=\frac{1}{d} \cdot \log \left(|a| \prod_{i=1}^{d} \max \left(1,\left|\alpha_{i}\right|\right)\right)
$$

§l.I The Well height

Def. Let $\alpha \in \overline{\mathbb{Q}}^{*}$ and let $p_{\alpha}(x)=a\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{d}\right) \in \mathbb{Z}[x]$ Be its minimal polynomial (with coprime coefficients).
The (absolute logarithmic) Well height of α is the number

$$
h(\alpha)=\frac{1}{d} \cdot \log \left(|a| \prod_{i=1}^{d} \max \left(1,\left|\alpha_{i}\right|\right)\right)
$$

\rightarrow Measure of 'arithmetic complexity' of a number:
§l.I The Well height
Def. Let $\alpha \in \overline{\mathbb{Q}}^{*}$ and let $p_{\alpha}(x)=a\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{d}\right) \in \mathbb{Z}[x]$ Be its minimal polynomial (with coprime coefficients).
The (absolute logarithmic) Well height of α is the number

$$
h(\alpha)=\frac{1}{d} \cdot \log \left(|a| \prod_{i=1}^{d} \max \left(1,\left|\alpha_{i}\right|\right)\right)
$$

\rightarrow Measure of 'arithmetic complexity' of a number:

- If $\alpha=p / q \in \mathbb{Q}^{*}$

§.l. The Weil height

Def. Let $\alpha \in \overline{\mathbb{Q}}^{*}$ and let $p_{\alpha}(x)=a\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{d}\right) \in \mathbb{Z}[x]$ Be its minimal polynomial (with coprime coefficients). The (absolute logarithmic) Weil height of α is the number

$$
h(\alpha)=\frac{1}{d} \cdot \log \left(|a| \prod_{i=1}^{d} \max \left(1,\left|\alpha_{i}\right|\right)\right) .
$$

\rightarrow Measure of 'arithmetic complexity' of a number:

- If $\alpha=p / q \in \mathbb{Q}^{*} \Rightarrow h(\alpha)=\log (\max (|p|,|q|))$

§l.I The Weil height

Def. Let $\alpha \in \overline{\mathbb{Q}}^{*}$ and let $p_{\alpha}(x)=a\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{d}\right) \in \mathbb{Z}[x]$ Be its minimal polynomial (with coprime coefficients).
The (absolute logarithmic) Weil height of α is the number

$$
h(\alpha)=\frac{1}{d} \cdot \log \left(|a| \prod_{i=1}^{d} \max \left(1,\left|\alpha_{i}\right|\right)\right) .
$$

\rightarrow Measure of 'arithmetic complexity' of a number:

- If $\alpha=p / q \in \mathbb{Q}^{*} \Rightarrow h(\alpha)=\log (\max (|p|,|q|))$

So $h(2021 / 2020)=\log (2021)$ while $h(1)=0$
gl. The Well height

Def. Let $\alpha \in \overline{\mathbb{Q}}^{*}$ and let $p_{\alpha}(x)=a\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{d}\right) \in \mathbb{Z}[x]$ Be its minimal polynomial (with coprime coefficients).
The (absolute logarithmic) Well height of α is the number

$$
h(\alpha)=\frac{1}{d} \cdot \log \left(|a| \prod_{i=1}^{d} \max \left(1,\left|\alpha_{i}\right|\right)\right)
$$

\rightarrow Measure of 'arithmetic complexity' of a number:

- If $\alpha=p / q \in \mathbb{Q}^{*} \Rightarrow h(\alpha)=\log (\max (|p|,|q|))$

So $h(2021 / 2020)=\log (2021)$ while $h(1)=0$

- For d fixed: if $h(\alpha)$ ' BiG ' \Leftrightarrow max coefficient of $p_{\alpha}(x)$ is ' BiG '.
gl. The Well height

Def. Let $\alpha \in \overline{\mathbb{Q}}^{*}$ and let $p_{\alpha}(x)=a\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{d}\right) \in \mathbb{Z}[x]$ Be its minimal polynomial (with coprime coefficients).
The (absolute logarithmic) Well height of α is the number

$$
h(\alpha)=\frac{1}{d} \cdot \log \left(|a| \prod_{i=1}^{d} \max \left(1,\left|\alpha_{i}\right|\right)\right)
$$

\rightarrow Measure of 'arithmetic complexity' of a number:

- If $\alpha=p / q \in \mathbb{Q}^{*} \Rightarrow h(\alpha)=\log (\max (|p|,|q|))$

So $h(2021 / 2020)=\log (2021)$ while $h(1)=0$

- For d fixed: if $h(\alpha)$ ' $B i G$ ' \Leftrightarrow max coefficient of $p_{\alpha}(x)$ is ' $B i G$ '.
$\rightarrow 2$ definitions of height:
gl. The Well height

Def. Let $\alpha \in \overline{\mathbb{Q}}^{*}$ and let $p_{\alpha}(x)=a\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{d}\right) \in \mathbb{Z}[x]$ Be its minimal polynomial (with coprime coefficients).
The (absolute logarithmic) Well height of α is the number

$$
h(\alpha)=\frac{1}{d} \cdot \log \left(|a| \prod_{i=1}^{d} \max \left(1,\left|\alpha_{i}\right|\right)\right)
$$

\rightarrow Measure of 'arithmetic complexity' of a number:

- If $\alpha=p / q \in \mathbb{Q}^{*} \Rightarrow h(\alpha)=\log (\max (|p|,|q|))$

So $h(2021 / 2020)=\log (2021)$ while $h(1)=0$

- For d fixed: if $h(\alpha)$ ' $B i G$ ' \Leftrightarrow max coefficient of $p_{\alpha}(x)$ is ' $B i G$ '.
$\rightarrow 2$ definitions of height:
- above one, with 'Mahler measure' (usefull for computations)
gl. The Well height

Def. Let $\alpha \in \overline{\mathbb{Q}}^{*}$ and let $p_{\alpha}(x)=a\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{d}\right) \in \mathbb{Z}[x]$ Be its minimal polynomial (with coprime coefficients).
The (absolute logarithmic) Well height of α is the number

$$
h(\alpha)=\frac{1}{d} \cdot \log \left(|a| \prod_{i=1}^{d} \max \left(1,\left|\alpha_{i}\right|\right)\right)
$$

\rightarrow Measure of 'arithmetic complexity' of a number:

- If $\alpha=p / q \in \mathbb{Q}^{*} \Rightarrow h(\alpha)=\log (\max (|p|,|q|))$

So $h(2021 / 2020)=\log (2021)$ while $h(1)=0$

- For d fixed: if $h(\alpha)$ ' $B i G$ ' \Leftrightarrow max coefficient of $p_{\alpha}(x)$ is ' $B i G$ '.
$\rightarrow 2$ definitions of height:
- above one, with 'Mahler measure' (usefull for computations)
- height=sum of local contributions (usefull for proving statements).
§l.I The Well height

Def. Let $\alpha \in \overline{\mathbb{Q}}^{*}$ and let $p_{\alpha}(x)=a\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{d}\right) \in \mathbb{Z}[x]$ Be its minimal polynomial (with coprime coefficients).
The (absolute logarithmic) Well height of α is the number

$$
h(\alpha)=\frac{1}{d} \cdot \log \left(|a| \prod_{i=1}^{d} \max \left(1,\left|\alpha_{i}\right|\right)\right)
$$

Properties:
§l.I The Well height

Def. Let $\alpha \in \overline{\mathbb{Q}}^{*}$ and let $p_{\alpha}(x)=a\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{d}\right) \in \mathbb{Z}[x]$ Be its minimal polynomial (with coprime coefficients).
The (absolute logarithmic) Well height of α is the number

$$
h(\alpha)=\frac{1}{d} \cdot \log \left(|a| \prod_{i=1}^{d} \max \left(1,\left|\alpha_{i}\right|\right)\right)
$$

Properties:

- $h(\alpha) \geq 0$ for all α;
§l.I The Well height
Def. Let $\alpha \in \overline{\mathbb{Q}}^{*}$ and let $p_{\alpha}(x)=a\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{d}\right) \in \mathbb{Z}[x]$ Be its minimal polynomial (with coprime coefficients).
The (absolute logarithmic) Well height of α is the number

$$
h(\alpha)=\frac{1}{d} \cdot \log \left(|a| \prod_{i=1}^{d} \max \left(1,\left|\alpha_{i}\right|\right)\right)
$$

Properties:

- $h(\alpha) \geq 0$ for all α;
- $h\left(\alpha^{m}\right)=|m| h(\alpha)$ for all $m \in \mathbb{Z}$;

§.l. The Weil height

Def. Let $\alpha \in \overline{\mathbb{Q}}^{*}$ and let $p_{\alpha}(x)=a\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{d}\right) \in \mathbb{Z}[x]$ Be its minimal polynomial (with coprime coefficients).
The (absolute logarithmic) Weil height of α is the number

$$
h(\alpha)=\frac{1}{d} \cdot \log \left(|a| \prod_{i=1}^{d} \max \left(1,\left|\alpha_{i}\right|\right)\right) .
$$

Properties:

- $h(\alpha) \geq 0$ for all α;
- $h\left(\alpha^{m}\right)=|m| h(\alpha)$ for all $m \in \mathbb{Z}$;
- $h(\sigma(\alpha))=h(\alpha)$ for all $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$;
§l.I The Well height

Def. Let $\alpha \in \overline{\mathbb{Q}}^{*}$ and let $p_{\alpha}(x)=a\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{d}\right) \in \mathbb{Z}[x]$ Be its minimal polynomial (with coprime coefficients).
The (absolute logarithmic) Well height of α is the number

$$
h(\alpha)=\frac{1}{d} \cdot \log \left(|a| \prod_{i=1}^{d} \max \left(1,\left|\alpha_{i}\right|\right)\right)
$$

Properties:

- $h(\alpha) \geq 0$ for all α;
- $h\left(\alpha^{m}\right)=|m| h(\alpha)$ for all $m \in \mathbb{Z}$;
- $h(\sigma(\alpha))=h(\alpha)$ for all $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$;
- Kronecker's theorem: $h(\alpha)=0 \Leftrightarrow \alpha=0$ or α is a root of unity.
§l.I The Well height

Def. Let $\alpha \in \overline{\mathbb{Q}}^{*}$ and let $p_{\alpha}(x)=a\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{d}\right) \in \mathbb{Z}[x]$ Be its minimal polynomial (with coprime coefficients).
The (absolute logarithmic) Well height of α is the number

$$
h(\alpha)=\frac{1}{d} \cdot \log \left(|a| \prod_{i=1}^{d} \max \left(1,\left|\alpha_{i}\right|\right)\right)
$$

Properties:

- $h(\alpha) \geq 0$ for all α;
- $h\left(\alpha^{m}\right)=|m| h(\alpha)$ for all $m \in \mathbb{Z}$;
- $h(\sigma(\alpha))=h(\alpha)$ for all $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$;
- Kronecker's theorem: $h(\alpha)=0 \Leftrightarrow \alpha=0$ or α is a root of unity.

Q: What about points of non-zero small height?
\$1.2. Small height

Northcott's theorem (or, why the height is so usefull):
\$1.2. Small height

Northcott's theorem (or, why the height is so usefull): $\#\{\alpha \in \overline{\mathbb{Q}} \mid h(\alpha) \leq B,[\mathbb{Q}(\alpha): \mathbb{Q}] \leq d\}<\infty$ for all $B \geq 0, d \geq 1$.
§l. 2 Small height

Northcott's theorem (or, why the height is so usefull): $\#\{\alpha \in \overline{\mathbb{Q}} \mid h(\alpha) \leq B,[\mathbb{Q}(\alpha): \mathbb{Q}] \leq d\}<\infty$ for all $B \geq 0, d \geq 1$.

- Effective: you can explicitly find the elements
§l. 2 Small height

Northcott's theorem (or, why the height is so usefull): $\#\{\alpha \in \overline{\mathbb{Q}} \mid h(\alpha) \leq B,[\mathbb{Q}(\alpha): \mathbb{Q}] \leq d\}<\infty$ for all $B \geq 0, d \geq 1$.

- Effective: you can explicitly find the elements
- Diophantine geometry: Bound height + Bound degree
\Rightarrow finiteness (e.G. rational points on high genus curves).
gl. 2 . Small height

Northcott's theorem (or, why the height is so usefull): $\#\{\alpha \in \overline{\mathbb{Q}} \mid h(\alpha) \leq B,[\mathbb{Q}(\alpha): \mathbb{Q}] \leq d\}<\infty$ for all $B \geq 0, d \geq 1$.

- Effective: you can explicitly find the elements
- Diophantine geometry: Bound height + Bound degree \Rightarrow finiteness (ecg. rational points on high genus curves).

Lehmer's conjecture (or, small height \Rightarrow BiG degree):
gl. 2 . Small height

Northcott's theorem (or, why the height is so usefull): $\#\{\alpha \in \overline{\mathbb{Q}} \mid h(\alpha) \leq B,[\mathbb{Q}(\alpha): \mathbb{Q}] \leq d\}<\infty$ for all $B \geq 0, d \geq 1$.

- Effective: you can explicitly find the elements
- Diophantine geometry: Bound height + Bound degree
\Rightarrow finiteness (eGG. rational points on high Genus curves).
Lehmer's conjecture (or, small height \Rightarrow BiG degree): there exists a constant $c>0$ such that for all $\alpha \in \overline{\mathbb{Q}}$ then $h(\alpha) \cdot[\mathbb{Q}(\alpha): \mathbb{Q}]$ is either O or BiGger than c.
§l. 2 Small height

Northcott's theorem (or, why the height is so usefull): $\#\{\alpha \in \overline{\mathbb{Q}} \mid h(\alpha) \leq B,[\mathbb{Q}(\alpha): \mathbb{Q}] \leq d\}<\infty$ for all $B \geq 0, d \geq 1$.

- Effective: you can explicitly find the elements
- Diophantine geometry: Bound height + Bound degree
\Rightarrow finiteness (e.G. rational points on high genus curves).
Lehmer's conjecture (or, small height \Rightarrow BiG degree): there exists a constant $c>0$ such that for all $\alpha \in \overline{\mathbb{Q}}$ then $h(\alpha) \cdot[\mathbb{Q}(\alpha): \mathbb{Q}]$ is either O or BiGger than c.
- Open (known for algebraic numbers which are not algebraic integers, roots of non-reciprocal polynomials, Generators of Galois extensions,. . Best unconditional result By Dobrowolski)
§l. 2 Small height

Northcott's theorem (or, why the height is so usefull): $\#\{\alpha \in \overline{\mathbb{Q}} \mid h(\alpha) \leq B,[\mathbb{Q}(\alpha): \mathbb{Q}] \leq d\}<\infty$ for all $B \geq 0, d \geq 1$.

- Effective: you can explicitly find the elements
- Diophantine geometry: Bound height + Bound degree
\Rightarrow finiteness (e.G. rational points on high genus curves).
Lehmer's conjecture (or, small height \Rightarrow BiG degree): there exists a constant $c>0$ such that for all $\alpha \in \overline{\mathbb{Q}}$ then $h(\alpha) \cdot[\mathbb{Q}(\alpha): \mathbb{Q}]$ is either O or BiGGer than c.
- Open (known for algebraic numbers which are not algebraic integers, roots of non-reciprocal polynomials, Generators of Galois extensions,. . Best unconditional result By Dobrowolski) Q. Are there sets of algebraic numbers where one can 'do Better'?
§l. 2 Small height

Northcott's theorem (or, why the height is so usefull): $\#\{\alpha \in \overline{\mathbb{Q}} \mid h(\alpha) \leq B,[\mathbb{Q}(\alpha): \mathbb{Q}] \leq d\}<\infty$ for all $B \geq 0, d \geq 1$.

- Effective: you can explicitly find the elements
- Diophantine geometry: Bound height + Bound degree
\Rightarrow finiteness (e.G. rational points on high genus curves).
Lehmer's conjecture (or, small height \Rightarrow BiG degree): there exists a constant $c>0$ such that for all $\alpha \in \overline{\mathbb{Q}}$ then $h(\alpha) \cdot[\mathbb{Q}(\alpha): \mathbb{Q}]$ is either O or BigGer than c.
- Open (known for algebraic numbers which are not algebraic integers, roots of non-reciprocal polynomials, Generators of Galois extensions,. . Best unconditional result By Dobrowolski) Q. Are there sets of algebraic numbers where one can 'do Better'? That is, get the same statements forgetting the degrees?
\$13. $\operatorname{Properties~(N)~and~(B)~}$
\$13. Properties (N) and (B)

Def. (Bombieri and Zannier, 2OOl) A subfield $L \subseteq \overline{\mathbb{Q}}$ has: - the Northcott property (N) if $\#\{\alpha \in L \mid h(\alpha) \leq B\}<\infty$ for all $B \geq 0$.
§l.3. $\operatorname{Properties~(N)~and~(B)~}$

Def. (Bombieri and Zannier, 2001) A subfield $L \subseteq \overline{\mathbb{Q}}$ has:

- the Northcott property (N) if $\#\{\alpha \in L \mid h(\alpha) \leq B\}<\infty$ for all $B \geq 0$.
- the BOGOMOlOV property (B) if $\exists c=c(L)>0$ such that, for all $\alpha \in L$, either $h(\alpha)=0$ or $h(\alpha) \geq c$
\$13. Properties (N) and (B)

Def. (Bombieri and Zannier, ZOOl) A subfield $L \subseteq \overline{\mathbb{Q}}$ has:

- the Northcott property (N) if $\#\{\alpha \in L \mid h(\alpha) \leq B\}<\infty$ for all $B \geq 0$.
- the Bogomolov property (B) if $\exists c=c(L)>0$ such that, for all $\alpha \in L$, either $h(\alpha)=0$ or $h(\alpha) \geq c$
Remarks:
- Property (B) named after Bogomolov conjecture (on points of small height on curves).
\$13. Properties (N) and (B)

Def. (Bombieri and Zannier, ZOOl) A subfield $L \subseteq \overline{\mathbb{Q}}$ has:

- the Northcott property (N) if $\#\{\alpha \in L \mid h(\alpha) \leq B\}<\infty$ for all $B \geq 0$.
- the Bogomolov property (B) if $\exists c=c(L)>0$ such that, for all $\alpha \in L$, either $h(\alpha)=0$ or $h(\alpha) \geq c$
Remarks:
- Property (B) named after Bogomolov conjecture (on points of small height on curves).
- $(N) \Rightarrow(B)$
\$13. $\operatorname{Properties~(N)~and~(B)~}$

Def. (Bombieri and Zannier, ZOOl) A subfield $L \subseteq \overline{\mathbb{Q}}$ has:

- the Northcott property (N) if $\#\{\alpha \in L \mid h(\alpha) \leq B\}<\infty$ for all $B \geq 0$.
- the Bogomolov property (B) if $\exists c=c(L)>0$ such that, for all $\alpha \in L$, either $h(\alpha)=0$ or $h(\alpha) \geq c$
Remarks:
- Property (B) named after Bogomolov conjecture (on points of small height on curves).
- $(N) \Rightarrow(B)$

Pf. If $\{\alpha \in L \mid 0<h(\alpha) \leq 2\}=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ then, for $\alpha \in L$, $h(\alpha)=0$ or $h(\alpha) \geq c=\min h\left(\alpha_{i}\right)$
\$13. $\operatorname{Properties~(N)~and~(B)~}$

Def. (Bombieri and Zannier, ZOOl) A subfield $L \subseteq \overline{\mathbb{Q}}$ has:

- the Northcott property (N) if $\#\{\alpha \in L \mid h(\alpha) \leq B\}<\infty$ for all $B \geq 0$.
- the Bogomolov property (B) if $\exists c=c(L)>0$ such that, for all $\alpha \in L$, either $h(\alpha)=0$ or $h(\alpha) \geq c$
Remarks:
- Property (B) named after Bogomolov conjecture (on points of small height on curves).
- $(N) \Rightarrow(B)$

Pf. If $\{\alpha \in L \mid 0<h(\alpha) \leq 2\}=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ then, for $\alpha \in L$, $h(\alpha)=0$ or $h(\alpha) \geq c=\min h\left(\alpha_{i}\right)$

- $(B) \nRightarrow(N)$

Ex. If $\alpha \in L=\mathbb{Q}^{a b}$ then $h(\alpha)=0$ or $h(\alpha) \geq \log (5) / 12$
(Amoroso-Dvornicich, 200O).
\$13. $\operatorname{Properties~(N)~and~(B)~}$

Def. (Bombieri and Zannier, 2OOl) A subfield $L \subseteq \overline{\mathbb{Q}}$ has:

- the Northcott property (N) if $\#\{\alpha \in L \mid h(\alpha) \leq B\}<\infty$ for all $B \geq 0$.
- the BoGOMOlov property (B) if $\exists c=c(L)>0$ such that, for all $\alpha \in L$, either $h(\alpha)=0$ or $h(\alpha) \geq c$
Remarks:
- Property (B) named after Bogomolov conjecture (on points of small height on curves).
- $(N) \Rightarrow(B)$

Pf. If $\{\alpha \in L \mid 0<h(\alpha) \leq 2\}=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ then, for $\alpha \in L$, $h(\alpha)=0$ or $h(\alpha) \geq c=\min h\left(\alpha_{i}\right)$

- $(B) \nRightarrow(N)$

Ex. If $\alpha \in L=\mathbb{Q}^{a b}$ then $h(\alpha)=0$ or $h(\alpha) \geq \log (5) / 12$
(Amoroso-Dvornicich, 20OO). So $\mathbb{Q}^{a b}$ has (B), But not (N) (contains infinitely many roots of 1).
\$13. Properties (N) and (B)

Def. (Bombieri and Zannier, 2OOI) A subfield $L \subseteq \overline{\mathbb{Q}}$ has:

- the Northcott property (N) if $\#\{\alpha \in L \mid h(\alpha) \leq B\}<\infty$ for all $B \geq 0$.
- the Bogomolov property (B) if $\exists c=c(L)>0$ such that, for all $\alpha \in L$, either $h(\alpha)=0$ or $h(\alpha) \geq c$
Remarks:

\$13. $\operatorname{Properties~(N)~and~(B)~}$

Def. (Bombieri and Zannier, 2OOI) A subfield $L \subseteq \overline{\mathbb{Q}}$ has:

- the Northcott property (N) if $\#\{\alpha \in L \mid h(\alpha) \leq B\}<\infty$ for all $B \geq 0$.
- the Bogomolov property (B) if $\exists c=c(L)>0$ such that, for all $\alpha \in L$, either $h(\alpha)=0$ or $h(\alpha) \geq c$
Remarks:

have Both (N) and (B)
(By Northcott's theorem)
has neither (B) nor (N) (as $h\left(2^{1 / n}\right)=\log (2) / n \rightarrow 0$)

Problem: Given a infinite extension L / \mathbb{Q}, decide whether it has (N) or (B). Hard in General!
§1.4. How much is known on property (B) ?

Many examples of fields with (B):
§1.4. How much is known on property (B) ?

Many examples of fields with (B):

1) Fields OBtained 'adding torsion'
§1.4. How much is known on property (B)?

Many examples of fields with (B):

1) Fields Obtained 'adding torsion'

- $\mathbb{Q}^{a b}=\mathbb{Q}\left(\mathbb{G}_{m}^{\text {tor }}\right)$ =field OBtained adding to \mathbb{Q} all torsion points of the torus i.e. all roots of unity (Amoroso-Dvornicich, 2000).
§l.4. How much is known on property (B) ?

Many examples of fields with (B):

1) Fields OBtained 'adding torsion'

- $\mathbb{Q}^{\text {ab }}=\mathbb{Q}\left(\mathbb{G}_{m}^{\text {tor }}\right)=$ field OBtained adding to \mathbb{Q} all torsion points of the torus i.e. all roots of unity (Amoroso-Dvornicich, 2000). More Generally $K^{a b}=$ maximal abelian extension of a number field K (Amoroso-Zannier 2000, 2010)
§l.4. How much is known on property (B) ?

Many examples of fields with (B):

1) Fields OBtained 'adding torsion'

- $\mathbb{Q}^{\text {ab }}=\mathbb{Q}\left(\mathbb{G}_{m}^{\text {tor }}\right)=$ field OBtained adding to \mathbb{Q} all torsion points of the torus i.e. all roots of unity (Amoroso-Dvornicich, 2000). More Generally $K^{a b}=$ maximal abelian extension of a number field K (Amoroso-Zannier 2000, 2010)
- $\mathbb{Q}\left(E_{\text {tor }}\right)=$ field OBtained adding to \mathbb{Q} all torsion points of an elliptic curve E / \mathbb{Q} (HabegGer, 2Oll)
§l.4. How much is known on property (B) ?

Many examples of fields with (B):

1) Fields OBtained 'adding torsion'

- $\mathbb{Q}^{a b}=\mathbb{Q}\left(\mathbb{G}_{m}^{\text {tor }}\right)=$ field OBtained adding to \mathbb{Q} all torsion points of the torus i.e. all roots of unity (Amoroso-Dvornicich, 2000). More Generally $K^{a b}=$ maximal abelian extension of a number field K (Amoroso-Zannier 2000, 2010)
- $\mathbb{Q}\left(E_{\text {tor }}\right)=$ field OBtained adding to \mathbb{Q} all torsion points of an elliptic curve E / \mathbb{Q} (HabegGer, 2Oll)

Idea (for $\mathbb{Q}^{a b}$): $\alpha \in K=\mathbb{Q}\left(\zeta_{n}\right)$

- write $h(\alpha)=$ sum local contributions
§l.4. How much is known on property (B) ?

Many examples of fields with (B):

1) Fields OBtained 'adding torsion'

- $\mathbb{Q}^{a b}=\mathbb{Q}\left(\mathbb{G}_{m}^{\text {tor }}\right)=$ field OBtained adding to \mathbb{Q} all torsion points of the torus i.e. all roots of unity (Amoroso-Dvornicich, 2000). More Generally $K^{a b}=$ maximal abelian extension of a number field K (Amoroso-Zannier 2000, 2010)
- $\mathbb{Q}\left(E_{\text {tor }}\right)=$ field OBtained adding to \mathbb{Q} all torsion points of an elliptic curve E / \mathbb{Q} (HabegGer, 2Oll)

Idea (for $\mathbb{Q}^{a b}$): $\alpha \in K=\mathbb{Q}\left(\zeta_{n}\right)$

- write $h(\alpha)=$ sum local contributions
- fix auxiliary prime p and use Frobenius (if $p \nmid n$)/variant of Frobenius at p (if $p \mid n$) \Rightarrow each local contribution \geq Bound only depending on p (and not on n)
§1.4. How much is known on property (B) ?

Many examples of fields with (B):

1) Fields OBtained 'adding torsion'

Examples: $\mathbb{Q}^{a b}, K^{a b}, \mathbb{Q}\left(E_{\text {tor }}\right)$
2) Fields with local conditions
§1.4. How much is known on property (B) ?

Many examples of fields with (B):

1) Fields OBtained 'adding torsion'

Examples: $\mathbb{Q}^{a b}, K^{a b}, \mathbb{Q}\left(E_{\text {tor }}\right)$
2) Fields with local conditions

- $\mathbb{Q}^{\text {tr }}=$ totally real numbers (Schinzel 1973)
§l.4. How much is known on property (B) ?

Many examples of fields with (B):

1) Fields OBtained 'adding torsion'

Examples: $\mathbb{Q}^{a b}, K^{a b}, \mathbb{Q}\left(E_{\text {tor }}\right)$
2) Fields with local conditions

- $\mathbb{Q}^{\text {tr }}=$ totally real numbers (Schinzel 1973)
- L / \mathbb{Q} Galois with Bounded local degrees at some prime p i.e. that can Be embedded into a finite extension of \mathbb{Q}_{p}
(Bombieri-Zannier, 2OOI)
§l.4. How much is known on property (B) ?

Many examples of fields with (B):

1) Fields OBtained 'adding torsion'

Examples: $\mathbb{Q}^{a b}, K^{a b}, \mathbb{Q}\left(E_{\text {tor }}\right)$
2) Fields with local conditions

- $\mathbb{Q}^{\text {tr }}=$ totally real numbers (Schinzel 1973)
- L / \mathbb{Q} Galois with Bounded local degrees at some prime p i.e. that can Be embedded into a finite extension of \mathbb{Q}_{p}
(Bombieri-Zannier, 2OOI)
Examples:
\rightarrow L number field
§l.4. How much is known on property (B) ?

Many examples of fields with (B):

1) Fields OBtained 'adding torsion'

Examples: $\mathbb{Q}^{a b}, K^{a b}, \mathbb{Q}\left(E_{\text {tor }}\right)$
2) Fields with local conditions

- $\mathbb{Q}^{\text {tr }}=$ totally real numbers (Schinzel 1973)
- L / \mathbb{Q} Galois with Bounded local degrees at some prime p i.e. that can Be embedded into a finite extension of \mathbb{Q}_{p}
(Bombieri-Zannier, 2OOI)
Examples:
$\rightarrow L$ number field
$\rightarrow L=\mathbb{Q}^{t p}$ totally p-adic numbers
§l.4. How much is known on property (B) ?

Many examples of fields with (B):
I) Fields OBtained 'adding torsion'

Examples: $\mathbb{Q}^{a b}, K^{a b}, \mathbb{Q}\left(E_{\text {tor }}\right)$
2) Fields with local conditions

- $\mathbb{Q}^{\text {tr }}=$ totally real numbers (Schinzel 1973)
- L / \mathbb{Q} Galois with Bounded local degrees at some prime p i.e. that can Be embedded into a finite extension of \mathbb{Q}_{p}
(Bombieri-Zannier, 2OOI)
Examples:
$\rightarrow L$ number field
$\rightarrow L=\mathbb{Q}^{t p}$ totally p-adic numbers
$\rightarrow L=K^{(d)}$ compositum of all degree $\leq d$ extensions of a n.f. K
§l.4. How much is known on property (B) ?

Many examples of fields with (B):

1) Fields OBtained 'adding torsion'

Examples: $\mathbb{Q}^{a b}, K^{a b}, \mathbb{Q}\left(E_{\text {tor }}\right)$
2) Fields with local conditions

- $\mathbb{Q}^{\text {tr }}=$ totally real numbers (Schinzel 1973)
- L / \mathbb{Q} Galois with Bounded local degrees at some prime p i.e. that can Be embedded into a finite extension of \mathbb{Q}_{p}
(Bombieri-Zannier, 2OOI)
Examples:
$\rightarrow L$ number field
$\rightarrow L=\mathbb{Q}^{\text {tp }}$ totally p-adic numbers
$\rightarrow L=K^{(d)}$ compositum of all degree $\leq d$ extensions of a n.f. K E.G. $\mathbb{Q}^{(2)}=\mathbb{Q}(\sqrt{-1}, \sqrt{2}, \sqrt{3}, \ldots)$
§l.4. How much is known on property (B) ?

Many examples of fields with (B):

1) Fields OBtained 'adding torsion'

Examples: $\mathbb{Q}^{a b}, K^{a b}, \mathbb{Q}\left(E_{\text {tor }}\right)$
2) Fields with local conditions

- $\mathbb{Q}^{\text {tr }}=$ totally real numbers (Schinzel 1973)
- L / \mathbb{Q} Galois with Bounded local degrees at some prime p i.e. that can be embedded into a finite extension of \mathbb{Q}_{p}
(Bombieri-Zannier, 2OOI)
Examples:
$\rightarrow L$ number field
$\rightarrow L=\mathbb{Q}^{\text {tp }}$ totally p-adic numbers
$\rightarrow L=K^{(d)}$ compositum of all degree $\leq d$ extensions of a n.f. K E.G. $\mathbb{Q}^{(2)}=\mathbb{Q}(\sqrt{-1}, \sqrt{2}, \sqrt{3}, \ldots)$

Idea: use 'equidistribution'.
§l.4. How much is known on property (B) ?

Many examples of fields with (B):

1) Fields OBtained 'adding torsion'

Examples: $\mathbb{Q}^{a b}, K^{a b}, \mathbb{Q}\left(E_{\text {tor }}\right)$
2) Fields with local conditions

Examples: $\mathbb{Q}^{\text {tr }}$, Galois extensions with Bounded local deGrees
3) Generalization of (1) and (2)
(Amoroso, David and Zannier, 2014)
Rem. All the above examples do not satisfy property (N):

- $K^{a b}, \mathbb{Q}\left(E_{\text {tor }}\right)$ contain infinitely many roots of I
- $\mathbb{Q}^{t r}$ contains a sequence of elements with height
$\rightarrow 0.27328 \ldots$ (Smyth, 198O)
- $\mathbb{Q}^{\text {tp }: ~} \lim \inf _{\alpha \in \mathbb{Q}^{\text {tp }}} h(\alpha) \leq(\log p) /(p-1)$ (BomBieri, Zannier, 2001)
§l.5. How few is known on property (N)?

Essentially only 2 examples of fields with (N):
815. How few is known on property (N)?

Essentially only 2 examples of fields with (N):

1) Bombieri \& Zannier's criterion: $K_{a b}^{(d)}$
815. How few is known on property (N)?

Essentially only 2 examples of fields with (N):
I) Bombieri \rightleftharpoons Zannier's criterion: $K_{a b}^{(d)}$

Def. $K_{a b}^{(d)}=$ maximal subfield of $K^{(d)}$ which is abelian over $K n f$.

§1.5. How few is known on property (N)?

Essentially only 2 examples of fields with (N):

1) Bombieri \approx Zannier's criterion: $K_{a b}^{(d)}$

Def. $K_{a b}^{(d)}=$ maximal subfield of $K^{(d)}$ which is abelian over $K n$. Example: $\mathbb{Q}_{a b}^{(2)}=\mathbb{Q}^{(2)}=\mathbb{Q}(\sqrt{-1}, \sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots)$,

§1.5. How few is known on property (N)?

Essentially only 2 examples of fields with (N):

1) Bombieri \approx Zannier's criterion: $K_{a b}^{(d)}$

Def. $K_{a b}^{(d)}=$ maximal subfield of $K^{(d)}$ which is abelian over $K n . f$. Example: $\mathbb{Q}_{a b}^{(2)}=\mathbb{Q}^{(2)}=\mathbb{Q}(\sqrt{-1}, \sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots)$, But $\mathbb{Q}_{a b}^{(3)} \neq \mathbb{Q}^{(3)}$
§15. How few is known on property (N)?

Essentially only 2 examples of fields with (N):
I) Bombieri \& Zannier's criterion: $K_{a b}^{(d)}$

Def. $K_{a b}^{(d)}=$ maximal subfield of $K^{(d)}$ which is abelian over $K n . f$.
Example: $\mathbb{Q}_{a b}^{(2)}=\mathbb{Q}^{(2)}=\mathbb{Q}(\sqrt{-1}, \sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots)$, But $\mathbb{Q}_{a b}^{(3)} \neq \mathbb{Q}^{(3)}$
Idea: suppose $h(\alpha) \leq B$.
§15. How few is known on property (N)?

Essentially only 2 examples of fields with (N):
I) Bombieri \approx Zannier's criterion: $K_{a b}^{(d)}$

Def. $K_{a b}^{(d)}=$ maximal subfield of $K^{(d)}$ which is abelian over $K n . f$.
Example: $\mathbb{Q}_{a b}^{(2)}=\mathbb{Q}^{(2)}=\mathbb{Q}(\sqrt{-1}, \sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots)$, But $\mathbb{Q}_{a b}^{(3)} \neq \mathbb{Q}^{(3)}$
Idea: suppose $h(\alpha) \leq B$.

- By carefull study of ramification: if p ramifies in $K(\alpha)$

$$
\Rightarrow p \leq C(B)
$$

§1.5. How few is known on property (N)?

Essentially only 2 examples of fields with (N):
I) Bombieri \Leftarrow Zannier's criterion: $K_{a b}^{(d)}$

Def. $K_{a b}^{(d)}=$ maximal subfield of $K^{(d)}$ which is abelian over $K n . f$.
Example: $\mathbb{Q}_{a b}^{(2)}=\mathbb{Q}^{(2)}=\mathbb{Q}(\sqrt{-1}, \sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots)$, But $\mathbb{Q}_{a b}^{(3)} \neq \mathbb{Q}^{(3)}$
Idea: suppose $h(\alpha) \leq B$.

- By carefull study of ramification: if p ramifies in $K(\alpha)$
$\Rightarrow p \leq C(B)$
- Use that $K(\alpha)=$ compositum of cyclic extensions of degree $\leq d$! each with Bounded discriminant + Hermite theorem
§1.5. How few is known on property (N)?

Essentially only 2 examples of fields with (N):
I) Bombieri $\stackrel{\leftarrow}{T}$ Zannier's criterion: $K_{a b}^{(d)}$

Def. $K_{a b}^{(d)}=$ maximal subfield of $K^{(d)}$ which is abelian over $K n . f$.
Example: $\mathbb{Q}_{a b}^{(2)}=\mathbb{Q}^{(2)}=\mathbb{Q}(\sqrt{-1}, \sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots)$, But $\mathbb{Q}_{a b}^{(3)} \neq \mathbb{Q}^{(3)}$
Idea: suppose $h(\alpha) \leq B$.

- By carefull study of ramification: if p ramifies in $K(\alpha)$
$\Rightarrow p \leq C(B)$
- Use that $K(\alpha)=$ compositum of cyclic extensions of degree $\leq d!$ each with Bounded discriminant + Hermite theorem \Rightarrow $[K(\alpha): K] \leq D(B) \Rightarrow$ finitely many α By Northcott

815. How few is known on property (N)?

Essentially only 2 examples of fields with (N):

1) BOMBieri $\stackrel{\leftarrow}{\mathrm{T}}$ Zannier's criterion: $K_{a b}^{(d)}$
2) Widmer's criterion (discriminants Growing 'fast')
§1.5. How few is known on property (N)?

Essentially only 2 examples of fields with (N):
I) Bombieri \approx Zannier's criterion: $K_{a b}^{(d)}$
2) Widmer's criterion (discriminants Growing 'fast')

Theorem(Widmer, 2O13): If $K=K_{0} \subseteq K_{1} \subseteq K_{2} \subseteq \ldots$ is a tower of number fields such that

$$
\inf _{K_{i-1} \subseteq M \subseteq K_{i}} N_{K_{i-1} / \mathbb{Q}}\left(\operatorname{disc}\left(M / K_{i-1}\right)\right)^{\frac{1}{\left[M: K_{0} I M: K_{i-1}\right]}} \rightarrow \infty
$$

then $L=\bigcup_{i} K_{i}$ has property (N).
§1.5. How few is known on property (N)?

Essentially only 2 examples of fields with (N):
I) Bombieri \approx Zannier's criterion: $K_{a b}^{(d)}$
2) Widmer's criterion (discriminants Growing 'fast')

Theorem(Widmer, 2O13): If $K=K_{0} \subseteq K_{1} \subseteq K_{2} \subseteq \ldots$ is a tower of number fields such that

$$
\inf _{K_{i-1} \subseteq M \subseteq K_{i}} N_{K_{i-1} / \mathbb{Q}}\left(\operatorname{disc}\left(M / K_{i-1}\right)\right)^{\frac{1}{\left[M: K_{0} \mid 1 / M: K_{i-1}\right]}} \rightarrow \infty
$$

then $L=U_{i} K_{i}$ has property (N).

- Roughly: if discriminants grow fast at each step in the tower $\Rightarrow L$ has (N).
§1.5. How few is known on property (N)?

Essentially only 2 examples of fields with (N):
I) Bombieri \approx Zannier's criterion: $K_{a b}^{(d)}$
2) Widmer's criterion (discriminants Growing 'fast')

Theorem(Widmer, 2O13): If $K=K_{0} \subseteq K_{1} \subseteq K_{2} \subseteq \ldots$ is a tower of number fields such that

$$
\inf _{K_{i-1} \subseteq M \subseteq K_{i}} N_{K_{i-1} / \mathbb{Q}}\left(\operatorname{disc}\left(M / K_{i-1}\right)\right)^{\frac{1}{\left[M: K_{0} \| M: K_{i-1}\right]}} \rightarrow \infty
$$

then $L=\bigcup_{i} K_{i}$ has property (N).

- Roughly: if discriminants grow fast at each step in the tower $\Rightarrow L$ has (N).
Idea: use bound of Silverman for minimal height of Generators of number fields in terms of certain discriminants
§15. How few is known on property (N)?

Essentially only 2 examples of fields with (N):
I) Bombieri \approx Zannier's criterion: $K_{a b}^{(d)}$
2) Widmer's criterion (discriminants Growing 'fast')

Question: Other examples of fields with property (N)?
§2 Results

§2.1. A 'new' criterion for (N)

§21. A new criterion for (N)?

Recall: L / \mathbb{Q} Galois with Bounded local degrees $\Rightarrow L$ has (B).
§21. A new criterion for (N) ?

Recall: L / \mathbb{Q} Galois with Bounded local degrees $\Rightarrow L$ has (B).
More precisely:
Theorem (Bombieri-Zannier, 2OOI). L/Q Galois extension, $S(L) \neq \emptyset$ set of primes at which L has Bounded local degrees.
§21. A new criterion for (N) ?

Recall: L / \mathbb{Q} Galois with Bounded local degrees $\Rightarrow L$ has (B).
More precisely:
Theorem (Bombieri-Zannier, 2OOI). L/Q Galois extension, $S(L) \neq \emptyset$ set of primes at which L has Bounded local degrees. Then

$$
\liminf _{\alpha \in L} h(\alpha) \geq \beta(L)=\frac{1}{2} \sum_{p \in S(L)} \frac{\log p}{e_{p}\left(p^{f_{p}}+1\right)}
$$

(e_{p}, f_{p} ramification index and inertial degree of L at p).
§21. A new criterion for (N)?

Recall: L / \mathbb{Q} Galois with Bounded local deGrees $\Rightarrow L$ has (B).
More precisely:
Theorem (Bombieri-Zannier, 2OOl). L / \mathbb{Q} Galois extension, $S(L) \neq \emptyset$ set of primes at which L has Bounded local degrees. Then

$$
\liminf _{\alpha \in L} h(\alpha) \geq \beta(L)=\frac{1}{2} \sum_{p \in S(L)} \frac{\log p}{e_{p}\left(p^{f_{p}}+1\right)}
$$

(e_{p}, f_{p} ramification index and inertial degree of L at p).

- If $\beta(L)=\infty \Rightarrow L$ has also (N) (Bolzano-Weierstrass)
§21. A new criterion for (N)?

Recall: L / \mathbb{Q} Galois with Bounded local deGrees $\Rightarrow L$ has (B).
More precisely:
Theorem (Bombieri-Zannier, 2OOl). L / \mathbb{Q} Galois extension, $S(L) \neq \emptyset$ set of primes at which L has Bounded local degrees. Then

$$
\liminf _{\alpha \in L} h(\alpha) \geq \beta(L)=\frac{1}{2} \sum_{p \in S(L)} \frac{\log p}{e_{p}\left(p^{f_{p}}+1\right)}
$$

(e_{p}, f_{p} ramification index and inertial degree of L at p).

- If $\beta(L)=\infty \Rightarrow L$ has also (N) (Bolzano-Weierstrass)
- L number field $\Rightarrow \beta(L)=\infty$ (Chebotarev density + PNT)
§21. A new criterion for (N)?

Recall: L / \mathbb{Q} Galois with Bounded local degrees $\Rightarrow L$ has (B).
More precisely:
Theorem (Bombieri-Zannier, 2OOI). L/Q Galois extension, $S(L) \neq \emptyset$ set of primes at which L has Bounded local deGrees.
Then

$$
\liminf _{\alpha \in L} h(\alpha) \geq \beta(L)=\frac{1}{2} \sum_{p \in S(L)} \frac{\log p}{e_{p}\left(p^{f_{p}}+1\right)}
$$

(e_{p}, f_{p} ramification index and inertial degree of L at p).

- If $\beta(L)=\infty \Rightarrow L$ has also (N) (Bolzano-Weierstrass)
- L number field $\Rightarrow \beta(L)=\infty$ (Chebotarev density + PNT)
Q. \exists infinite extensions L / \mathbb{Q} such that $\beta(L)=\infty$?

If so, is the divergence of $\beta(L)$ really a new criterion for property (N) ?
§21. A new criterion for (N)

Theorem (C.-Fehm, 2020).
(1) The divergence of $\beta(L)$ is a new criterion for (N) :
§21. A new criterion for (N)

Theorem (C.-Fehm, 2020).
(1) The divergence of $\beta(L)$ is a new criterion for (N): \exists infinite Galois extensions L / \mathbb{Q} such that:
§21. A new criterion for (N)

Theorem (C.-Fehm, 2020).
(1) The divergence of $\beta(L)$ is a new criterion for (N): \exists infinite Galois extensions L / \mathbb{Q} such that:

- $\beta(L)=\infty$;
§21. A new criterion for (N)

Theorem (C.-Fehm, 2020).
(I) The divergence of $\beta(L)$ is a new criterion for (N) : \exists infinite Galois extensions L / \mathbb{Q} such that:

- $\beta(L)=\infty$;
- L does not satify Bombieri $\stackrel{\approx}{*}$ Zannier's criterion (ie. L is not of the form $\mathbb{Q}_{a b}^{(d)}$)
§21. A new criterion for (N)

Theorem (C.-Fehm, 2020).
(I) The divergence of $\beta(L)$ is a new criterion for (N): \exists infinite Galois extensions L / \mathbb{Q} such that:

- $\beta(L)=\infty$;
- L does not satify Bombieri $\underset{\text { F }}{ }$ Cannier's criterion (ie. L is not of the form $\mathbb{Q}_{a b}^{(d)}$)
- L does not satify Widmer's criterion (on fast Growth of discriminants in towers).
§21. A new criterion for (N)

Theorem (C.-Fehm, 2020).
(I) The divergence of $\beta(L)$ is a new criterion for (N): \exists infinite Galois extensions L / \mathbb{Q} such that:

- $\beta(L)=\infty$;
- L does not satify Bombieri $\stackrel{\sim}{\boldsymbol{T}}$ Zannier's criterion (ie. L is not of the form $\mathbb{Q}_{a b}^{(d)}$)
- L does not satify Widmer's criterion (on fast Growth of discriminants in towers).
(2) (Some freedom in chosing the Galois Group)
§21. A new criterion for (N)

Theorem (C.-Fehm, 2020).
(I) The divergence of $\beta(L)$ is a new criterion for (N) : \exists infinite Galois extensions L / \mathbb{Q} such that:

- $\beta(L)=\infty$;
- L does not satify Bombieri $\stackrel{\sim}{*}$ Zannier's criterion (ie. L is not of the form $\mathbb{Q}_{a b}^{(d)}$)
- L does not satify Widmer's criterion (on fast Growth of discriminants in towers).
(2) (Some freedom in chosing the Galois Group)

Given any infinite product $G=\prod_{i=1}^{\infty} G_{i}$ of finite solvable groups G_{i},
§21. A new criterion for (N)

Theorem (C.-Fehm, 2020).
(I) The divergence of $\beta(L)$ is a new criterion for (N) : \exists infinite Galois extensions L / \mathbb{Q} such that:

- $\beta(L)=\infty$;
- L does not satify Bombieri $\underset{\text { F }}{ }$ Cannier's criterion (ie. L is not of the form $\mathbb{Q}_{a b}^{(d)}$)
- L does not satify Widmer's criterion (on fast Growth of discriminants in towers).
(2) (Some freedom in chosing the Galois Group)

Given any infinite product $G=\prod_{i=1}^{\infty} G_{i}$ of finite solvable Groups $G_{i}, \exists L / \mathbb{Q}$ Galois such that $\operatorname{Gal}(L / \mathbb{Q})=G$ and $\beta(L)=\infty$.
\rightarrow Ideas in the proof of (1) :
If $\beta(L)=\frac{1}{2} \sum_{p \in S(L)} \log p /\left(e_{p}\left(p^{f_{p}}+1\right)\right)$ want to prove:
(i) if $\beta(L)=\infty \Rightarrow L$ not of the form $\mathbb{Q}_{a b}^{(d)}$
\rightarrow Ideas in the proof of (1) :
If $\beta(L)=\frac{1}{2} \sum_{p \in S(L)} \log p /\left(e_{p}\left(p^{f_{p}}+1\right)\right)$ want to prove:
(i) if $\beta(L)=\infty \Rightarrow L$ not of the form $\mathbb{Q}_{a b}^{(d)}$

- Proof (easy):
\rightarrow Ideas in the proof of (1) :
If $\beta(L)=\frac{1}{2} \sum_{p \in S(L)} \log p /\left(e_{p}\left(p^{f_{p}}+1\right)\right)$ want to prove:
(i) if $\beta(L)=\infty \Rightarrow L$ not of the form $\mathbb{Q}_{a b}^{(d)}$
- Proof (easy):

Remark:

$$
\text { - If } M \subseteq L \Rightarrow \beta(L) \leq \beta(M)
$$

\rightarrow Ideas in the proof of (1) :
If $\beta(L)=\frac{1}{2} \sum_{p \in S(L)} \log p /\left(e_{p}\left(p^{f_{p}}+1\right)\right)$ want to prove:
(i) if $\beta(L)=\infty \Rightarrow L$ not of the form $\mathbb{Q}_{a b}^{(d)}$

- Proof (easy):

Remark:

- If $M \subseteq L \Rightarrow \beta(L) \leq \beta(M)$
- lots of p have 'BiG' inertia degree in $L \Rightarrow \beta(L)$ is small
\rightarrow Ideas in the proof of (1) :
If $\beta(L)=\frac{1}{2} \sum_{p \in S(L)} \log p /\left(e_{p}\left(p^{f_{p}}+1\right)\right)$ want to prove:
(i) if $\beta(L)=\infty \Rightarrow L$ not of the form $\mathbb{Q}_{a b}^{(d)}$
- Proof (easy):

Remark:

- If $M \subseteq L \Rightarrow \beta(L) \leq \beta(M)$
- lots of p have ' $\mathbf{B i G}$ ' inertia degree in $L \Rightarrow \beta(L)$ is small
- If $L=\mathbb{Q}_{a b}^{(d)} \Rightarrow \beta(L) \leq \beta\left(\mathbb{Q}^{(2)}\right)$ as $\mathbb{Q}^{(2)} \subseteq \mathbb{Q}_{a b}^{(d)}$
\rightarrow Ideas in the proof of (1) :
If $\beta(L)=\frac{1}{2} \sum_{p \in S(L)} \log p /\left(e_{p}\left(p^{f_{p}}+1\right)\right)$ want to prove:
(i) if $\beta(L)=\infty \Rightarrow L$ not of the form $\mathbb{Q}_{a b}^{(d)}$
- Proof (easy):

Remark:

- If $M \subseteq L \Rightarrow \beta(L) \leq \beta(M)$
- lots of p have 'BiG' inertia degree in $L \Rightarrow \beta(L)$ is small
- If $L=\mathbb{Q}_{a b}^{(d)} \Rightarrow \beta(L) \leq \beta\left(\mathbb{Q}^{(2)}\right)$ as $\mathbb{Q}^{(2)} \subseteq \mathbb{Q}_{a b}^{(d)}$
$-\beta\left(\mathbb{Q}^{(2)}\right)<\infty$ as every prime has inertia degree 2 in $\mathbb{Q}^{(2)}$.
\rightarrow Ideas in the proof of (1) :
If $\beta(L)=\frac{1}{2} \sum_{p \in S(L)} \log p /\left(e_{p}\left(p^{f_{p}}+1\right)\right)$ want to prove:
(ii) $\exists L / \mathbb{Q}$ infinite s.t. $\beta(L)=\infty$, not satisfying Widmer's criterion.
- Proof (sketch):
- Remark: if lots of p split totally in $L \Rightarrow \beta(L)$ is BiG
\rightarrow Ideas in the proof of (1) :
If $\beta(L)=\frac{1}{2} \sum_{p \in S(L)} \log p /\left(e_{p}\left(p^{f_{p}}+1\right)\right)$ want to prove:
(ii) $\exists L / \mathbb{Q}$ infinite s.t. $\beta(L)=\infty$, not satisfying Widmer's criterion.
- Proof (sketch):
- Remark: if lots of p split totally in $L \Rightarrow \beta(L)$ is BiG
- construct $L=$ compositum of cyclic extensions F_{i} / \mathbb{Q} of prime degrees p_{i} carefully chosen such that
\rightarrow Ideas in the proof of (1) :
If $\beta(L)=\frac{1}{2} \sum_{p \in S(L)} \log p /\left(e_{p}\left(p^{f_{p}}+1\right)\right)$ want to prove:
(ii) $\exists L / \mathbb{Q}$ infinite s.t. $\beta(L)=\infty$, not satisfying Widmer's criterion.
- Proof (sketch):
- Remark: if lots of p split totally in $L \Rightarrow \beta(L)$ is BiG
- construct $L=$ compositum of cyclic extensions F_{i} / \mathbb{Q} of prime degrees p_{i} carefully chosen such that

\rightarrow Ideas in the proof of (1) :
If $\beta(L)=\frac{1}{2} \sum_{p \in S(L)} \log p /\left(e_{p}\left(p^{f_{p}}+1\right)\right)$ want to prove:
(ii) $\exists L / \mathbb{Q}$ infinite s.t. $\beta(L)=\infty$, not satisfying Widmer's criterion.
- Proof (sketch):
- Remark: if lots of p split totally in $L \Rightarrow \beta(L)$ is Big
- construct $L=$ compositum of cyclic extensions F_{i} / \mathbb{Q} of prime degrees p_{i} carefully chosen such that

Good control Growth of $\operatorname{disc}\left(F_{i} / \mathbb{Q}\right)$

(take $F_{i} \subseteq \mathbb{Q}\left(\zeta_{\ell_{i_{1}}}, \ldots, \zeta_{\ell_{i_{n}}}\right)$ with $\ell_{i_{j}}$ carefully chosen via Walfisz's thm on counting primes in arithmetic progressions)
\rightarrow Ideas in the proof of (2):
\rightarrow Ideas in the proof of (2) :
To prove: Given $G=\prod_{i} G_{i}$ direct product of finite solvable Groups G_{i},
\rightarrow Ideas in the proof of (2):
To prove: Given $G=\prod_{i} G_{i}$ direct product of finite solvable Groups G_{i}, want to construct L / \mathbb{Q} Galois with $\beta(L)=\infty$ and $\operatorname{Gal}(L / \mathbb{Q})=G$.
\rightarrow Ideas in the proof of (2):
To prove: Given $G=\prod_{i} G_{i}$ direct product of finite solvable Groups G_{i}, want to construct L / \mathbb{Q} Galois with $\beta(L)=\infty$ and $\operatorname{Gal}(L / \mathbb{Q})=G$.

- Recall:

Thy. (Shafarevich) Every finite solvable Group occurs as the Galois Group of an extension of \mathbb{Q}.
\rightarrow Ideas in the proof of (2):
To prove: Given $G=\prod_{i} G_{i}$ direct product of finite solvable Groups G_{i}, want to construct L / \mathbb{Q} Galois with $\beta(L)=\infty$ and $\operatorname{Gal}(L / \mathbb{Q})=G$.

- Recall:

Thm. (Shafarevich) Every finite solvable Group occurs as the Galois Group of an extension of \mathbb{Q}.

- We prove a sharper version of Shafarevich's theorem:

Thm. Given a finite solvable Group G and a finite set of primes S, there exist infinitely many linearly disjoint extensions L / \mathbb{Q} having $\operatorname{Gal}(L / \mathbb{Q})=G$, which are totally real and in which all primes in S split totally.
\rightarrow Ideas in the proof of (2) :
To prove: Given $G=\prod_{i} G_{i}$ direct product of finite solvable Groups G_{i}, want to construct L / \mathbb{Q} Galois with $\beta(L)=\infty$ and $\operatorname{Gal}(L / \mathbb{Q})=G$.

- Recall:

Thy. (Shafarevich) Every finite solvable Group occurs as the Galois Group of an extension of \mathbb{Q}.

- We prove a sharper version of Shafarevich's theorem:

Thy. Given a finite solvable Group G and a finite set of primes S, there exist infinitely many linearly disjoint extensions L / \mathbb{Q} having $\operatorname{Gal}(L / \mathbb{Q})=G$, which are totally real and in which all primes in S split totally.

- Proof based on solution of split embedding problems with special local Behaviour (Neukirch)
\rightarrow Ideas in the proof of (2) :
To prove: Given $G=\prod_{i} G_{i}$ direct product of finite solvable Groups G_{i}, want to construct L / \mathbb{Q} Galois with $\beta(L)=\infty$ and $\operatorname{Gal}(L / \mathbb{Q})=G$.
- Recall:

Thy. (Shafarevich) Every finite solvable Group occurs as the Galois Group of an extension of \mathbb{Q}.

- We prove a sharper version of Shafarevich's theorem:

Thy. Given a finite solvable Group G and a finite set of primes S, there exist infinitely many linearly disjoint extensions L / \mathbb{Q} having $\operatorname{Gal}(L / \mathbb{Q})=G$, which are totally real and in which all primes in S split totally.

- Proof based on solution of split embedding problems with special local Behaviour (Neukirch)
- L constructed as compositum of suitable realisations of Groups G's
§3.2 Property (N), local degrees and totally p-adic numbers of small height
83.2. Property (N) and local degrees

Recall: $K_{a b}^{(d)}$ has property (N) (BomBieri, Zannier).
83.2 Property (N) and local degrees

Recall: $K_{a b}^{(d)}$ has property (N) (BomBieri, Zannier).

- $K_{a b}^{(d)} / K$ is abelian and has uniformly Bounded local degrees i.e. there exists $M>0$ such that, for all $p, K_{a b}^{(d)}$ can Be embedded in an extension of \mathbb{Q}_{p} of degree $\leq M$.
83.2 Property (N) and local degrees

Recall: $K_{a b}^{(d)}$ has property (N) (BomBieri, Zannier).

- $K_{a b}^{(d)} / K$ is abelian and has uniformly Bounded local degrees i.e. there exists $M>0$ such that, for all $p, K_{a b}^{(d)}$ can Be embedded in an extension of \mathbb{Q}_{p} of degree $\leq M$.
- L / K abelian with uniformly Bounded local degrees \Leftrightarrow $L=K_{a b}^{(d)}$ for some d (C. 2O13)
§3.2 Property (N) and local degrees
Recall: $K_{a b}^{(d)}$ has property (N) (BomBieri, Zannier).
- $K_{a b}^{(d)} / K$ is abelian and has uniformly Bounded local degrees i.e. there exists $M>0$ such that, for all $p, K_{a b}^{(d)}$ can Be embedded in an extension of \mathbb{Q}_{p} of deGree $\leq M$.
- L / K abelian with uniformly Bounded local degrees \Leftrightarrow $L=K_{a b}^{(d)}$ for some d (C. 2O13)
- Bombieri-Zannier's thm can Be stated as: every abelian extension of a n.f. with uniformly Bounded local degrees has (N).
§3.2 Property (N) and local degrees
Recall: $K_{a b}^{(d)}$ has property (N) (BomBieri, Zannier).
- $K_{a b}^{(d)} / K$ is abelian and has uniformly Bounded local degrees i.e. there exists $M>0$ such that, for all $p, K_{a b}^{(d)}$ can Be embedded in an extension of \mathbb{Q}_{p} of degree $\leq M$.
- L / K abelian with uniformly Bounded local degrees \Leftrightarrow $L=K_{a b}^{(d)}$ for some d (C. 2O13)
- Bombieri-Zannier's thm can Be stated as: every abelian extension of a n.f. with uniformly Bounded local degrees has (N).

Q1: Uniform Boundedness of the local degrees $\Rightarrow(N)$?
§3.2 Property (N) and local degrees
Recall: $K_{a b}^{(d)}$ has property (N) (BomBieri, Zannier).

- $K_{a b}^{(d)} / K$ is abelian and has uniformly Bounded local degrees i.e. there exists $M>0$ such that, for all $p, K_{a b}^{(d)}$ can Be embedded in an extension of \mathbb{Q}_{p} of degree $\leq M$.
- L / K abelian with uniformly Bounded local degrees \Leftrightarrow $L=K_{a b}^{(d)}$ for some d (C. 2O13)
- Bombieri-Zannier's thm can Be stated as: every abelian extension of a n.f. with uniformly Bounded local degrees has (N).

Q1: Uniform Boundedness of the local degrees $\Rightarrow(N)$?
§3.2 Property (N) and local degrees
Recall: $K_{a b}^{(d)}$ has property (N) (BomBieri, Zannier).

- $K_{a b}^{(d)} / K$ is abelian and has uniformly Bounded local degrees i.e. there exists $M>0$ such that, for all $p, K_{a b}^{(d)}$ can Be embedded in an extension of \mathbb{Q}_{p} of degree $\leq M$.
- L / K abelian with uniformly Bounded local degrees \Leftrightarrow $L=K_{a b}^{(d)}$ for some d (C. 2O13)
- Bombieri-Zannier's thm can Be stated as: every abelian extension of a n.f. with uniformly Bounded local degrees has (N).

Q2: Uniform Boundedness of the local degrees $\Rightarrow(N)$?
83.2 Property (N) and local degrees

Recall: $K_{a b}^{(d)}$ has property (N) (BomBieri, Zannier).

- $K_{a b}^{(d)} / K$ is abelian and has uniformly Bounded local degrees i.e. there exists $M>0$ such that, for all $p, K_{a b}^{(d)}$ can Be embedded in an extension of \mathbb{Q}_{p} of degree $\leq M$.
- L / K abelian with uniformly Bounded local degrees \Leftrightarrow $L=K_{a b}^{(d)}$ for some d (C. 2O13)
- Bombieri-Zannier's thm can Be stated as: every abelian extension of a n.f. with uniformly Bounded local degrees has (N).

Q2: Uniform Boundedness of the local degrees $\Rightarrow(N)$? $\rightarrow \exists$ extensions without (N) with local degrees Bounded at infinitely many primes (But unbounded at infinitely many primes too) (Fehm, 2O18).
83.2 Property (N) and local degrees

Recall: $K_{a b}^{(d)}$ has property (N) (BomBieri, Zannier).

- $K_{a b}^{(d)} / K$ is abelian and has uniformly Bounded local degrees i.e. there exists $M>0$ such that, for all $p, K_{a b}^{(d)}$ can Be embedded in an extension of \mathbb{Q}_{p} of degree $\leq M$.
- L / K abelian with uniformly Bounded local degrees \Leftrightarrow $L=K_{a b}^{(d)}$ for some d (C. 2O13)
- Bombieri-Zannier's thm can Be stated as: every abelian extension of a n.f. with uniformly Bounded local degrees has (N).

Q3: Uniform Boundedness of the local degrees at all primes $\Rightarrow(N)$?
83.2 Property (N) and local degrees

Recall: $K_{a b}^{(d)}$ has property (N) (BomBieri, Zannier).

- $K_{a b}^{(d)} / K$ is abelian and has uniformly Bounded local degrees i.e. there exists $M>0$ such that, for all $p, K_{a b}^{(d)}$ can Be embedded in an extension of \mathbb{Q}_{p} of degree $\leq M$.
- L / K abelian with uniformly Bounded local degrees \Leftrightarrow $L=K_{a b}^{(d)}$ for some d (C. 2O13)
- Bombieri-Zannier's thm can Be stated as: every abelian extension of a n.f. with uniformly Bounded local degrees has (N).

Q3: Uniform Boundedness of the local degrees at all primes $\Rightarrow(N)$?

Theorem (C.-Fehm, 2020). \exists infinite Galois extensions L / \mathbb{Q} without property (N), But having Bounded local degrees at all primes.
83.2 On a result of Fili

To prove the theorem we use special case of a result of Fili.
83.2 On a result of Fili

To prove the theorem we use special case of a result of Fili. Recall: for L / \mathbb{Q} with Bounded local degrees:
83.2 On a result of Fili

To prove the theorem we use special case of a result of Fill. Recall: for L / \mathbb{Q} with Bounded local degrees:

- Lower Bound $\beta(L)$ for liming $h(\alpha)$ By Bombieri-Zannier;
83.2 On a result of Fili

To prove the theorem we use special case of a result of Fill. Recall: for L / \mathbb{Q} with Bounded local degrees:

- Lower Bound $\beta(L)$ for liminf $h(\alpha)$ By Bombieri-Zannier;
- Special case: $L=\cap_{i=1}^{n} \mathbb{Q}^{t p_{i}}$, also upper Bound By Bombieri and Zannier:

83.2 On a result of Fili

To prove the theorem we use special case of a result of Fili. Recall: for L / \mathbb{Q} with Bounded local degrees:

- Lower Bound $\beta(L)$ for liminf $h(\alpha)$ By Bombieri-Zannier;
- Special case: $L=\cap_{i=1}^{n} \mathbb{Q}^{t p_{i}}$, also upper Bound By Bombieri and Zannier:

$$
\frac{1}{2} \sum_{i=1}^{n} \frac{\log \left(p_{i}\right)}{\left(p_{i}+1\right)} \leq \lim _{\alpha \in \cap_{i=1}^{n} \mathbb{Q}^{t_{i}}} h(\alpha) \leq \sum_{i=1}^{n} \frac{\log \left(p_{i}\right)}{\left(p_{i}-1\right)} .
$$

83.2 On a result of Fili

To prove the theorem we use special case of a result of Fili. Recall: for L / \mathbb{Q} with Bounded local degrees:

- Lower Bound $\beta(L)$ for liminf $h(\alpha)$ By Bombieri-Zannier;
- Special case: $L=\cap_{i=1}^{n} \mathbb{Q}^{t p_{i}}$, also upper Bound By Bombieri and Zannier:

$$
\frac{1}{2} \sum_{i=1}^{n} \frac{\log \left(p_{i}\right)}{\left(p_{i}+1\right)} \leq \lim _{\alpha \in \cap_{i=1}^{n} \mathbb{Q}^{t p_{i}}} h(\alpha) \leq \sum_{i=1}^{n} \frac{\log \left(p_{i}\right)}{\left(p_{i}-1\right)}
$$

- Generalisation By Fili (special case):

Theorem (Fili, 2O14). Let p_{1}, \ldots, p_{n} Be distinct primes.
83.2 On a result of Fili

To prove the theorem we use special case of a result of Fili. Recall: for L / \mathbb{Q} with Bounded local degrees:

- Lower Bound $\beta(L)$ for liminf $h(\alpha)$ By Bombieri-Zannier;
- Special case: $L=\cap_{i=1}^{n} \mathbb{Q}^{t p_{i}}$, also upper Bound By Bombieri and Zannier:

$$
\frac{1}{2} \sum_{i=1}^{n} \frac{\log \left(p_{i}\right)}{\left(p_{i}+1\right)} \leq \lim _{\alpha \in \cap_{i=1}^{n} \mathbb{Q}^{t p_{i}}} h(\alpha) \leq \sum_{i=1}^{n} \frac{\log \left(p_{i}\right)}{\left(p_{i}-1\right)}
$$

- Generalisation By Fili (special case):

Theorem (Fili, 2O14). Let p_{1}, \ldots, p_{n} Be distinct primes. For each i, fix $E_{i} / \mathbb{Q}_{p_{i}}$ finite Galois extension with ramification index e_{i} and inertia degree f_{j}.
83.2 On a result of Fili

To prove the theorem we use special case of a result of Fili. Recall: for L / \mathbb{Q} with Bounded local degrees:

- Lower Bound $\beta(L)$ for liminf $h(\alpha)$ By Bombieri-Zannier;
- Special case: $L=\cap_{i=1}^{n} \mathbb{Q}^{t p_{i}}$, also upper Bound By Bombieri and Zannier:

$$
\frac{1}{2} \sum_{i=1}^{n} \frac{\log \left(p_{i}\right)}{\left(p_{i}+1\right)} \leq \lim _{\alpha \in \cap_{i=1}^{n} \mathbb{Q}^{t p_{i}}} h(\alpha) \leq \sum_{i=1}^{n} \frac{\log \left(p_{i}\right)}{\left(p_{i}-1\right)}
$$

- Generalisation By Fili (special case):

Theorem (Fili, 2O14). Let p_{1}, \ldots, p_{n} Be distinct primes. For each i, fix $E_{i} / \mathbb{Q}_{p_{i}}$ finite Galois extension with ramification index e_{i} and inertia deGree f_{i}. Let L_{i} / \mathbb{Q} maximal Galois extension contained in E_{i}.
83.2 On a result of Fili

To prove the theorem we use special case of a result of Fili. Recall: for L / \mathbb{Q} with Bounded local degrees:

- Lower Bound $\beta(L)$ for liminf $h(\alpha)$ By Bombieri-Zannier;
- Special case: $L=\cap_{i=1}^{n} \mathbb{Q}^{t p_{i}}$, also upper Bound By Bombieri and Zannier:

$$
\frac{1}{2} \sum_{i=1}^{n} \frac{\log \left(p_{i}\right)}{\left(p_{i}+1\right)} \leq \lim _{\alpha \in \cap_{i=1}^{n} \mathbb{Q}^{t p_{i}}} h(\alpha) \leq \sum_{i=1}^{n} \frac{\log \left(p_{i}\right)}{\left(p_{i}-1\right)}
$$

- Generalisation By Fili (special case):

Theorem (Fili, 2O14). Let p_{1}, \ldots, p_{n} Be distinct primes. For each i, fix $E_{i} / \mathbb{Q}_{p_{i}}$ finite Galois extension with ramification index e_{i} and inertia deGree f_{i}. Let L_{i} / \mathbb{Q} maximal Galois extension contained in E_{i}. Then

$$
\liminf _{\alpha \in \cap_{i=1}^{n} L_{i}} h(\alpha) \leq \sum_{i=1}^{n} \frac{\log \left(p_{i}\right)}{e_{i}\left(p_{i}^{f_{i}}-1\right)}
$$

§3.2 On a result of Fili
Our result follows:
83.2 On a result of Fili

Our result follows:

- For each prime p_{i}, let $E_{i} / \mathbb{Q}_{p_{i}}$ unique unramified quadratic extension, L_{i} maximal Galois extension of \mathbb{Q} inside E_{i}

§3.2 On a result of Fili

Our result follows:

- For each prime p_{i}, let $E_{i} / \mathbb{Q}_{p_{i}}$ unique unramified quadratic extension, L_{i} maximal Galois extension of \mathbb{Q} inside E_{i}
- By Fili:

$$
\liminf _{\alpha \in \cap_{i=1}^{n} L_{i}} h(\alpha) \leq \sum_{i=1}^{n} \frac{\log \left(p_{i}\right)}{p_{i}^{2}-1} \leq \sum_{k=1}^{\infty} \frac{\log (k)}{k^{2}}<T
$$

83.2 On a result of Fili

Our result follows:

- For each prime p_{i}, let $E_{i} / \mathbb{Q}_{p_{i}}$ unique unramified quadratic extension, L_{i} maximal Galois extension of \mathbb{Q} inside E_{i}
- By Fili:

$$
\liminf _{\alpha \in \bigcap_{i=1}^{n} L_{i}} h(\alpha) \leq \sum_{i=1}^{n} \frac{\log \left(p_{i}\right)}{p_{i}^{2}-1} \leq \sum_{k=1}^{\infty} \frac{\log (k)}{k^{2}}<T
$$

- Pick iteratively $x_{n} \in \cap_{i=1}^{n} L_{i} \backslash\left\{x_{1}, \ldots, x_{n-1}\right\}$ with $h\left(x_{n}\right)<T$
83.2 On a result of Fili

Our result follows:

- For each prime p_{i}, let $E_{i} / \mathbb{Q}_{p_{i}}$ unique unramified quadratic extension, L_{i} maximal Galois extension of \mathbb{Q} inside E_{i}
- By Fili:

$$
\liminf _{\alpha \in \bigcap_{i=1}^{n} L_{i}} h(\alpha) \leq \sum_{i=1}^{n} \frac{\log \left(p_{i}\right)}{p_{i}^{2}-1} \leq \sum_{k=1}^{\infty} \frac{\log (k)}{k^{2}}<T
$$

- Pick iteratively $x_{n} \in \cap_{i=1}^{n} L_{i} \backslash\left\{x_{1}, \ldots, x_{n-1}\right\}$ with $h\left(x_{n}\right)<T \Rightarrow$ the Galois closure of $\mathbb{Q}\left(x_{1}, x_{2}, \ldots\right)$ satisfies the claim.
83.2 On a result of Fili

Our result follows:

- For each prime p_{i}, let $E_{i} / \mathbb{Q}_{p_{i}}$ unique unramified quadratic extension, L_{i} maximal Galois extension of \mathbb{Q} inside E_{i}
- By Fill:

$$
\liminf _{\alpha \in \cap_{i=1}^{n} L_{i}} h(\alpha) \leq \sum_{i=1}^{n} \frac{\log \left(p_{i}\right)}{p_{i}^{2}-1} \leq \sum_{k=1}^{\infty} \frac{\log (k)}{k^{2}}<T
$$

- Pick iteratively $x_{n} \in \cap_{i=1}^{n} L_{i} \backslash\left\{x_{1}, \ldots, x_{n-1}\right\}$ with $h\left(x_{n}\right)<T \Rightarrow$ the Galois closure of $\mathbb{Q}\left(x_{1}, x_{2}, \ldots\right)$ satisfies the claim.
\rightarrow Fill's result:
- more General (replace \mathbb{Q}_{p} By p-adic field)
83.2 On a result of Fill

Our result follows:

- For each prime p_{i}, let $E_{i} / \mathbb{Q}_{p_{i}}$ unique unramified quadratic extension, L_{i} maximal Galois extension of \mathbb{Q} inside E_{i}
- By Fill:

$$
\liminf _{\alpha \in \cap_{i=1}^{n} L_{i}} h(\alpha) \leq \sum_{i=1}^{n} \frac{\log \left(p_{i}\right)}{p_{i}^{2}-1} \leq \sum_{k=1}^{\infty} \frac{\log (k)}{k^{2}}<T
$$

- Pick iteratively $x_{n} \in \cap_{i=1}^{n} L_{i} \backslash\left\{x_{1}, \ldots, x_{n-1}\right\}$ with $h\left(x_{n}\right)<T \Rightarrow$ the Galois closure of $\mathbb{Q}\left(x_{1}, x_{2}, \ldots\right)$ satisfies the claim.
\rightarrow Fill's result:
- more General (replace \mathbb{Q}_{p} By p-adic field)
- not effective: no explicit Bounds on degree and height of a sequence of integral elements in the liming.
83.2 On a result of Fili

Our result follows:

- For each prime p_{i}, let $E_{i} / \mathbb{Q}_{p_{i}}$ unique unramified quadratic extension, L_{i} maximal Galois extension of \mathbb{Q} inside E_{i}
- By Fili:

$$
\liminf _{\alpha \in \bigcap_{i=1}^{n} L_{i}} h(\alpha) \leq \sum_{i=1}^{n} \frac{\log \left(p_{i}\right)}{p_{i}^{2}-1} \leq \sum_{k=1}^{\infty} \frac{\log (k)}{k^{2}}<T
$$

- Pick iteratively $x_{n} \in \cap_{i=1}^{n} L_{i} \backslash\left\{x_{1}, \ldots, x_{n-1}\right\}$ with $h\left(x_{n}\right)<T \Rightarrow$ the Galois closure of $\mathbb{Q}\left(x_{1}, x_{2}, \ldots\right)$ satisfies the claim.
\rightarrow Fili's result:
- more General (replace \mathbb{Q}_{p} By p-adic field)
- not effective: no explicit bounds on degree and height of a sequence of integral elements in the liminf.
Theorem (C.-Fehm, 2O21). Effective version of Fili's theorem (explicit bounds on height and degree of elements in infinite sequence in the liminf)

Some open problems on property (N)

Some open problems on property (N)

PB.I) Uniform Boundedness of local degrees \Rightarrow property (N) ?

Some open problems on property (N)

PB.I) Uniform Boundedness of local deGrees \Rightarrow property (N)?
$Q . \mathbb{Q}^{(3)}=$ compositum of Quadratic and cubic extensions of degree 3 , has property (N)?

Some open problems on property (N)

PB.I) Uniform Boundedness of local deGrees \Rightarrow property (N) ? $Q . \mathbb{Q}^{(3)}=$ compositum of Quadratic and cubic extensions of degree 3 , has property (N)?

PB.2) Siegel fields and property (N).

Some open problems on property (N)

PB.I) Uniform Boundedness of local deGrees \Rightarrow property (N)? $Q . \mathbb{Q}^{(3)}=$ compositum of Quadratic and cusic extensions of degree 3, has property (N)?

PB.2) Siegel fields and property (N).
Gaudron, Rémond (2O17): A Siegel field is a a subfield $L \subseteq \overline{\mathbb{Q}}$ satisfying Siegel's lemma i.e.

Some open problems on property (N)

PB.I) Uniform Boundedness of local degrees \Rightarrow property (N)? $Q . \mathbb{Q}^{(3)}=$ compositum of quadratic and cubic extensions of degree 3 , has property (N)?

PB.2) Siegel fields and property (N).
Gaudron, Rémond (2O17): A Siegel field is a a subfield $L \subseteq \overline{\mathbb{Q}}$ satisfying Siegel's lemma i.e.
$\exists C(L)>0$ such that for all $(a, b, c) \in L^{3} \backslash\{(0,0,0)\}$ there exists $(x, y, z) \in L^{3} \backslash\{(0,0,0)\}$ such that $a x+b y+c z=0$ and $H(x, y, z) \leq C(L) H(a, b, c)^{1 / 2}(H=\exp (h))$.

Some open problems on property (N)

PB.I) Uniform Boundedness of local deGrees \Rightarrow property (N)? $Q . \mathbb{Q}^{(3)}=$ compositum of quadratic and cubic extensions of degree 3 , has property (N)?

PB.2) Siegel fields and property (N).
Gaudron, Rémond (2O17): A Siegel field is a a subfield $L \subseteq \overline{\mathbb{Q}}$ satisfying Siegel's lemma i.e.
$\exists C(L)>0$ such that for all $(a, b, c) \in L^{3} \backslash\{(0,0,0)\}$ there exists $(x, y, z) \in L^{3} \backslash\{(0,0,0)\}$ such that $a x+b y+c z=0$ and

$$
H(x, y, z) \leq C(L) H(a, b, c)^{1 / 2}(H=\exp (h))
$$

- Number fields are Siegel fields

Some open problems on property (N)

PB.I) Uniform Boundedness of local degrees \Rightarrow property (N)? $Q . \mathbb{Q}^{(3)}=$ compositum of quadratic and cubic extensions of degree 3 , has property (N)?

PB.2) Siegel fields and property (N).
Gaudron, Rémond (2O17): A Siegel field is a a subfield $L \subseteq \overline{\mathbb{Q}}$ satisfying Siegel's lemma i.e. $\exists C(L)>0$ such that for all $(a, b, c) \in L^{3} \backslash\{(0,0,0)\}$ there exists $(x, y, z) \in L^{3} \backslash\{(0,0,0)\}$ such that $a x+b y+c z=0$ and $H(x, y, z) \leq C(L) H(a, b, c)^{1 / 2}(H=\exp (h))$.

- Number fields are Siegel fields
- (Roy-Thunder, Zhang) $L=\overline{\mathbb{Q}}$ is a Siegel field

Some open problems on property (N)

PB.I) Uniform Boundedness of local degrees \Rightarrow property (N)? $Q . \mathbb{Q}^{(3)}=$ compositum of quadratic and cubic extensions of degree 3 , has property (N)?

PB.2) Siegel fields and property (N).
Gaudron, Rémond (2O17): A Siegel field is a a subfield $L \subseteq \overline{\mathbb{Q}}$ satisfying Siegel's lemma i.e. $\exists C(L)>0$ such that for all $(a, b, c) \in L^{3} \backslash\{(0,0,0)\}$ there exists $(x, y, z) \in L^{3} \backslash\{(0,0,0)\}$ such that $a x+b y+c z=0$ and $H(x, y, z) \leq C(L) H(a, b, c)^{1 / 2}(H=\exp (h))$.

- Number fields are Siegel fields
- (Roy-Thunder, Zhang) $L=\overline{\mathbb{Q}}$ is a Siegel field
- (Gaudron, Rémond) If L / \mathbb{Q} infinite with property $(N) \Rightarrow L$ not a Siegel field

Some open problems on property (N)

PB.I) Uniform Boundedness of local degrees \Rightarrow property (N)? $Q . \mathbb{Q}^{(3)}=$ compositum of quadratic and cubic extensions of degree 3 , has property (N)?

PB.2) Siegel fields and property (N).
Gaudron, Rémond (2O17): A Siegel field is a a subfield $L \subseteq \overline{\mathbb{Q}}$ satisfying Siegel's lemma i.e.
$\exists C(L)>0$ such that for all $(a, b, c) \in L^{3} \backslash\{(0,0,0)\}$ there exists $(x, y, z) \in L^{3} \backslash\{(0,0,0)\}$ such that $a x+b y+c z=0$ and $H(x, y, z) \leq C(L) H(a, b, c)^{1 / 2}(H=\exp (h))$.

- Number fields are Siegel fields
- (Roy-Thunder, Zhang) $L=\overline{\mathbb{Q}}$ is a Siegel field
- (Gaudron, Rémond) If L / \mathbb{Q} infinite with property $(N) \Rightarrow L$ not a Siegel field
Q. Is the converse true? Are there infinite extensions L / \mathbb{Q} which are neither Siegel fields nor fields with property (N)?

Some open problems on property (B)

PB.3) Property (B) and Generators of Galois extensions

Some open problems on property (B)

PB.3) Property (B) and Generators of Galois extensions

- (Amoroso, Masser, 2016) A strong Lehmer Bound:

Some open problems on property (B)

PB.3) Property (B) and Generators of Galois extensions - (Amoroso, Masser, 2O16) A strong Lehmer Bound: for any $\epsilon>0, \exists c(\epsilon)>0$ such that $h(\alpha)[\mathbb{Q}(\alpha): \mathbb{Q}]^{\epsilon} \geq c(\epsilon)$ for α not root of unity such that $\mathbb{Q}(\alpha) / \mathbb{Q}$ is Galois.

Some open problems on property (B)

PB.3) Property (B) and Generators of Galois extensions

- (Amoroso, Masser, 2016) A strong Lehmer Bound: for any $\epsilon>0, \exists c(\epsilon)>0$ such that $h(\alpha)[\mathbb{Q}(\alpha): \mathbb{Q}]^{\epsilon} \geq c(\epsilon)$ for α not root of unity such that $\mathbb{Q}(\alpha) / \mathbb{Q}$ is Galois.

The bound is so Good that one might ask:

Some open problems on property (B)

PB.3) Property (B) and Generators of Galois extensions - (Amoroso, Masser, 2016) A strong Lehmer Bound: for any $\epsilon>0, \exists c(\epsilon)>0$ such that $h(\alpha)[\mathbb{Q}(\alpha): \mathbb{Q}]^{\epsilon} \geq c(\epsilon)$ for α not root of unity such that $\mathbb{Q}(\alpha) / \mathbb{Q}$ is Galois.

The Bound is so Good that one might ask:
Q. Does the set $\{\alpha \in \overline{\mathbb{Q}} \mid \mathbb{Q}(\alpha) / \mathbb{Q}$ is Galois $\}$ enjoy property (B)?

Some open problems on property (B)

PB.3) Property (B) and Generators of Galois extensions - (Amoroso, Masser, 2016) A strong Lehmer Bound: for any $\epsilon>0, \exists c(\epsilon)>0$ such that $h(\alpha)[\mathbb{Q}(\alpha): \mathbb{Q}]^{\epsilon} \geq c(\epsilon)$ for α not root of unity such that $\mathbb{Q}(\alpha) / \mathbb{Q}$ is Galois.

The bound is so Good that one might ask:
Q. Does the set $\{\alpha \in \overline{\mathbb{Q}} \mid \mathbb{Q}(\alpha) / \mathbb{Q}$ is Galois $\}$ enjoy property (B)?

- (Amoroso, 2017) If α Belongs to a certain class of Generators of S_{n}-extensions, $h(\alpha) \geq c(n)$ with $c(n) \rightarrow \infty$ with n.

Some open problems on property (B)

PB.3) Property (B) and Generators of Galois extensions - (Amoroso, Masser, 2016) A strong Lehmer Bound: for any $\epsilon>0, \exists c(\epsilon)>0$ such that $h(\alpha)[\mathbb{Q}(\alpha): \mathbb{Q}]^{\epsilon} \geq c(\epsilon)$ for α not root of unity such that $\mathbb{Q}(\alpha) / \mathbb{Q}$ is Galois.

The bound is so Good that one might ask:
Q. Does the set $\{\alpha \in \overline{\mathbb{Q}} \mid \mathbb{Q}(\alpha) / \mathbb{Q}$ is Galois $\}$ enjoy property (B)?

- (Amoroso, 2017) If α Belongs to a certain class of Generators of S_{n}-extensions, $h(\alpha) \geq c(n)$ with $c(n) \rightarrow \infty$ with n. Q. True for all Generators of S_{n}-extensions?

Some open problems on property (B)

PB.3) Property (B) and Generators of Galois extensions - (Amoroso, Masser, 2016) A strong Lehmer Bound: for any $\epsilon>0, \exists c(\epsilon)>0$ such that $h(\alpha)[\mathbb{Q}(\alpha): \mathbb{Q}]^{\epsilon} \geq c(\epsilon)$ for α not root of unity such that $\mathbb{Q}(\alpha) / \mathbb{Q}$ is Galois.

The bound is so Good that one might ask:
Q. Does the set $\{\alpha \in \overline{\mathbb{Q}} \mid \mathbb{Q}(\alpha) / \mathbb{Q}$ is Galois $\}$ enjoy property (B)?

- (Amoroso, 2017) If α Belongs to a certain class of Generators of S_{n}-extensions, $h(\alpha) \geq c(n)$ with $c(n) \rightarrow \infty$ with n.
Q. True for all Generators of S_{n}-extensions?

What about other (non-abelian) Groups?

Thank you!

