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Det let a € Q and let po(x) = a(x — 1) - (x — ag) € Z[x] Be
its minimal polynomial (with coprime coefticients).
The (aBsolute loaarithmic) Weil height of o is the numeer

1 d
h(a) = = - log (|a| [ max(1, |a;|)> .

i=1

— Measure of 'arithmetic complexity of a numeer:

oIt a=p/qgeQ = h(a)=log(max(|pl,]|q]))

So h(2021/2020) = log(2021) while h(1) =0

e For d fixed: if h(a) 'Bia’ < max coelbficient of p,(x) is 'Bia’
— 2 definitions of height:

- aBOve one, with '"Mahler measure’ (usefull for
computations)

- height=sum of local contrirutions (usefull £or proving
statementts).
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Northeott's theorem (or, why the height is so usefull:
H#{a e Q] h(a) <B,[Qa):Q<d} <oco boral B>0,d>1

e Effective: you can explicitly £ind the elementts

e Diophanttine ceometry: Bound height + Bound dearee
= finiteness (ea. rational points on hich @enus curves).

Lehmer's conjecture (or, small heicht = Bia dearee):
there exists a constant ¢ > 0 such that for all a € Q
then h(a) - [Q(a)-Q] is either O or Biacer than c.

e Open (known for alaerraic numeers which are Nnot alaerraic
inteaers, roots of Nnon-reciprocal polynomials, cenerators of
Galois extensions, .. Best unconditional resuit By Dosrowolski)
Q. Are there sets of alaerraic numeers where one can 'do

getter'? That is, get the same statements
?
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Det. (Bomeieri and Zannier, 200D A sugtield L C Q has:
> the Northeott property (ND i de{a € L | h(a) < B} < >
for all B> 0.
> the Boaomolov property (B) if 3¢ = ¢(L) > 0 such that,
for all a € L, either h(a) =0 or h(a) >c

R.emarks:
7
0
NnumBer fields Q
have Both (N) and () has neither () nor (N

(2y Northeott's theorem) (as h(2*/") = log(2)/n — 0)

Proeglem: Given a infinite extension L/Q, decide
whether it has (N) or (B). Hard in aeneral!
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e Q" = Q(G!r)=field ortained addina to Q all torsion points
of the torus ie. all roots of unity (Amoroso-Dvornicich,
2000). More aenerally K2b=maximal agelian extension of a
nuwier field K (Amoroso-Zannier 2000, 2010)

o Q(E;r)=4ield ortained addina to Q all torsion points of an
elliptic curve E/Q (Hareaaer, 20D

ldea (for Q): a € K = Q(¢n)

- write h(a) = sum local contrisutions

- fix auxiliary prime p and use Froeenius (if pt n)/variant of
Froeenius at p (if p| n) = each local contrisution > round
only depending on p (and Nnot on n)
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E_XaMPIe_SZ Qabu Kabu Q(Etor)
(’2_3 Fields with local eor\di—tior\si
o Q"=totally real numgers (Schinzel 1973)

e [ /Q Galois with Bounded local dearees at some prive p ie.

that can Be empeedded into a finite extension of Q,

(Bomegieri-Zannier, 200D

Examples:

— L numper field

— L = Q" totally p-adic numpers

— L= K9 compositum of all dearee < d extensions of a nf. K
Ea Q® =Q(v-1,v2,V3,...)

ldea: use 'equidistrirution’.
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Many examples of fields with (BY:
DN Fields ortained ’adding —torsion"

Examples: Qaba Kaba Q(Etor)
12_3 Fields with local eor\di—tior\s]
Examples: Qf, Galois extensions with Bounded local dearees

3) Generalization of (D and ()
(Amoroso, David and Zannier, 20

Rem. All the arove examples do Not satisty property (ND:
- K Q(E.r) contain infinitely many roots of |

- Qf contains a sequence oOf elements with heiaght

— 0.27328... (Smyth, 1980)

- Q™: liminf,eqe h(a) < (logp)/(p — 1) (Bomeieri, Zannier,
2000
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Essentially only 2. examples of fields with (ND:
N Bomesieri ¢ Zannier's criterion: K'f)

Def K!D=maximal suetield of K@) whick is aselian over K n#.
Examvple: Q) = QP = Q(v=1,v2, V3, V5,...), But Q) # Q)
ldea: suppose h(a) < B.

- By carefull study of ramification: i$ p ramities in K(a)

= p < C(B)

- Use that K(a)=compositum of cyclic extensions of dearee
< d! each with Bounded diseriminant + Hermite theorem =
[K() : K] < D(B) = #initely many o By Northeott
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Essentially only 2. examples of fields with (ND:

‘h Bomeieri ¢ Zannier’s criterion: K7

2 Widmer’s ariterion (diseriminants arowing 'fast)

Theorem(Widmer, 203): £ K=Ky C K1 C K> C ... is a tower
of numrer fields such that

1
D Moo (disc(M/K-)) T oo

then L =J; Ki has property (ND.

e R ouahly: if diseriminants arow fast at each step in the
tower = L has (ND.

ldea: use round of Silverman £or minimal heiaht of
Generators of numeer fields in terms of certain
disariminants
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Essentially only 2 examples of fields with (ND:
% Bomeieri ¢ Zannier’s criterion: K7

E\ Widmer’s eriterion (diseriminants arowing 'fast™

{Ques—tior\: Other examples of fields with property (f\h?!
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More precisely:

Theorem (Bomeieri-Z annier, 200D. L/Q Gslois extension,

S(L) # 0 set of primes at which L has Bounded local dearees.
Then

. S
llTeTf h(a) >

(ep, f, ramification index and inertial dearee of L at p).

o lf =00 = L has also (N) (BRolzano-\Weierstrass)
o L numper field = = 00 (Cherotarev density + PN

Q. 3 infinite extensions L/Q such that = 00?
[# s0, is the diveraence of 3(L) really
a new criterion for property (NN?7




82 A new criterion for (ND

Theorem (C-Fehm, 202.0).
(N The diveraence of 3(L) is 8 new criterion for (N:




82 A new criterion for (ND

Theorem (C-Fehm, 202.0).

(N The diveraence of 3(L) is 8 new criterion for (N:
3 infinite Galois extensions L/Q such that:




82 A new criterion for (ND

Theorem (C-Fehm, 202.0).

(N The diveraence of 3(L) is 8 new criterion for (N:
3 infinite Galois extensions L/Q such that:
> B(L) = o5




82 A new criterion for (ND

Theorem (C-Fehm, 202.0).

(N The diveraence of 3(L) is 8 new criterion for (N:
3 infinite Galois extensions L/Q such that:
> B(L) = oo
» [ does not satify Bomeieri + Zannier's criterion (ie. L
is not of the form Q9




§2.|. A new criterion for (N)

Theorem (C-Fehm, 202.0).

(N The diveraence of 3(L) is 8 new criterion for (N:
3 infinite Galois extensions L/Q such that:
> B(L) = oo
» [ does not satify Bomeieri + Zannier's criterion (ie. L
is not of the form Q9

» L does not satify Widmer's criterion (on fast arowth
of diseriminantts in towers).




§2.|. A new criterion for (N)

Theorem (C-Fehm, 202.0).

(N The diveraence of 3(L) is 8 new criterion for (N:
3 infinite Galois extensions L/Q such that:
> B(L) = oo
» [ does not satify Bomeieri + Zannier's criterion (ie. L
is not of the form Q9
» L does not satify Widmer's criterion (on fast arowth
of diseriminants in towers).
(1) (Some freedom in chosing the Galois aroup)




§2.|. A new criterion for (N)

Theorem (C-Fehm, 202.0).
(N The diveraence of 3(L) is 8 new criterion for (N:
3 infinite Galois extensions L/Q such that:
> B(L) = oo
» [ does not satify Bomeieri + Zannier's criterion (ie. L
is not of the form Q9
» L does not satify Widmer's criterion (on fast arowth
of diseriminants in towers).
(1) (Some freedom in chosing the Galois aroup)

Given any infinite product G =[], G; of finite solvaele
aroups Gj,




§2.|. A new criterion for (N)

Theorem (C-Fehm, 202.0).
(N The diveraence of 3(L) is 8 new criterion for (N:
3 infinite Galois extensions L/Q such that:
> B(L) = oo
» [ does not satify Bomeieri + Zannier's criterion (ie. L
is not of the form Q9
» L does not satify Widmer's criterion (on fast arowth
of diseriminants in towers).
(1) (Some freedom in chosing the Galois aroup)
Given any infinite product G =[], G; of finite solvaele
aroups G;, 3 L/Q Galois such that Gal(L/Q) = G and (L) = oc.
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— ldeas in the proot of (N:

& B(L)=3 > pes(u) 108 p/(ex(p® + 1)) want to prove:

(i) i# B(L) = 0o = L not of the form QY

e Proot (easy):

R.emark:

-8 M C L= B(L) < B(M)

- lots of p have Bi&’ inertia dearee in L = B(L) is small
- 18 L=0Q = B(L) < B(QP) es Q@ C QLY

- B(Q®)) < oo as every prime has inertia dearee 2 in Q.
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— ldeas in the proot of (N:
& B(L)=3 > pes(u) 108 p/(ex(p® + 1)) want to prove:
(i 3L/Q infinite st. S(L) = oo, not satisfyina Widmer's ariterion.

e Proo# (sketch):
- Remark: if lots of p split totally in L = B(L) is Big
- construct L=compositum of cydlic extensions F;/Q of primve
dearees p; carefully chosen such that
&00d control
arowth of disc(Fi/Q)
‘'enouch primes’
split totally in F;

4
Widmer's criterion
(3 is not satistied

B(L) 'sia’
(take F;i C Q(Ceys-- -5 Cey,) With £ carefully chosen via Walfisz's thm
on countting prives in arithmetic proaressions)
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To prove: aiven G = []; G; direct product of finite solvasle
aroups G;, want to construct L/Q Galois with S(L) = co and
Gal(L/Q) = G.

o Recall:

Thm. (Shatarevich) Every finite solvaele aroup occurs as the Galois
aroup of an extension of Q.

o \We prove a sharper version of Shafarevich's theorem:

Thw. Given a finite solvakle aroup G and a finite set of prives S,
there exist infinitely many linearly disjoint extensions L/Q havina
Gal(L/Q) = G, which are totally real and in which all prives in S split
totally.

e Proosf rased on solution of split empedding proerlems with special
local Behaviour (Neukireh)

e L constructed as compositum of suitarle realisations of aroups
G/,S
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§372. Property (N) and |ocal dearees

Recall: Kig) has property (N) (Bomeieri, Zannier).

. Kéfg) /K is agelian and has uniformly Bounded local dearees
ie. there exists M > 0 such that, for all p, K ‘,EZ) Qan ke
empedded in an extension of Q, of dearee < M.

o L/K arelian with uniformly Bounded locsl dearees <
L=KY sor some d (C. 2013)

e Bomeieri-Zannier’s thm can re stated as: every aeelian

extension of a N with uniformly Bounded local dearees has
(ND.

G3: Uniforin roundedness of the local dearees at all
primes= (ND?
Theorem (C-Fehm, 202.0). 3 inkinite Galois extensions
L/Q without property (N), But havina Bounded
local dearees at all primes.




§32. On a result of Fili

To prove the theorem we use special case of a result of Fili.



§32. On a result of Fili

To prove the theorem we use special case of a result of Fili.
Recall: for L/Q with Bounded local dearees:



§32. On a result of Fili

To prove the theorem we use special case of a resutt of Fili.
Recall: for L/Q with Bounded local dearees:
- Lower round S(L) £or liming h(a) By Bomerieri-Z annier;



§32. On a result of Fili

To prove the theorem we use special case of a result of Fili.
Recall: for L/Q with Bounded local dearees:

- Lower round S(L) £or liming h(a) By Bomerieri-Z annier;

- Special case: L =N"_;Q%, also upper Bound By Bomeieri and
Zannier:



§32. On a result of Fili

To prove the theorem we use special case of a result of Fili.
Recall: for L/Q with Bounded local dearees:

- Lower round S(L) £or liming h(a) By Bomerieri-Z annier;

- Special case: L =N"_;Q%, also upper Bound By Bomeieri and
Zannier:

n

1 <~ log(pi) . log(pi)
— < < .
3 2 (ar+ 1) = ol M) = 2




§372. On a resurt of Fili

To prove the theorem we use special case of a result of Fili.
Recall: for L/Q with Bounded local dearees:

- Lower round S(L) £or liming h(a) By Bomerieri-Z annier;

- Special case: L =N"_;Q%, also upper Bound By Bomeieri and
Zannier:

n

1 <~ log(pi) . log(pi)
— < < .
3 2 (ar+ 1) = ol M) = 2

- Generalisation ry Fili (special case):
Theorem (Fili, 20). Let py, ..., p, Be distinet prives.




§372. On a resurt of Fili

To prove the theorem we use special case of a result of Fili.
Recall: for L/Q with Bounded local dearees:

- Lower round S(L) £or liming h(a) By Bomerieri-Z annier;

- Special case: L =N"_;Q%, also upper Bound By Bomeieri and
Zannier:

n

1 <~ log(pi) . log(pi)
— < < .
3 2 (ar+ 1) = ol M) = 2

- Generalisation ry Fili (special case):

Theorem (Fili, 20). Let py, ..., p, Be distinet prives. For
each i, fix E;/Q,, finite Galois extension with ramification
index ¢; and inertia dearee f;.




§372. On a resurt of Fili

To prove the theorem we use special case of a result of Fili.
Recall: for L/Q with Bounded local dearees:

- Lower round S(L) £or liming h(a) By Bomerieri-Z annier;

- Special case: L =N"_;Q%, also upper Bound By Bomeieri and
Zannier:

n

1 <~ log(pi) . log(pi)
— < < .
3 2 (ar+ 1) = ol M) = 2

- Generalisation ry Fili (special case):

Theorem (Fili, 20). Let py, ..., p, Be distinet prives. For
each i, fix E;/Q,, finite Galois extension with ramification
index e and inertia dearee f. Let L;/Q maximal Galois
extension contained in E;.




§372. On a resurt of Fili

To prove the theorem we use special case of a result of Fili.
Recall: for L/Q with Bounded local dearees:

- Lower round S(L) £or liming h(a) By Bomerieri-Z annier;

- Special case: L =N"_;Q%, also upper Bound By Bomeieri and
Zannier:

n

1 <~ log(pi) . log(pi)
— < < .
3 2 (ar+ 1) = ol M) = 2

- Generalisation ry Fili (special case):

Theorem (Fili, 20). Let py, ..., p, Be distinet prives. For
each i, fix E;/Q,, finite Galois extension with ramification
index e and inertia dearee f. Let L;/Q maximal Galois
extension contained in E;. Then

liminf h(a) < im

aen?_ L; - P e,(p,f’ — 1) .
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§372. On a resurt of Fili

Our result follows:
» For each prime p;, let E;/Qp, uniQue unramitfied Quadratic
extension, L; maximal Galois extension of Q inside E;

» By Fili:

||m|nf_h( a) < z”: |02g(p,-) < i Ioi(2k) <T.

enw -1~
o iz1 Pi k=1

» Pick iteratively x, € N L\ {x1,...,xp—1} With h(x,) < T=
the Galois cosure of Q(xi, X, ...) satisfies the claim.

— Fili's result:
- more aeneral (replace Q, By p—adic field)
- nOt effective: NO explicit Bounds on dearee and heicght Of a

sequence Of intearal elementts iN the liming.

Theorem (C-Fehm, 202D. Effective version of Fili's
theorem (explicit Bounds on height and dearee of elements
in infinite sequence in the liming)
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PeD Uniform Boundedness of local dearees = property (N) 7
Q. QB) = compositum of @uadratic and curic extensions of
dearee 3, has property (ND?7

PBL) Siecel fields and property (ND.

Gaudron, Rémond (20IM: A Siecel field is a a surtield L C Q
satisfying Siecel's lemma ie.

JC(L) > 0 such that for all (a,b,c) € L3\ {(0,0,0)} there exists
(x,y,2z) € L3\ {(0,0,0)} such that ax + by + cz =0 and

H(x,y,z) < C(L)H(a, b,c)*/? (H = exp(h)).

o Numeer fields are Siecel fields

e (Roy-Thunder, Zhana) L = Q is a Siecel field

e (Gaudron, Rémond) I# L/Q infinite with property (N) = L
not a Siecel field

Q. Is the converse true? Are there infinite extensions L/Q
which are neither Sieael fields nor fields with property (ND?
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Pe3) Property (B) and generators of Galois extensions
e (Amoroso, Masser, 20I6) A strona Lehmer Bound:

for any € > 0, Jc(e) > 0 such that h(a)[Q(a) : Q¢ > c(e) £or o
Not root of unity such that Q(a)/Q is Galois.

The BouNd is sO GO0d that one miaht ask:
Q. Does the set {a € Q| Q(a)/Q is Galois} enjoy property
(BY?

e (Amoroso, 20M 1§ a Belonas to a certain dass of
aenerators of S,—extensions, h(a) > c(n) with c(n) = oo with
n.

Q. True for all aenerators of S,—extensions?

What arout other (non-akelian) aroups?



Thank youl



