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§1. Introduction



§1.1 The Weil height

Def. Let α ∈ Q∗ and let pα(x) = a(x − α1) · · · (x − αd) ∈ Z[x ] be

its minimal polynomial (with coprime coefficients).

The (absolute logarithmic) Weil height of α is the number

h(α) =
1
d
· log

(
|a|

d∏
i=1

max(1, |αi |)

)
.

Properties:

I h(α) ≥ 0 for all α;
I h(αm) = |m|h(α) for all m ∈ Z;
I h(σ(α)) = h(α) for all σ ∈ Gal(Q/Q);
I Kronecker’s theorem: h(α) = 0⇔ α = 0 or α is a root of

unity.

Q: What about points of non-zero small height?
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→ Measure of ’arithmetic complexity’ of a number:

• If α = p/q ∈ Q∗ ⇒ h(α) = log(max(|p|, |q|))
So h(2021/2020) = log(2021) while h(1) = 0
• For d fixed: if h(α) ’big’ ⇔ max coefficient of pα(x) is ’big’.

→ 2 definitions of height:

- above one, with ’Mahler measure’ (usefull for

computations)

- height=sum of local contributions (usefull for proving

statements).
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§1.2. Small height

Northcott’s theorem (or, why the height is so usefull):

#{α ∈ Q | h(α) ≤ B, } <∞ for all B ≥ 0, d ≥ 1.

• Effective: you can explicitly find the elements

• Diophantine geometry: bound height + bound degree

⇒ finiteness (e.g. rational points on high genus curves).

Lehmer’s conjecture (or, small height ⇒ big degree):

there exists a constant c > 0 such that for all α ∈ Q
then h(α) · is either 0 or bigger than c .

• Open (known for algebraic numbers which are not algebraic

integers, roots of non-reciprocal polynomials, generators of

Galois extensions,. . . Best unconditional result by Dobrowolski)

Q. Are there sets of algebraic numbers where one can ’do

better’? That is, get the same statements forgetting the

degrees?
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§1.3. Properties (N) and (B)

Def. (Bombieri and Zannier, 2001) A subfield L ⊆ Q has:

I the Northcott property (N) if #{α ∈ L | h(α) ≤ B} <∞
for all B ≥ 0.

I the Bogomolov property (B) if ∃c = c(L) > 0 such that,

for all α ∈ L, either h(α) = 0 or h(α) ≥ c

Remarks:

number fields

have both (N) and (B)

• •

•
?

(by Northcott’s theorem)

Q
has neither (B) nor (N)
(as h(21/n) = log(2)/n→ 0)

Problem: Given a infinite extension L/Q, decide

whether it has (N) or (B). Hard in general!
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§1.4. How much is known on property (B)?

Many examples of fields with (B):

1) Fields obtained ’adding torsion’
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Examples: Qtr , Galois extensions with bounded local degrees

3) Generalization of (1) and (2)

(Amoroso, David and Zannier, 2014)

Rem. All the above examples do not satisfy property (N):

- K ab , Q(Etor ) contain infinitely many roots of 1

- Qtr contains a sequence of elements with height

→ 0.27328... (Smyth, 1980)

- Qtp : lim infα∈Qtp h(α) ≤ (log p)/(p − 1) (Bombieri, Zannier,
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Recall: L/Q Galois with bounded local degrees ⇒ L has (B).

More precisely:

Theorem (Bombieri-Zannier, 2001). L/Q Galois extension,

S(L) 6= ∅ set of primes at which L has bounded local degrees.

Then

lim inf
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h(α) ≥

(ep , fp ramification index and inertial degree of L at p).

• If β(L)=∞ ⇒ L has also (N) (Bolzano-Weierstrass)

• L number field ⇒ β(L)=∞ (Chebotarev density + PNT)

Q. ∃ infinite extensions L/Q such that β(L)=∞?

If so, is the divergence of β(L) really

a new criterion for property (N)?
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§2.1. A new criterion for (N)

Theorem (C.-Fehm, 2020).

(1) The divergence of β(L) is a new criterion for (N):

∃ infinite Galois extensions L/Q such that:

I β(L) =∞;
I L does not satify Bombieri & Zannier’s criterion (i.e. L

is not of the form Q(d)
ab )

I L does not satify Widmer’s criterion (on fast growth

of discriminants in towers).

(2) (Some freedom in chosing the Galois group)

Given any infinite product G =
∏∞

i=1 Gi of finite solvable

groups Gi , ∃ L/Q Galois such that Gal(L/Q) = G and β(L) =∞.
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→ Ideas in the proof of (1):

If β(L) = 1
2

∑
p∈S(L) log p/(ep(pfp + 1)) want to prove:

(i) if β(L) =∞⇒ L not of the form Q(d)
ab

• Proof (easy):

Remark:

- If M ⊆ L⇒ β(L) ≤ β(M)
- lots of p have ’big’ inertia degree in L⇒ β(L) is small

- If L = Q(d)
ab ⇒ β(L) ≤ β(Q(2)) as Q(2) ⊆ Q(d)

ab

- β(Q(2)) <∞ as every prime has inertia degree 2 in Q(2) .
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- construct L=compositum of cyclic extensions Fi/Q of prime
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split totally in Fi
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good control

growth of disc(Fi/Q)

⇓
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(take Fi ⊆ Q(ζ`i1 , . . . , ζ`in ) with `ij carefully chosen via Walfisz’s thm
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To prove: given G =
∏

i Gi direct product of finite solvable

groups Gi , want to construct L/Q Galois with β(L) =∞ and

Gal(L/Q) = G .

• Recall:

Thm. (Shafarevich) Every finite solvable group occurs as the Galois

group of an extension of Q.

• We prove a sharper version of Shafarevich’s theorem:

Thm. Given a finite solvable group G and a finite set of primes S ,

there exist infinitely many linearly disjoint extensions L/Q having

Gal(L/Q) = G , which are totally real and in which all primes in S split

totally.

• Proof based on solution of split embedding problems with special

local behaviour (Neukirch)

• L constructed as compositum of suitable realisations of groups

Gi ’s
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§3.2. Property (N) and local degrees

Recall: K
(d)
ab has property (N) (Bombieri, Zannier).

• K
(d)
ab /K is abelian and has uniformly bounded local degrees

i.e. there exists M > 0 such that, for all p, K
(d)
ab can be

embedded in an extension of Qp of degree ≤ M .

• L/K abelian with uniformly bounded local degrees ⇔
L = K

(d)
ab for some d (C. 2013)

• Bombieri-Zannier’s thm can be stated as: every abelian

extension of a n.f. with uniformly bounded local degrees has

(N).

Q3: (((
((

Uniform boundedness of the local degrees at all

primes⇒ (N)?

Theorem (C.-Fehm, 2020). ∃ infinite Galois extensions

L/Q without property (N), but having bounded

local degrees at all primes.
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§3.2. On a result of Fili

To prove the theorem we use special case of a result of Fili.

Recall: for L/Q with bounded local degrees:

- Lower bound β(L) for liminf h(α) by Bombieri-Zannier;

- Special case: L = ∩ni=1Qtpi , also upper bound by Bombieri and

Zannier:

1
2

n∑
i=1

log(pi )
(pi + 1)

≤ lim inf
α∈∩n

i=1Q
tpi
h(α) ≤

n∑
i=1

log(pi )
(pi − 1)

.

- Generalisation by Fili (special case):

Theorem (Fili, 2014). Let p1, . . . , pn be distinct primes. For

each i , fix Ei/Qpi finite Galois extension with ramification

index ei and inertia degree fi . Let Li/Q maximal Galois

extension contained in Ei . Then

lim inf
α∈∩n

i=1Li

h(α) ≤
n∑

i=1

log(pi )
ei (p

fi
i − 1)

.
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§3.2. On a result of Fili

Our result follows:

I For each prime pi , let Ei/Qpi unique unramified quadratic

extension, Li maximal Galois extension of Q inside Ei

I By Fili:

lim inf
α∈∩n

i=1Li

h(α) ≤
n∑

i=1

log(pi )
p2
i − 1

≤
∞∑
k=1

log(k)
k2 < T .

I Pick iteratively xn ∈ ∩ni=1Li \ {x1, . . . , xn−1} with h(xn) < T⇒
the Galois closure of Q(x1, x2, . . .) satisfies the claim.

→ Fili’s result:

- more general (replace Qp by p−adic field)

- not effective: no explicit bounds on degree and height of a

sequence of integral elements in the liminf.

Theorem (C.-Fehm, 2021). Effective version of Fili’s

theorem (explicit bounds on height and degree of elements

in infinite sequence in the liminf)
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Some open problems on property (N)

Pb.1) Uniform boundedness of local degrees ⇒ property (N) ?

Q. Q(3) = compositum of quadratic and cubic extensions of

degree 3, has property (N)?

Pb.2) Siegel fields and property (N).

Gaudron, Rémond (2017): A Siegel field is a a subfield L ⊆ Q
satisfying Siegel’s lemma i.e.

∃C (L) > 0 such that for all (a, b, c) ∈ L3 \ {(0, 0, 0)} there exists

(x , y , z) ∈ L3 \ {(0, 0, 0)} such that ax + by + cz = 0 and

H(x , y , z) ≤ C (L)H(a, b, c)1/2 (H = exp(h)).
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Thank you!


