Why don't we see C^2 -singularities?

I spy with my little eye – ich seh', ich seh', was Du nicht siehst

What we see - and what we don't see

Let us start with three real plane algebraic curves

(drawing courtesy of Hana Melánová)

<ロト < 回 > < 直 > < 直 > < 直 > < 直 > < 三 > 3/35

Curvatures $t \rightarrow 0$:

Curvatures $t \rightarrow 0$:

$$t
ightarrow (t^3,t^2):\kappa=t^2/t^3\longrightarrow\infty$$

◆□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ かへで 5/35

Curvatures $t \rightarrow 0$:

$$t
ightarrow (t^5,t^2): \kappa = t^4/t^3 \longrightarrow 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Curvatures $t \rightarrow 0$:

$$t
ightarrow (t^3, t^2) : \kappa = t^2/t^3 \longrightarrow \infty$$

 $t
ightarrow (t^5, t^2) : \kappa = t^4/t^3 \longrightarrow 0$
 $t
ightarrow (t^3, t^4) : \kappa = t^4/t^6 \longrightarrow \infty$

◆□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ∧ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ <

Differentiability of $x^4 = y^3$:

Differentiability of $x^4 = y^3$:

 $\gamma(t) = (t, t^{4/3})$

Differentiability of $x^4 = y^3$:

$$\gamma(t) = (t, t^{4/3})$$

$$\gamma'(t) = (1, rac{4}{3}t^{1/3})$$

Differentiability of $x^4 = y^3$:

$$\gamma(t)=(t,t^{4/3})$$

$$\gamma'(t) = (1, \frac{4}{3}t^{1/3})$$

$$\gamma''(t) = (0, \frac{4}{9}t^{-2/3})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Differentiability of $x^4 = y^3$:

$$\gamma(t)=(t,t^{4/3})$$

$$\gamma'(t) = (1, \frac{4}{3}t^{1/3})$$

$$\gamma''(t) = (0, \frac{4}{9}t^{-2/3})$$

$$\Rightarrow$$
 not C^2 at 0.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

< □ > < 個 > < ≧ > < ≧ > 差 の Q (~ 7/35

Points – Lines – Curves – Directions – Locations.

Points – Lines – Curves – Directions – Locations.

Euclid (approx. 300 BC):

Ένα σημείο είναι αυτό δέν έχει κανένα μέρος.

(日)

9/35

Points – Lines – Curves – Directions – Locations.

Euclid (approx. 300 BC):

Ένα σημείο είναι αυτό δέν έχει κανένα μέρος.

A point is that which has no part.

9/35

Not very helpful

to pick a cherry from a cherry tree

Not very helpful

to pick a cherry from a cherry tree

. . .

◆□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ∧ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ <

. . . .

or to spot a mouse

or to spot a mouse

We start with a point

We start with a point

(ロト (日) (目) (目) (日) (13/35)

We start with a point

A point is the characteristic function of a small disk.

Here is another point

◆□ → ◆□ → ◆ ■ → ◆ ■ → ○ ○ ○ 14/35 Here is another point

Are they different?

Retina – Cones – Rods – Photons – Ganglion Cells – Pathway Fibers – Optic Nerve

Retina – Cones – Rods – Photons – Ganglion Cells – Pathway Fibers – Optic Nerve

0.5 mm thick 35 mm round 130.000.000 receptor cells 10.000.000 intermediate cells 1.000.000 ganglion cells 1.000.000 fibers

The Retina

(drawing courtesy of Helga Kolb)

Neuronal cells can only shoot

Neuronal cells can only shoot

< □ > < □ > < ≧ > < ≧ > < ≧ > 差 の Q (~ 17/35

Neuronal cells can only shoot

Once!

Reload and shoot again

Intensity = Frequency!

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖▶ ■ のQペ 18/35 Two Principles

• Abundance (of bricks)

• Economy (of information)

Three Facts

• brightness irrelevant

• contour and contrast count

• local geometry suffices

Inside the Retina

Receptive Field of Ganglion Cell:

21 / 35

2

The Protagonists

Ramón y Cajal

< □ ト < □ ト < 直 ト < 直 ト < 直 ト 三 の Q (~ 22 / 35

Ganglion Responses

Edgar Adrian & Keffer Hartline

Ganglion Responses

Stephen Kuffler

Ganglion Responses

David Hubel & Thorsten Wiesel

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

25 / 35

Retinal Pathways:

Light on Receptor Cell – Signal – Excitatory Synapse – Signal – Ganglion Cell – Action Potential

Light on Receptor Cell – Signal – Inhibitory Synapse – No Signal – Ganglion Cell – No Action Potential

Superposition: Excitatory + Inhibitory = Cancellation

Retinal Pathways

Retinal Pathway:

Off Response:

Inhibitory Synapse – Light off – Inhibition stopped – Positive Signal – Firing

We see a point ...

Processing the picture of a bright point on dark background:

29 / 35

-

Processing the picture of a bright line on dark background:

Processing the experience of a directional movement:

delayed firing of receptor cell

Processing the experience of a directional movement:

delayed firing of receptor cell

Processing the picture of a curve:

integration of vector fields

Cortical Cells ...

Directional sensitivity of cortical cells

・ロト・日本・モート ヨー うへの

Directional sensitivity of cortical cells

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Directional sensitivity of cortical cells

 $z^{\prime}(t)=z(t)^{-1/2}$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへの 34/35

