Why don't we see C^{2}-singularities?

What we see - and what we don't see

Let us start with three real plane algebraic curves

$$
x^{2}=y^{3}
$$

$$
x^{2}=y^{5}
$$

$$
x^{4}=y^{3}
$$

(drawing courtesy of Hana Melánová)

Curvatures

Curvatures $\quad t \rightarrow 0$ ：

教 －
2

Curvatures

Curvatures $\quad t \rightarrow 0$:

$$
t \rightarrow\left(t^{3}, t^{2}\right): \kappa=t^{2} / t^{3} \longrightarrow \infty
$$

Curvatures

Curvatures $\quad t \rightarrow 0$:

$$
t \rightarrow\left(t^{3}, t^{2}\right): \kappa=t^{2} / t^{3} \longrightarrow \infty
$$

$$
t \rightarrow\left(t^{5}, t^{2}\right): \kappa=t^{4} / t^{3} \longrightarrow 0
$$

Curvatures

Curvatures $\quad t \rightarrow 0$:

$$
t \rightarrow\left(t^{3}, t^{2}\right): \kappa=t^{2} / t^{3} \longrightarrow \infty
$$

$$
t \rightarrow\left(t^{3}, t^{4}\right): \kappa=t^{4} / t^{6} \longrightarrow \infty
$$

$$
t \rightarrow\left(t^{5}, t^{2}\right): \kappa=t^{4} / t^{3} \longrightarrow 0
$$

Differentiability

Differentiability of $x^{4}=y^{3}$:

Differentiability

Differentiability of $x^{4}=y^{3}$:

$$
\gamma(t)=\left(t, t^{4 / 3}\right)
$$

Differentiability

Differentiability of $x^{4}=y^{3}$:

$$
\begin{aligned}
& \gamma(t)=\left(t, t^{4 / 3}\right) \\
& \gamma^{\prime}(t)=\left(1, \frac{4}{3} t^{1 / 3}\right)
\end{aligned}
$$

Differentiability

Differentiability of $x^{4}=y^{3}$:

$$
\begin{aligned}
& \gamma(t)=\left(t, t^{4 / 3}\right) \\
& \gamma^{\prime}(t)=\left(1, \frac{4}{3} t^{1 / 3}\right) \\
& \gamma^{\prime \prime}(t)=\left(0, \frac{4}{9} t^{-2 / 3}\right)
\end{aligned}
$$

Differentiability

Differentiability of $x^{4}=y^{3}$:

$$
\begin{aligned}
& \gamma(t)=\left(t, t^{4 / 3}\right) \\
& \gamma^{\prime}(t)=\left(1, \frac{4}{3} t^{1 / 3}\right) \\
& \begin{aligned}
\gamma^{\prime \prime}(t)=\left(0, \frac{4}{9} t^{-2 / 3}\right) & \\
& \Rightarrow \text { not } C^{2} \text { at } 0 .
\end{aligned}
\end{aligned}
$$

V

How do we perceive geometric objects with our eye and our brain?

How do we perceive geometric objects with our eye and our brain?

How do we perceive geometric objects with our eye and our brain?
Points - Lines - Curves - Directions - Locations.

How do we perceive geometric objects with our eye and our brain?
Points - Lines - Curves - Directions - Locations.

Euclid (approx. 300 BC):

How do we perceive geometric objects with our eye and our brain?
Points - Lines - Curves - Directions - Locations.

Euclid (approx. 300 BC):

$$
\text { 'Eva } \sigma \eta \mu \varepsilon i ́ o ~ \varepsilon i ́ \nu \alpha \iota ~ \alpha u \tau o ́ ~ \delta \varepsilon ́ \nu ~ \varepsilon ́ \chi \varepsilon \iota ~ \kappa \alpha \nu \varepsilon ́ \nu \alpha ~ \mu \varepsilon ́ \rho o \varsigma . ~
$$

A point is that which has no part.

Not very helpful
to pick a cherry from a cherry tree

Not very helpful
to pick a cherry from a cherry tree

or to spot a mouse

Points

We start with a point

Points

We start with a point

Points

We start with a point

A point is the characteristic function of a small disk.

Points

Here is another point

Points

Here is another point

Are they different?

Some Physiology

Retina - Cones - Rods - Photons - Ganglion Cells - Pathway Fibers - Optic Nerve

Some Physiology

Retina - Cones - Rods - Photons - Ganglion Cells - Pathway Fibers - Optic Nerve
0.5 mm thick

35 mm round
130.000.000 receptor cells
10.000.000 intermediate cells
1.000.000 ganglion cells
1.000 .000 fibers

Firing
Neuronal cells can only shoot

Firing

Neuronal cells can only shoot

Firing

Neuronal cells can only shoot

Once!

Firing

Reload and shoot again

Intensity $=$ Frequency!

Two Principles

Two Principles

- Abundance (of bricks)
- Economy (of information)

Three Facts

- brightness irrelevant
- contour and contrast count
- local geometry suffices

Receptive Field of Ganglion Cell:

The Protagonists

Ramón y Cajal

Ganglion Responses

Edgar Adrian \& Keffer Hartline

Ganglion Responses

Stephen Kuffler

Ganglion Responses

David Hubel \& Thorsten Wiesel

A

D

E

F

G

Retinal Pathways

Retinal Pathways:

Light on Receptor Cell - Signal - Excitatory Synapse - Signal - Ganglion Cell - Action Potential

Light on Receptor Cell - Signal - Inhibitory Synapse - No Signal - Ganglion Cell - No Action Potential

Superposition: Excitatory + Inhibitory = Cancellation

Retinal Pathways

Retinal Pathway:

Off Response:

Inhibitory Synapse - Light off - Inhibition stopped - Positive Signal - Firing

Processing the picture of a bright point on dark background:

We see a line

Processing the picture of a bright line on dark background:

Processing the experience of a directional movement:
delayed firing of receptor cell

Processing the experience of a directional movement:
delayed firing of receptor cell

Processing the picture of a curve:
integration of vector fields

Cortical Cells

Directional sensitivity of cortical cells

Cortical Cells

Directional sensitivity of cortical cells

Cortical Foliation

Directional sensitivity of cortical cells

$$
z^{\prime}(t)=z(t)^{1 / 2}
$$

$$
z^{\prime}(t)=z(t)^{-1 / 2}
$$

The End ...

