On Moment Problems with Holonomic Functions

F. Bréhard, M. Joldes, J-B. Lasserre




Introduction

Moment Problems and Applications

Moments of a measure

Mea :/ z%du for o€ N™2
n
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co.zom, Jal = ay 4+ - - + an, K[z]4 = polynomials of total degree at

— Direct problem: knowing G and f, find a complete system of recurrences for (mq)

~~ Finite determinancy of such measures
~~ Solved with Creative Telescoping, e.g., + 's algorithm

— Inverse problem: reconstruct G and/or f, given finitely many moments mq

— Applications in Statistics, Signal-processing, Combinatorics...
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Inverse problem: Data recovery from moments

Reconstruction of a shape G C R™(convex or not)

from the knowledge of finitely many moments

Mo = / 2%dz, o] <N,
G

for some given integer IV, is a challenging problem.
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for some given integer NN, is a challenging problem.

A Toulouse Duck?
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Inverse problem: Data recovery from moments

Reconstruction of a shape G C R™(convex or not)

from the knowledge of finitely many moments

ma:/azadx, la] < N,
G

for some given integer IV, is a challenging problem.

@ Many algorithms developed in optimization, analysis or statistics™®

o Numerical methods, e.g.: convex polytopes

; planar quadrature domains ; sublevel set of
homogeneous polynomials ; shape and Gaussian Mixture
reconstruction
e Symbolic/algebraic methods:
Multivariate extensions of Prony’s method, e.g. (Reconstruction of sparse

exponential functions (3 ; Aae™”) from evaluations, moments of Dirac measures);
reconstruction of univariate piecewise D-finite densities
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Exact Support and/or Density reconstruction

o lasserre and Putinar’s exact reconstruction algorithm (2015)

Theorem 1 (Inverse Problem: Lebesgue measure, Algebraic support)

Let GC R™, bounded open set, whose algebraic boundary is included in the zero set of
a polynomial g € K[z]g4. Given d and a finite number of power moments mq,, up to
order || = 3d, the coefficients of g can be exactly recovered.
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Let GC R™, bounded open set, whose algebraic boundary is included in the zero set of
a polynomial g € K[z]g4. Given d and a finite number of power moments mq,, up to
order || = 3d, the coefficients of g can be exactly recovered.

o Key idea: Linear recurrences satisfied by the moments + Stokes’ Theorem

Our contribution: a computer algebra approach

@ generalization in the framework of holonomic distributions

@ exact recovery of both support and Exp-Polynomial density f = exp(p), with
explicit bound on the required number of moments

@ similar algorithm for holonomic density, but no a priori bound on the required
number of moments
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Holonomic Distributions and Recurrences on Moments

Operator Algebras, Differential Equations and Recurrences

Differential equations/recurrences are translated to skew polynomials:

1. Differential Ore Algebras

— K[z](8z) polynomial Ore algebra

— K(z)(0z) rational Ore algebra

0u,4(2) = g@)0n+ 20 g(a) € k()
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(zd, f) =0
= z € Ann(d), but 1 ¢ Ann(J)
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&cizi = ziazi +1
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Ore Algebras, Differential Equations and Recurrences

2. Difference Ore Algebras

— Difference operators: non-commutative, spanned by a1, Sa;, ..., an, Sa,
(iu)o = 0iUa
(Saiu)a = Uxq,...,a;+1,...,an
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Ore Algebras, Differential Equations and Recurrences

2. Difference Ore Algebras

— Difference operators: non-commutative, spanned by a1, Sa;, ..., an, Sa,

(aiu)a = iun
(Saiu)a = Uxq,...,a;+1,...,an

Saiai = (ai =+ I)Sai

— Ann(u) = {R € K[a](Sa) | Ru =0} recurrences satisfied by u

Goals

Recurrences for the moments mq = / z% f(z)dz:
G

o Direct problem: J C Ann(f) 53 C Ann(ma)

o Inverse problem: Reconstruct G and J C 2Ann(f) from sufficiently many mq
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Holonomic Measures

— Measure u = flg as a linear functional:
(flg,¥) = /]R" p(@)f(z)1lg(z)dz = /C;w(x)f(ac)dx

— Action of Ore polynomials: Ly =7
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— Measure u = flg as a linear functional:
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Example: Lebesgue measure over a segment

Let G=[-1,1], f=1andpu=1¢g

1
(e ¢) = / o(z)da
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— Measure u = flg as a linear functional:
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Holonomic Measures

— Measure u = flg as a linear functional:

(1600 = [ e@f@icEds= [ o)

Example: Lebesgue measure over a segment

Let G=[-1,1], f=1andp=1¢g
(2? — )la,9) = (g, —0a(2® — 1)) = [(1 —a2)g]L, =0
= (22 -1)0;1g=0

o Ore polynomials acting on distributions: (LT, ) = (T, L* ¢)

of =w; O, =—0s, (LiLo)* = L3L}

k3

o Ann(T) in K[z](0z) = holonomic instead of D-finite
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Holonomic Distributions and Recurrences on Moments

From Holonomic Measures to Recurrences on Moments

Example: Lebesgue measure over a segment (continued)

Let G=[-1,1, f=1, p=1c¢ and ¢=2ak:

0=(1-22d;1q,")
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From Holonomic Measures to Recurrences on Moments

Example: Lebesgue measure over a segment (continued)

Let G=[-1,1, f=1, p=1c¢ and ¢=2ak:

0=((1—22)dlg,z*) = (1g,0x(a? — 1)zF) = [1 ((k +2)zh ! - kwk_1> dz
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Holonomic Distributions and Recurrences on Moments

From Holonomic Measures to Recurrences on Moments

Example: Lebesgue measure over a segment (continued)

Let G=[-1,1, f=1, p=1c¢ and ¢=2ak:

0=((1—22)dlg,z*) = (1g,0x(a? — 1)zF) = [1 ((k +2)zh ! - W’—l) dz

= Recurrence satisfied by the moments (my):

(k+2)m;€+1 —kmip_1 =0

This is indeed true...

1 2 .
- :/ oFdp — J T !f k even
1 0 if kK odd
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Holonomic Distributions and Recurrences on Moments

Using Integration by Parts

Example: Exp-Poly density over a segment

1
Let G = [-1,1], f=-exp(—22), p= flg. Recall: (Lu,p) = [ (L*p)fdx

1
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Using Integration by Parts
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1
Let G = [-1,1], f=-exp(—22), p= flg. Recall: (Lu,p) = [ (L*p)fdx
1
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Using Integration by Parts

Example: Exp-Poly density over a segment

1
Let G = [-1,1], f=-exp(—22), p= flg. Recall: (Lu,p) = [ (L*p)fdx
1

= /1 0 (1—22)(8y —2z)fdx = /1 (02 + 22)(z® — ) fdz + [(2? — 1), '}l ]
1 _:,0_/ 1 ~

= (1 —22)(0y — 2x) € Ann(u)
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Using Integration by Parts

Example: Exp-Poly density over a segment

Let G = [-1,1], f=-exp(—22), p= flg. Recall: (Lu,p) = [ (L*p)fdx

1 ) 1
:/ 0 (1—22)(8y —2z)fdx = / (0z + 2z)(z® — 1) fdx +
—_—

-1 -1 —_—
=0 =0

= (1 —22)(0y — 2x) € Ann(u)

To obtain a recurrence, let p = z*:

8z + 22) (2% — 1)z" f(z)dz =0
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Using Integration by Parts

Example: Exp-Poly density over a segment

Let G = [-1,1], f=-exp(—22), p= flg. Recall: (Lu,p) = [ (L*p)fdx

1 ) 1
:/ 0 (1—22)(8y —2z)fdx = / (0z + 2z)(z® — 1) fdx +
—_—

-1 -1 —_—
=0 =0

= (1 —22)(0y — 2x) € Ann(u)

To obtain a recurrence, let p = z*:

= Recurrence for the my:
2mpy3 + kmp1 —kmp_1 =0
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Holonomic Distributions and Recurrences on Moments

The General Case

uw=flg, L €K[z](0z) of order r,

o Use Lagrange identity:

e (Lf) — (L") f = 0z LL(f,9)

— L, bilinear concomitant in f, ¢ with derivatives of order < r — 1
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— if L € Ann(f) —  where g =0 on 0G —  use Stokes’ theorem

= L=g"L e Am(p)

10 / 26



Holonomic Distributions and Recurrences on Moments

From Differential Equations to Recurrences

— Translate L = g"L € Ann(u) into a recurrence on (mq):

i = Sai O, —  —o Sy

v 7

11 / 26



Holonomic Distributions and Recurrences on Moments

From Differential Equations to Recurrences

— Translate L = g"L € Ann(u) into a recurrence on (mq):
x; — Sai 8331 — —OéiS;il

Direct Problem

1. {L1,..., L} C Ann(f) D-finite
2. {L1,...,Lg} C Ann(p)

3. Translate into
{Ri1,..., Ry} C nn(ma)

4. Grébner basis algo on {R1,..., R}

11 / 26



Holonomic Distributions and Recurrences on Moments

From Differential Equations to Recurrences

— Translate L = g"L € Ann(u) into a recurrence on (mq):
x; — Sai 8331 — —OéiS;il

Direct Problem

1. {L1,..., L} C Ann(f) D-finite
2. {L1,...,Lg} C Ann(p)

3. Translate into
{Ri1,..., Ry} C nn(ma)

4. Grébner basis algo on {R1,..., R}

If f(z) = exp(p(z)) and g = 0 on g s.t.
{z € C" | g(x) =0 and Vg(z) =0} = @,
then the recurrences system is holonomic.

= Conjecture for the general case?

11 / 26



Holonomic Distributions and Recurrences on Moments

From Differential Equations to Recurrences

— Translate L = g"L € Ann(u) into a recurrence on (mq):
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1. {L1,..., L} C Ann(f) D-finite
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3. Translate into

{Ri,..., R} C Ann(ma)

4. Grébner basis algo on {R1,..., R}
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{z € C" | g(x) =0 and Vg(z) =0} = @,

then the recurrences system is holonomic.

= Conjecture for the general case?

11 / 26



Inverse Problem: Algorithms and Proofs

Table of Contents

Inverse Problem: Algorithms and Proofs

12 / 26



Inverse Problem: Algorithms and Proofs

Inverse Problem — Roadmap and Issues

— To reconstruct g vanishing on G and L € Ann(f) of order r:

1. Make an ansatz L for L = g" L € 2nn(p)

2. Find the coefficients of L by solving the linear system:

Taa®) = (1 L% = [ (L))o =0,
G
requiring moments mq for |a| < N + ...

3. Extract g and L from L using (numerical) GCDs

(LSN)

13 / 26



Inverse Problem: Algorithms and Proofs

Inverse Problem — Roadmap and Issues

— To reconstruct g vanishing on G and L € Ann(f) of order r:

1. Make an ansatz L for L = g" L € 2nn(p)

2. Find the coefficients of L by solving the linear system:

(Lpa®) = (4, L"a®) = /G (L") f(z)de = 0,

requiring moments mq for |a| < N + ...
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Algorithm R

Input: Moments mq of p for [a| < N +d+s—1
Output: Polynomials g and p

1. Build ansatz Z, = g0z, — 7L1 fori1<i<n
2. Compute coefficients of g, ﬁz with nontrivial solution of
(u, Liz®)y =0, 1<i<n, |o|/<N (LSN)

pi(0, ..., t;, Tiq1,...,2n)dt; where p; =h;/g
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=

i
o8

14 / 26



Inverse Problem: Algorithms and Proofs

Reconstruction of Exp-Poly Densities

— p= flg with f(z) = exp(p(z)) for p € K[z]|s and g € K[z]4 vanishing on 0G

Li = g0, —gp,, € Ann(p)
~—
hi

Algorithm R

Input: Moments mq of p for [a| < N +d+s—1
Output: Polynomials g and p

1. Build ansatz Z, = g0z, — 7L1 fori1<i<n
2. Compute coefficients of g, ﬁz with nontrivial solution of
(u, Liz®) =0, 1<i<n, |of<N (LSN)

f~7:(0,...,ti,ﬁ?iJrl,...,ﬂ?n)dti where  p; =7L1/§
0

Theorem — Correctness of RECONSTRUCTEXPPOLY

If N >3d+ s— 1, then RECONSTRUCTEXPPOLY computes:
0 g=Ag with A #0
o p=p—p(0)

14 / 26



Inverse Problem: Algorithms and Proofs

Reconstruction of Exp-Poly Densities — Proof

Theorem — Correctness of RE

If N > 777, then RECONSTRUCTEXPPOLY computes:
0 g=Ag with A #0 o p=p—p(0)

Proof.

15 / 26



Inverse Problem: Algorithms and Proofs

Reconstruction of Exp-Poly Densities — Proof

Theorem — Correctness of RE

If N > 777, then RECONSTRUCTEXPPOLY computes:
0 g=Ag with A #0 o p=p—p(0)

Proof.
1. Reconstruction of p

15 / 26



Inverse Problem: Algorithms and Proofs

Reconstruction of Exp-Poly Densities — Proof

Theorem — Correctness of RE

If N > 777, then RECONSTRUCTEXPPOLY computes:

0 g=Ag with A #0 o p=p—p(0)
Proof.
1. Reconstruction of p for all p € K[z]n:
0 = (Lp,¢)

15 / 26



Inverse Problem: Algorithms and Proofs

Reconstruction of Exp-Poly Densities — Proof

Theorem — Correctness of REC ExpPoLy

If N > 777, then RECONSTRUCTEXPPOLY computes:

0 g=Ag with A #0 o p=p—p(0)
Proof.
1. Reconstruction of p for all p € K[z]n:
0 = (Lp,p) = / ¢ (§02, — hi) fdz + / geféi-ids
G aG

15 / 26



Inverse Problem: Algorithms and Proofs

Reconstruction of Exp-Poly Densities — Proof

Theorem — Correctness of REC ExpPoLy

If N > 777, then RECONSTRUCTEXPPOLY computes:

0 g=Ag with A #0 o p=p—p(0)
Proof.
1. Reconstruction of p for all p € K[z]n:

0 = @ue) = [ @, ~Rosde + [ Gofa-ids
G oG

15 / 26



Inverse Problem: Algorithms and Proofs

Reconstruction of Exp-Poly Densities — Proof

Theorem — Correctness of REC ExpPoLy

If N > 3d+ s— 1, then RECONSTRUCTEXPPOLY computes:

0 g=Ag with A #0 o p=p—p(0)
Proof.
1. Reconstruction of p for all p € K[z]n:

0 = @ue) = [ @, ~Rosde + [ Gofa-ids
G oG
=0

— Take ¢ = (gpy, — hi)g? of degree 3d + s — 1

15 / 26



Inverse Problem: Algorithms and Proofs

Reconstruction of Exp-Poly Densities — Proof

Theorem — Correctness of REC ExpPoLy

If N > 3d+ s— 1, then RECONSTRUCTEXPPOLY computes:

0 g=Ag with A #0 o p=p—p(0)
Proof.
1. Reconstruction of p for all p € K[z]n:

0 = @ue) = [ @, ~Rosde + [ Gofa-ids
G oG

() =0

— Take ¢ = (gpy, — hi)g? of degree 3d + s — 1
— Hence () =0 = ¢2(gpl, —hi)?f=0onG = Pl =hi/g

15 / 26



Inverse Problem: Algorithms and Proofs

Reconstruction of Exp-Poly Densities — Proof

Theorem — Correctness of REC

If N > 3d+ s— 1, then RECONSTRUCTEXPPOLY computes:

0 g=Ag with A #0 o p=p—p(0)
Proof.
1. Reconstruction of p for all p € K[z]n:

0 = @ue) = [ @, ~Rosde + [ Gofa-ids
G oG

() =0

— Take ¢ = (gpy, — hi)g? of degree 3d + s — 1
— Hence () =0 = ¢2(gpl, —hi)?f=0onG = Pl =hi/g

2. Reconstruction of g

15 / 26



Inverse Problem: Algorithms and Proofs

Reconstruction of Exp-Poly Densities — Proof

Theorem — Correctness of REC

If N > 3d+ s— 1, then RECONSTRUCTEXPPOLY computes:

0 g=Ag with A #0 o p=p—p(0)
Proof.
1. Reconstruction of p for all p € K[z]n:

0 = @ue) = [ @, ~Rosde + [ Gofa-ids
G oG

() =0

— Take ¢ = (gpy, — hi)g? of degree 3d + s — 1
— Hence () =0 = ¢2(gpl, —hi)?f=0onG = Pl =hi/g

2. Reconstruction of g for all p € K[z]n:

/ gpf e -n dS =0
oG

15 / 26



Inverse Problem: Algorithms and Proofs

Reconstruction of Exp-Poly Densities — Proof

Theorem — Correctness of REC

If N > 3d+ s— 1, then RECONSTRUCTEXPPOLY computes:

0 g=Ag with A #0 o p=p—p(0)
Proof.
1. Reconstruction of p for all p € K[z]n:

0 = @ue) = [ @, ~Rosde + [ Gofa-ids
G oG

() =0

— Take ¢ = (gpy, — hi)g? of degree 3d + s — 1
— Hence () =0 = ¢2(gpl, —hi)?f=0onG = Pl =hi/g

2. Reconstruction of g for all p € K[z]n:

/ gpf e -n dS =0
oG N~
=g, /1V4ll

15 / 26



Inverse Problem: Algorithms and Proofs

Reconstruction of Exp-Poly Densities — Proof

Theorem — Correctness of REC

If N > 3d+ s— 1, then RECONSTRUCTEXPPOLY computes:

0 g=Ag with A #0 o p=p—p(0)
Proof.
1. Reconstruction of p for all p € K[z]n:

0 = @ue) = [ @, ~Rosde + [ Gofa-ids
G oG

() =0

— Take ¢ = (gpy, — hi)g? of degree 3d + s — 1
— Hence () =0 = ¢2(gpl, —hi)?f=0onG = Pl =hi/g

2. Reconstruction of g for all p € K[z]n:

/ gpf e -n dS =0
oG N~
=g, /1V4ll

— Take ¢ = ggy,, of degree 2d — 1

15 / 26



Inverse Problem: Algorithms and Proofs

Reconstruction of Exp-Poly Densities — Proof

Theorem — Correctness of REC

If N > 3d+ s— 1, then RECONSTRUCTEXPPOLY computes:

0 g=Ag with A #0 o p=p—p(0)
Proof.
1. Reconstruction of p for all p € K[z]n:

0 = @ue) = [ @, ~Rosde + [ Gofa-ids
G oG

() =0

— Take ¢ = (gpy, — hi)g? of degree 3d + s — 1
— Hence () =0 = ¢2(gpl, —hi)?f=0onG = Pl =hi/g

2. Reconstruction of g for all p € K[z]n:

/ gpf e -n dS =0
oG N~
=g, /1V4ll

— Take ¢ = gg;,, of degree 2d — 1 = ?g;f”vfgu =0ondG = ¢g=0 on
oG

15 / 26



Inverse Problem: Algorithms and Proofs
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For N large enough, the rectangular system {Zl, e En} computed by
RECONSTRUCTDENSITY is in 2Ann(f).

Theorem — Correctness of RECONSTRUCTSUPPORT
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© s = max {deg(gir)} maximal degree of the head coefficients
<ig<n
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o Nz22r—1d+(d—1)b+s 0 gir # 0 on 0G
Proof.
—0=(iLinp) = [ ehlLifde— [ L1, (LRp)é 7dS  for g€ Ky
G aG

=0
— Suppose that h= g®ho with g { hg and k < r
ﬁLi (fv’}v“p) = f [Qilﬂp - 89“ (qi2f~up) +---+ (—1)7"711')‘; —1 (qir /\1{ )]
+00,(f) [asohep = 0o, (@ishig) + -+ + (1) 20572 (qurhip)
+...
+05 1 (f) airhep. r mod 2

rlk:/b

~~
— Take ¢ = girhog of deg < (2r — 1)d+ (d—1) b + s, so that

9"t | he ,
. ~ 9n. r+b f
— 0 :/ "N girhe i fdS = (r— 1)!/ (gl,_ 2 q; h()) ——dS
aG ||V Il ag \" v Vgl

= Contradiction: ho =0 on g, hence g | ho
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Inverse Problem: Algorithms and Proofs

The Singular Case — Example in Combinatorics

— Express Catalan numbers as moments of a measure y:

1 2n\ 7 n
Cn = n+1(n) = /Ix f(z)dz
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The Singular Case — Example in Combinatorics

— Express Catalan numbers as moments of a measure y:

1 2n\ 7 n
Cn = n+1(n) = /Ix f(z)dz

(n+2)Cpht1 —(An+2)Cr, =0

. o~ —1
— Reverse translation = < 5, and 0, Sn (n+1):

52 Sot(n+1)—4 S, Sy, (n+1)+2
N — N N —

z2 B4 9,

= (4r—22)9; +2 € Ann(p) =12
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Limits and Perspectives

Some Limits and Perspectives

@ A priori bounds for N in the general case with unknown D-finite density?

o Full determination of the density, including initial conditions

o Extracting the component of V(g) corresponding to 0G
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Limits and Perspectives

Bounds for the Number of Moments?

— Is there an explicit bound Ny on N s.t. for ansatz Lof L= g"L:

(Lp, ) =0 forall ¢ € Klz]x = Lp=0 when N > Ny ?
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Bounds for the Number of Moments?

— Is there an explicit bound Ny on N s.t. for ansatz Lof L= g"L:

(Lp, ) =0 forall ¢ € Klz]x = Lp=0 when N > Ny ?

— The proof of the Exp-Poly density case doesn't generalize:

Tue) = [e(Cnde = [ Li(fe) qids
G oG

7?7

— Such a bound Ny depending only on the structure of L cannot exist:

Example [Batenkov2009] — Legendre Polynomials P, over [—1,1]

Py, () annihilated by L, = (1 —22)02 — 220, +n(n+1) = common ansatz L

but m,(C") = f_ll zFPp(x)de =0 fork<n and m{™ >0

— Explicit bounds depending on upper bounds on the coefficients of L?
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Reconstructing Initial Conditions of the Density

— Algorithm RECONSTRUCTDENSITY only computes a system 3= {Zh A Zn}
but not the initial conditions that fully characterize f
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4 2 0 2

flz,y) = ApeP1(@y)
1 T — el T —1 T — gl
p1=—= 3
2 Y — Uyl Y — Myl
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Limits and Perspectives

Reconstructing Initial Conditions of the Density

4 2

f(@,y) = MePr®Y) 4 \peP2(2:9) 4 ygep3(@0)

1 T — T —
P = Haxi b 1 Maxi
2 Y — Kyi v Y — Kyi

2
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Reconstructing Initial Conditions of the Density

4

f(@,y) = M ePr®Y) 4 \,eP2(2:9) 4 \gep3(@y)

R N
pe b (e Ygp(2omm ) o
2 Y — Kyi Y — Hyi

2
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Limits and Perspectives

Reconstructing Initial Conditions of the Density

— Algorithm RECONSTRUCTDENSITY only computes a system 3= {Zh A Zn}
but not the initial conditions that fully characterize f

— Solution: compute initial moments for a basis of solution densities of 3

o Optimization techniques, e.g., [HenrionlLasserreSavorgnan2009]

o Computer algebra, e.g., [LairezMezzarobbaEIDin2019]
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I(0G) = (g) with g(z,y) =
@+ =9+ - D)((z -2+ - D"+ (y-2)>-1)
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Isolation of the Topological Boundary

1(0G) = (9) with g(z,y) =
(@ + 92 =9 + 9 ~ D((z - 2)? +y° — D(@® + (y—2)° ~ 1)
g reconstructed using 6 digits accuracy for the moments (maq)
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Isolation of the Topological Boundary
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Limits and Perspectives

Conclusion and Perspectives

Contributions:

o Extension of to reconstruction of unknown Exp-Poly
density and unknown semi-algebraic support

— Explicit bound for the number N of required moments

o Reconstruction algorithm for unknown holonomic density and unknown
semi-algebraic support

o Numerical experiments using least-squares approximation when approximate
moments are known

Future work:

o Generic bounds for N depending on the magnitude of the coefficients

o Numerical aspects: robustness w.r.t. approximate moments, or nonpolynomial
boundary

o lIsolation of the topological boundary via perturbation techniques
o Application to problems involving combinatorial sequences

Thank you for your attention!
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