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Introduction Continuous harmonic functions

Continuous harmonic functions

A continuous harmonic function annihilates the standard Laplacian ∆f

if f is a harmonic function on an open set U ⊂ R2, then f is twice differentiable and

∆f =
∂2f

∂x2
+
∂2f

∂y2
= 0.

Example

f (x , y) = ln(x2 + y2) is harmonic in R2 \ (0, 0).

Applications and properties

• analysis – resolution of partial differential equations

• infinitely differentiable in open sets

• maximum principle; mean value properties; Harnack’s inequalities (in the case
of non-negative harmonic functions)
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Introduction Discrete harmonic functions

Discrete harmonic functions

Simplest discrete Laplacian in dimension 2

∆f (x , y) = f (x − 1, y) + f (x + 1, y) + f (x , y − 1) + f (x , y + 1)− 4f (x , y).

Example f (x , y) = xy
360

(
3x4 − 10x2y2 + 3y4 − 5x2 − 5y2 + 14

)
is harmonic in Z2.

Applications and properties

• discrete complex analysis

• probability of absorption at absorbing states of Markov chains
or the Ising model

• satisfy multivariate linear recurrence relations (ubiquitous in combinatorics)
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Introduction Applications to random walks

Gambler Ruin Problem and Harmonic Functions

Sn denotes the fortune at time n, with initial fortune of i gold coins.

At every step, the gambler bets 1 gold coin, and

Ù wins with probability p; Ù loses with probability q = 1− p

p p p

qq q0 1 2 i − 1 i i + 1

(Sn)n∈N can be seen as a random walk starting at i > 0 absorbed at 0.

Markov property

hi = Pi [∃n ≥ 0 : Sn = 0]{
h0 = 1
hi = phi+1 + qhi−1

Transition matrix and harmonicity

P =


1 0 0 · · · · · · · · ·
q 0 p 0 · · · · · ·
0 q 0 p 0 · · ·
.
.
.

. . .
. . .

. . .
. . .

. . .


h = (hi )i≥0 satisfies Ph = h.
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Introduction Applications to random walks

Application to random walks

Doob transform

Standard procedure in probability. From a Markov process and an associated
harmonic function it defines a new random process.

Example

Let (Sn)n∈N be a simple random walk over Z.
The function V (i) = i (i ∈ N) is discrete harmonic for (Sn)n∈N.

Let (Tn)n∈N be defined form (Sn)n∈N by{
P [Tn+1 = i + 1 | Tn = i ] = V (i+1)

2V (i)
= i+1

2i
,

P [Tn+1 = i − 1 | Tn = i ] = V (i−1)
2V (i)

= i−1
2i
.

The process (Tn)n∈N is a random walk over N∗.

1
3
4

2
3

i+1
2i

1
4

1
3

i−1
2i

0 1 2 3 i − 1 i i + 1

Amélie Trotignon Discrete harmonic functions in the three-quarter plane February 25, 2020 7 / 42



Introduction Applications to random walks

Application to random walks

Doob transform

Standard procedure in probability. From a Markov process and an associated
harmonic function it defines a new random process.

Example

Let (Sn)n∈N be a simple random walk over Z.
The function V (i) = i (i ∈ N) is discrete harmonic for (Sn)n∈N.

Let (Tn)n∈N be defined form (Sn)n∈N by{
P [Tn+1 = i + 1 | Tn = i ] = V (i+1)

2V (i)
= i+1

2i
,

P [Tn+1 = i − 1 | Tn = i ] = V (i−1)
2V (i)

= i−1
2i
.

The process (Tn)n∈N is a random walk over N∗.

1
3
4

2
3

i+1
2i

1
4

1
3

i−1
2i

0 1 2 3 i − 1 i i + 1
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Introduction Applications to random walks

Applications to random walks

Asymptotic behavior of the number of excursions

Let e(0,0)→(i,j)(n) be the number of n-excursions from the origin to (i , j).

e(0,0)→(i,j)(n) ∼ κ · V (i , j) · ρn · n−α, n −→∞

• V is a harmonic function

• ρ is the exponential growth

• α is the critical exponent

Furthermore, the growth of the harmonic function V is directly related to the
critical exponent α
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Previous results in the quarter plane Definition and properties

Definition and properties

p1,0p−1,0

p0,−1

p0,1 p1,1

p−1,−1

p−1,1

p1,−1

We are interested in

discrete harmonic function

f̃ = (f̃ (i , j))(i,j)∈Q

associated to random walks which satisfy the
following properties:

Properties of the random walks

• homogeneous walk inside Q
• zero drift∑

−1≤i,j≤1

ipi,j =
∑

−1≤i,j≤1

jpi,j = 0

Properties of the harmonic functions

• For all i ≥ 1 and j ≥ 1,
f̃ (i , j) =

∑
−1≤i0,j0≤1 pi0,j0 f̃ (i + i0, j + j0)

• If i ≥ 0, f̃ (i , 0) = 0 and

if j ≥ 0, then f̃ (0, j) = 0

• If i > 0 and j > 0 then f̃ (i , j) > 0
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Amélie Trotignon Discrete harmonic functions in the three-quarter plane February 25, 2020 10 / 42



Previous results in the quarter plane Functional equation

Strategy

Generating function

H̃(x , y) =
∑

(i,j)∈Q

f̃ (i , j)x i−1y j−1.

f̃ (1, 1)

H̃(x , y)

H̃−0(x)

H̃0−(y)

Functional equation

K (x , y)H̃(x , y) = K (x , 0)H̃−0(x) + K (0, y)H̃0−(y)− K (0, 0)f̃ (1, 1)

where

H̃−0(x) =
∑
i≥1

f̃ (i , 1)x i−1,

H̃0−(y) =
∑
j≥1

f̃ (1, j)y j−1,
K(x , y) = xy

 ∑
−1≤i,j≤1

pi,jx
−iy−j − 1

 .
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Previous results in the quarter plane Kernel of the random walks

Kernel of the random walks

K(x , y) = xy

 ∑
−1≤i,j≤1

pi,jx
−iy−j − 1

 .
The Kernel: a polynomial of degree 2 in x and in y

K (x , y) = α̃(y)x2 + β̃(y)x + γ̃(y) = α(x)y2 + β(x)y + γ(x).

Discriminant: δ̃(y) = β̃(y)2 − 4α̃(y)γ̃(y) and δ(x) = β(x)2 − 4α(x)γ(x).

Zeros of the Kernel, i = 0, 1:

K (Xi (y), y) = 0

Xi (y) =
−β̃(y)±

√
δ̃(y)

2α̃(y)

K (x ,Yi (x)) = 0

Yi (x) =
−β(x)±

√
δ(x)

2α(x)
.

The roots of the kernel define analytic curves.

Amélie Trotignon Discrete harmonic functions in the three-quarter plane February 25, 2020 12 / 42



Previous results in the quarter plane Kernel of the random walks

Kernel of the random walks

K(x , y) = xy

 ∑
−1≤i,j≤1

pi,jx
−iy−j − 1

 .
The Kernel: a polynomial of degree 2 in x and in y

K (x , y) = α̃(y)x2 + β̃(y)x + γ̃(y) = α(x)y2 + β(x)y + γ(x).

Discriminant: δ̃(y) = β̃(y)2 − 4α̃(y)γ̃(y) and δ(x) = β(x)2 − 4α(x)γ(x).

Zeros of the Kernel, i = 0, 1:

K (Xi (y), y) = 0

Xi (y) =
−β̃(y)±

√
δ̃(y)

2α̃(y)

K (x ,Yi (x)) = 0

Yi (x) =
−β(x)±

√
δ(x)

2α(x)
.

The roots of the kernel define analytic curves.
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Previous results in the quarter plane Kernel of the random walks

Branches of the Kernel

Curves Y ([x1, 1]) = {y ∈ C : K (x , y) = 0 and x ∈ [x1, 1]}

1y1Y (x1)

θ θ

1y1Y (x1)

Gouyou-Beauchamps model

(p1,0 = p−1,1 = p−1,0 = p1,−1 = 1/4)

θ = π/4

Simple model

(p1,0 = p0,1 = p−1,0 = p0,−1 = 1
4
)

θ = π/2
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Previous results in the quarter plane Generating function H−0(x) stated as a BVP

Generating function H−0(x) stated as a BVP

Functional Equation

K (x , y)H̃(x , y) = K (x , 0)H̃−0(x) + K (0, y)H̃0−(y)− K (0, 0)f̃ (1, 1).

Boundary value problem

By evaluating the functional equation on the branch curves, we can transform the
functional equation into the following boundary value problem:

For x ∈ X ([y1, 1]) \ {1},

K (x , 0)H̃−0(x)− K (x̄ , 0)H̃−0(x̄) = 0.
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Previous results in the quarter plane Explicit expression for the generating function

Explicit expression for the generating function

Theorem [Raschel, 2014]

The function H̃−0(x) has the following explicit expression

H̃−0(x) = µ
w(x) + ν

K (x , 0)
,

where w is a conformal mapping vanishing at 0, and the constants ν and µ are

defined by

ν = −w (X0(0)) , µ = f̃ (1, 1)×


2p−1,1

w ′′(0) if p1,1 = 0 and p0,1 = 0,
p0,1

w ′(0) if p1,1 = 0 and p0,1 6= 0,

− p1,1

w(X0(0)) if p1,1 6= 0.
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Previous results in the quarter plane Example of the simple random walk

Example of the simple random walk

1/41/4

1/4

1/4
K (x , 0) =

x

4

w(x) = − 2x

(1− x)2

ν = 0

µ = − f̃ (1, 1)

8

Expression for H−0(x)

H̃−0(x) =
f̃ (1, 1)

(1− x)2
= f̃ (1, 1)

∑
i≥1

ix i−1

The function f (i , j) = ij is discrete harmonic for the simple random walk
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Results in the three-quarter plane Definitions and properties

Definitions and properties

p1,0p−1,0

p−1,0

=
p0,−1

p1,0

=
p0,1

p1,1

p−1,−1

We are interested in

discrete harmonic function

f = (f (i , j))(i,j)∈C

associated to random walks which satisfy the
following properties:

Properties of the random walks

• homogeneous walk inside C
• symmetric transition probabilities

• zero drift∑
−1≤i,j≤1

ipi,j =
∑

−1≤i,j≤1

jpi,j = 0

Properties of the harmonic functions

• For all i ≥ 1 or j ≥ 1,
f (i , j) =

∑
−1≤i0,j0≤1 pi0,j0 f (i + i0, j + j0)

• If i ≤ 0, f (i , 0) = 0 and
if j ≤ 0, then f (0, j) = 0

• If i > 0 or j > 0 then f (i , j) > 0

• For all (i , j) ∈ C, f (i , j) = f (j , i)
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Results in the three-quarter plane A first functional equation

A first functional equation

Generating function

H(x , y) =
∑

(i,j)∈C

f (i , j)x i−1y j−1.

A first functional equation

K (x , y)H(x , y) = K (x , 0)H−0(x−1) + K (0, y)H0−(y−1)− K (0, 0)f (1, 1)

where

H−0(x−1) =
∑
i≤0

f (i , 1)x i−1,

H0−(y−1) =
∑
j≤0

f (1, j)y j−1,
K(x , y) = xy

 ∑
−1≤i,j≤1

pi,jx
−iy−j − 1

 .
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Results in the three-quarter plane Strategy

Strategy

Generating function

H(x , y) =
∑

(i,j)∈C

f (i , j)x i−1y j−1.

L(x, y)

U(x, y)

D(x, y)

Decomposition of the generating function

H(x , y) = L(x , y) + D(x , y) + U(x , y)

where

L(x , y) =
∑
i≥1

j≤i−1

f (i , j)x i−1y j−1, D(x , y) =
∑
i≥1

f (i , i)x i−1y i−1, U(x , y) =
∑
j≥1

i≤j−1

f (i , j)x i−1y j−1.
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Results in the three-quarter plane Functional equations

Functional equations

Non-symmetric probability transitions & p−1,1 = p1,−1 = 0



K(x , y)U(x , y) = −
(
p1,0y + p0,−1xy

2 + p1,1 + p−1,−1x
2y 2 − xy

)
D(x , y)

+ (p0,1x + p1,1)U−0(x−1)−
(
p1,0y + p0,−1xy

2
)
D`(x , y)

+p1,1f (1, 1) + p1,0f (1, 0),
K(x , y)L(x , y) = −

(
p0,1x + p−1,0x

2y + p1,1 + p−1,−1x
2y 2 − xy

)
D(x , y)

+ (p1,0y + p1,1) L0−(y−1)−
(
p0,1x + p−1,0x

2y
)
Du(x , y)

+p1,1f (1, 1) + p0,1f (0, 1).

L(x, y)

U(x, y)

D(x, y)Du(x, y)

D`(x, y)

L0−(y−1)

U−0(x−1)
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Results in the three-quarter plane Functional equations

Functional equations

Symmetric probability transitions & p−1,1 6= 0; p1,−1 6= 0

K(x , y)L(x , y) =−
(
p0,1x + p−1,1x

2 + p−1,0x
2y +

1

2

(
p1,1 + p−1,−1x

2y 2 − xy
))

D(x , y)

+ p1,−1

(
y 2 − xy

)
D`(x , y) +

(
p1,0y + p1,−1y

2 + p1,1

)
L0−(y−1)

+ p1,−1yf (1, 0) +
1

2
p1,1f (1, 1)

L(x, y)

D(x, y)

D`(x, y)

L0−(y−1)
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Results in the three-quarter plane Transforming the cones

Transforming the cones

Change of variables ϕ(x , y) = (xy , x−1)

p0,−1
=

p−1,0

p0,1
=

p1,0

p−1,−1

p1,1 p1,0

p−1,0

Lϕ(x , y)

Dϕ(y)

D`ϕ(y)

Lϕ(x , 0)

L (ϕ(x , y)) = xLϕ(x , y)

= x
∑
i,j≥1

f (j , j − i)x i−1y j−1

D (ϕ(x , y)) = Dϕ(y)

=
∑
i≥1

f (i , i)y i−1

D` (ϕ(x , y)) = xD`
ϕ(y)

= x
∑
i≥1

f (i , i − 1)y i−1
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Results in the three-quarter plane Transforming the cones

Transforming the probability transitions

K (ϕ(x , y)) = 1
xKϕ(x , y)

Curves X ([y1, 1]) = {x ∈ C : K (x , y) = 0 and y ∈ [y1, 1]}

θ

1y1Y (x1) 1y1Y (x1)

θϕ

Simple model

θ = π/2

1/41/4

1/4

1/4

Gessel model

θϕ = 3π/4

1/41/4

1/4

1/4
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Results in the three-quarter plane Transforming the cones

New functional equation

Functional Equation

Kϕ(x , y)Lϕ(x , y) = −
[
xα̃ϕ(y) +

1

2
β̃ϕ(y)

]
Dϕ(y) + Kϕ(x , 0)Lϕ(x , 0) +

1

2
p1,1f (1, 1).

Lϕ(x , y)

Dϕ(y)

Lϕ(x , 0)
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Results in the three-quarter plane Generating function Dϕ(y) stated as a BVP

Generating function Dϕ(y) stated as a BVP

Functional Equation

Kϕ(x , y)Lϕ(x , y) = −
[
xα̃ϕ(y) +

1

2
β̃ϕ(y)

]
Dϕ(y) + Kϕ(x , 0)Lϕ(x , 0) +

1

2
p1,1f (1, 1).

Boundary value problem

By evaluating the functional equation on the branch curves, we can transform the
functional equation into the following boundary value problem:

For y ∈ Yϕ([x1, 1]) \ {1},√
δ̃ϕ(y)Dϕ(y)−

√
δ̃ϕ(ȳ)Dϕ(ȳ) = 0.
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Results in the three-quarter plane Generating function Dϕ(y) stated as a BVP

Anti-Tutte’s invariant

Idea: write

√
δϕ(ȳ)

δϕ(y)
=

Gϕ(ȳ)

Gϕ(y)
, such that: Gϕ(ȳ) = Gϕ(y);

⇔

Gϕ =
gϕ
g ′ϕ

with gϕ such that gϕ
(
Ỹϕ,+(x)

)
gϕ
(
Ỹϕ,−(x)

)
= 1 for x ∈ [x1, 1);

⇔

Gϕ =
gϕ
g ′ϕ

with gϕ such that gϕ(y)gϕ(ȳ) = |gϕ(y)|2 = 1 for y ∈ Y ([x1, 1]).
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Gϕ(y)
, such that: Gϕ(ȳ) = Gϕ(y);
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Results in the three-quarter plane Generating function Dϕ(y) stated as a BVP

Anti-Tutte’s invariant

Y (xϕ,1) 1

Yϕ([xϕ,1, 1])

wϕ h

gϕ

1 ∞ 1

C(0, 1)

Conformal maps which transforms Y ([x1, 1]) into the unit circle with gϕ(y) = gϕ(ȳ)

gϕ = h

(
2w̃ϕ(Yϕ(xϕ,1))

w̃ϕ(y)
− 1

)
,

with: wϕ an explicit conformal map and h(y) =
√
y2 − 1− y .
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Results in the three-quarter plane Generating function Dϕ(y) stated as a BVP

Generating function Dϕ(y) stated as a BVP

Functional Equation

Kϕ(x , y)Lϕ(x , y) = −
[
xα̃ϕ(y) +

1

2
β̃ϕ(y)

]
Dϕ(y) + Kϕ(x , 0)Lϕ(x , 0) +

1

2
p1,1f (1, 1).

Boundary value problem

By evaluating the functional equation on the branch curves, we can transform the
functional equation into the following boundary value problem:

For y ∈ Yϕ([x1, 1]) \ {1},

Gϕ(y)Dϕ(y)− Gϕ(ȳ)Dϕ(ȳ) = 0.
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Results in the three-quarter plane Expression for the Generating Functions

Expression for the Diagonal Section

The diagonal section is defined by:

D(x , y) = Dϕ(xy) =
∑
i≥1

f (i , i)x i−1y i−1.

Theorem [T., 2019]

The diagonal section of discrete harmonic functions not necessarily positive can be

expressed as

D(x , y) =
P(w̃ϕ(xy))

Lϕ(xy)
, P ∈ R[y ].

In particular, taking P of degree 1, we get the unique positive discrete harmonic function.
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Results in the three-quarter plane Expression for the Generating Functions

Expression for the Diagonal Section

Expression for the Diagonal Section

Dϕ(y) = − f (1, 1)

w̃ ′ϕ(0)

π

θϕ

√√√√− δ̃′′ϕ(1)

2δ̃ϕ(y)

√
1− W̃ϕ(0)

√
W̃ϕ(y),

with θϕ an explicit angle, w̃ϕ(y) and W̃ϕ are a conformal mappings, all depending
on the step set.

Simple Walks

Dϕ(y) = f (1, 1)
3

8

√
W̃ϕ(y)√
δ̃ϕ(y)

= f (1, 1)

(
1 +

44

27
y +

523

243
y2 +

17168

6561
y3 + O

(
y4
))

.
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Results in the three-quarter plane Expression for the Generating Functions

Expression for the generating functions

Remember - Functional Equation

Kϕ(x , y)Lϕ(x , y) = −
[
xα̃ϕ(y) +

1

2
β̃ϕ(y)

]
Dϕ(y) + Kϕ(x , 0)Lϕ(x , 0) +

1

2
p1,1f (1, 1).

Remember - Domain in three parts

H(x , y) = L(x , y) + D(x , y) + U(x , y).

L(x, y)

U(x, y)

D(x, y)

Symmetry of the cut and the walk

⇒ U(x , y) = L(y , x).
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Results in the three-quarter plane Expression for the Generating Functions

Expression for the generating functions

Remember - Functional Equation

Kϕ(x , y)Lϕ(x , y) = −
[
xα̃ϕ(y) +

1

2
β̃ϕ(y)

]
Dϕ(y) + Kϕ(x , 0)Lϕ(x , 0) +

1

2
p1,1f (1, 1).

Remember - Domain in three parts

H(x , y) = L(x , y) + D(x , y) + L(y , x).

L(x, y)

U(x, y)

D(x, y)

• We have an expression of Dϕ(y);

• With the functional equation we get an
expression of Lϕ(x , y);

• With a change of variable we get an
expression of D(x , y) and L(x , y);

• Then we have an expression of H(x , y).
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Results in the three-quarter plane Asymptotics

Asymptotics

Expression for the Diagonal Section

Dϕ(y) = − f (1, 1)

w̃ ′ϕ(0)

π

θϕ

√√√√− δ̃′′ϕ(1)

2δ̃ϕ(y)

√
1− W̃ϕ(0)

√
W̃ϕ(y),

with θϕ an explicit angle, w̃ϕ and W̃ϕ conformal mappings, all depending on the
step set.

Dϕ(y) = C ·

√
W̃ϕ(y)√
δ̃ϕ(y)
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Results in the three-quarter plane Asymptotics

Asymptotics

Angle of the step set

θ = arccos


−

∑
−1≤i,j≤1

ijpi,j√√√√√
 ∑
−1≤i,j≤1

i2pi,j

 ·
 ∑
−1≤i,j≤1

j2pi,j




; θϕ = π −

θ

2

Example of the simple walks

θ = π
2

; θϕ = π − π/2
2

= 3π
4

(Gessel).

Wϕ(y) =
c + o(1)

(1− y)π/θϕ
⇒ Dϕ(y) = −

f (1, 1)

w̃ ′ϕ(0)

π

θϕ

√√√√− δ̃′′ϕ(1)

2δ̃ϕ(y)

√
1− W̃ϕ(0)

√
W̃ϕ(y)

=
cD + o(1)

(1− y)π/(2π−θ)+1
for y close to 1
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Results in the three-quarter plane Asymptotics

Asymptotics

For y close to 1

In the three-quadrant

Dϕ(y) =
cD + o(1)

(1− y)π/(2π−θ)+1

In the quadrant

D̃ϕ(y) =
c̃D + o(1)

(1− y)π/θ+1

Theorem [Mustapha, 2019]

Let αQ = π
θ be the critical exponent of walks in the quadrant. Then the critical

exponent αC of walks in the three-quadrant can be expressed as

αC =
αQ

2αQ − 1
=

π

2π − θ
.
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Further objectives and perspectives

Content

1. Introduction

2. Previous results in the quarter plane

3. Results in the three-quarter plane

4. Further objectives and perspectives
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Further objectives and perspectives

Non-positive harmonic functions

Expression for the generating function

D(x , y) =
P(w̃ϕ(xy))

Gϕ(xy)
, P ∈ R[y ].

More generally, for any polynomial P of degree n we get discrete harmonic
functions (but not necessarily positive).

Simple walks

P(y) =
3

4
y2 − 9

16

Dϕ(y) = 1 + 4 y + 9 y2 + 16 y3 + 25 y4 + O
(
y5
)

We find back the harmonic function f (i , j) = ij
(non-positive in the three-quadrant)
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Further objectives and perspectives Non-positive harmonic functions

Non-positive harmonic functions

Ù Is every harmonic function completely determined by the polynomial P?

Ù What is the structure of non-positive harmonic functions?

Ù How does the cone of restriction affect this structure?

Ù What are the properties of non-positive harmonic functions?

1 É. Fusy, K. Raschel, P. Tarrago and A. T.
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Further objectives and perspectives Non-symmetric case

Non-symmetric case

L(x, y)

U(x, y)

D(x, y)Du (x, y)

D`(x, y)

ϕU

ϕL

LϕL
(x, y)UϕU

(x, y)

DϕL
(y) = DϕU

(y)

Du
ϕU

(y) D`
ϕL

(y)



KϕU (x , y)UϕU (x , y) = −
(
p1,0x−1y + p0,−1x−1y2 + p1,1 + p−1,−1y2 − y

)
DϕU (y)

+
(
p0,1x2 + p1,1x

)
UϕU (x , 0)− (p1,0 + p0,−1y)D`ϕL

(y)
+p1,1f (1, 1) + p1,0f (1, 0),

KϕL (x , y)LϕL (x , y) = −
(
p0,1xy + p−1,0xy2 + p1,1 + p−1,−1y2 − y

)
DϕL (y)

+ (p1,0 + p1,1x) LϕL (x , 0)− (p0,1 + p−1,0y)Du
ϕU

(y)
+p1,1f (1, 1) + p0,1f (0, 1).
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Further objectives and perspectives Non-symmetric case

Non-symmetric case

Change of variables ϕL(x , y) = (xy , x−1) & ϕU(x , y) = (x , x−1y)

p1,0

p1,1p0,1

p−1,0

p−1,−1 p0,−1

p1,0

p1,2p0,1

p0,−1

p−1,0

p0,1 p1,1

p1,0

p1,0

p0,1 p1,1

p−1,0

p0,−1p−1,−1

p1,0

p0,1 p1,1

p−1,0

p0,−1

p1,1 p1,0

p0,1

p−1,−1p−1,0

p0,−1

p1,1 p1,0

p0,1

p0,−1

p1,1 p1,0p0,1

p−1,−1

p−1,0

p0,−1

p1,1 p1,0p0,1

p−1,0

Random walks avoiding a quadrant can be seen as inhomogeneous walks in the half plane
with probability transitions ϕU((pi,j)−1≤i,j≤1) in the left quadrant and ϕL((pi,j)−1≤i,j≤1)
on the right quadrant.
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Further objectives and perspectives Non-symmetric case

Aside: Join-the-Shortest-Queue model (JSQ)

Arrivals Departures
p′′i,j

p′i,j

pi,j

We consider a model with two queues in which the customers choose the shortest
queue (if the two queues have same length, then the customers choose a queue
according to a fixed probability law).
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