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Mirror symmetry is a relationship between of Calabi–Yau manifolds. Two

such manifolds may look very different geometrically but are nevertheless

equivalent when employed as ‘extra dimensions’ to describe interaction of

particles in string theory.
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Beginnings of mirror symmetry

P. Candelas, X. de la Ossa, P. Green, L. Parkes, An exactly soluble
superconformal theory from a mirror pair of Calabi–Yau manifolds,
Phys. Lett. B 258 (1991), no.1–2, 118–126
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The differential equation Ly = 0 has solutions

y0(t) =
∞∑
n=0

(5n)!

n!5
tn = 1 + 120t + 113400t2 + . . . =: f0(t) ∈ ZJtK

and

y1(t) = f0(t) log(t) + f1(t), f1(t) :=
∞∑
n=1

(5n)!

n!5

 5k∑
j=1

5

j

 tk ∈ tQJtK

Observation: q(t) := exp
(
y1(t)
y0(t)

)
= t exp

(
f1(t)
f0(t)

)
∈ tZJtK

(proved by B.-H.Lian and S.-T.Yau in 1996)
3 / 21



Canonical coordinate and Yukawa coupling
q(t) = exp (y1(t)/y0(t)) = t + 770t2 + 1014275t3+
is called the canonical coordinate or mirror map.

Solutions to Ly = 0:

y0(t) = f0, y1(t) = f0 log(t) + f1,

y2(t) = f0
log(t)2

2!
+ f1 log(t) + f2, f2 ∈ tQJtK

Express the ratios yi/y0 in terms of q = q(t):

y0
y0

= 1,
y1
y0

= log(q),

y2
y0

=
1

2
log(q)2 + 575q +

975375

4
q2 + +

1712915000

9
q3 + . . .

Y (q) :=
(
q d
dq

)2
y2
y0

= 1 + 575q + 975375q2 + . . .

is called the Yukawa coupling.
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Physics wins!

Y (q) =

(
q
d

dq

)2 y2
y0

= 1 + 575q + . . . =
1

5

∑
d≥0

ndd
3 qd

1− qd

n0 = 5, n1 = 2875, n2 = 609250,

n3 = 317206375, n4 = 242467530000, ...

are called instanton numbers.

Observation / prediction: The numbers nd coincide with the
numbers of degree d rational curves that lie on a generic threefold
of degree 5 in P4.

Only the first two numbers were known at that time! The number
2875 of lines on a general quintic was determined by H. Schubert
in 1886. The number 609250 of conics was determined by S. Katz
in 1986. In 1993 G.Ellingsrud and S.Strømme computed the
number of cubic curves on the quintic threefold. Their result
served as a crucial cross-check for the above physicists’ prediction.
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Integrality of instanton numbers

L = θ4 − 55t
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dt

y0 = f0, y1 = f0 log(t) + f1, y2 = f0
log(t)2

2! + f1 log(t) + f2

q = exp(y1/y0), Y (q) =
(
q d
dq

)2
(y2/y0) =

1

5

∑
d≥0

ndd
3 qd

1−qd

In 1990s Gromov–Witten theory was developed to provide a
rigorous basis for counting curves on general manifolds
(Kontsevich–Manin). Subsequently, Givental and Lian–Liu–Yau
proved the mirror theorem which justified the equality of instanton
numbers and genus zero Gromov–Witten invariants.
Conjecture: nd ∈ Z for every d .

Theorem (MV–Frits Beukers, 2020) For the quintic case, the
denominators of instanton numbers nd can only have prime divisors
2, 3, 5.
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More differential operators like this?
A 4th order differential operator L ∈ Q[t, d

dt ] is called a Calabi–Yau
operator if:

I its singularities are regular
I t = 0 is a point of maximally unipotent monodromy (MUM)

L = θ4 +
4∑

j=1

aj(t)θ4−j , θ = t
d

dt
, aj(0) = 0, 1 ≤ j ≤ 4

I it is self-dual
I it satisfies the integrality conditions:

- the holomorphic solution y0(t) ∈ ZJtK
- the canonical coordinate q = exp(y1/y0) ∈ ZJtK
- the instanton numbers nd ∈ Z

If one allows N-integrality instead of integrality, about 500 such
operators were found experimentally:

G. Almkvist, C. van Enckevort, D. van Straten, W. Zudilin, Tables of
Calabi–Yau operators ( arXiv:math/0507430) “AESZ tables” (2010)

D. van Straten, Calabi–Yau operators in Adv. Lect. Math. 42 (2018)
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Towards the proof of integrality of instanton numbers

Lemma. For a power series Y (q) ∈ QJqK, consider the Lambert
expansion

Y (q) =
∑
d≥0

ad
qd

1− qd
.

Take a prime number p. Suppose ∃ φ ∈ ZpJqK such that

Y (qp)− Y (q) =

(
q
d

dq

)s

φ(q).

Then ad/d
s ∈ Zp for all d ≥ 1.
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Towards the proof of integrality of instanton numbers
Take s = 3 and write the respective φ ∈ QJqK explicitly:

∑
d≥1

ndd
3 qd

1− qd
=

(
q
d

dq

)3

Z , Z (q) =
∑
d≥1

ndLi3(qd) ∈ QJqK

φ := p−3Z (qp)− Z (q)
??
∈ ZpJqK

J. Stienstra, Ordinary Calabi–Yau–3 Crystals, Fields Inst.
Commun., 38 (2003): one can prove p-integrality of φ by relating
it to a matrix coefficient of the p-adic Frobenius structure for the
differential operator L

M. Kontsevich, A. Schwarz, V. Vologodsky, Integrality of instanton
numbers and p-adic B-model, Phys. Lett. B 637 (2006), no. 1–2

V. Vologodsky, On the N-integrality of instanton numbers,
arXiv:0707.4617
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Frobenius structure
A p-adic Frobenius structure is an equivalence between the
differential system corresponding to L and its pullback under the

change of variable t 7→ tp, over the field Ep = Q̂(t) of p-adic
analytic elements (Dwork).

L = θ4 +
4∑

j=1

aj(t)θ4−j with MUM point at t = 0

y0 = f0, y1 = f0 log(t) + f1, y2 = f0
log(t)2

2!
+ f1 log(t) + f2

y3 = f0
log(t)3

3! + f1
log(t)2

2! + f2 log(t) + f3, fi ∈ QJtK

U =
(
θiyj
)3
i ,j=0

fundamental solution matrix

Are there constants α0, α1, α2, α3 ∈ Qp such that

Φ(t) = U(t)

α0 pα1 p2α2 p3α3

0 pα0 p2α1 p3α2

0 0 p2α0 p3α2

0 0 0 p3α0

U(tp)−1 ∈ Ep ?
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Frobenius structure

U =
(
θiyj
)3
i ,j=0

fundamental solution matrix for L

Φ(t) = U(t)


α0 pα1 p2α2 p3α3

0 pα0 p2α1 p3α2

0 0 p2α0 p3α2

0 0 0 p3α0

U(tp)−1 ∈ QJtK4×4

Definition. We say that L has a p-adic Frobenius structure if
there exist p-adic constants α0 = 1, α1, α2, α3 ∈ Zp such that

Φij ∈ pjZpJtK, 0 ≤ i , j ≤ 3.

Conjecturably, Calabi-Yau differential operators have p-adic
Frobenius structure for almost all p.
D. van Straten, CY-operators and L-functions, in proceedings of the

workshop Hypergeometric Motives and Calabi–Yau Differential

Equations, 2017 MATRIX Annals, 491–503
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p-Integrality of instanton numbers

L = θ4 + a1(t)θ3 + a2(t)θ2 + a3(t)θ + a4(t)
ai (0) = 0, i = 1, . . . , 4 (MUM point at t = 0)

Theorem (MV-Frits Beukers, 2020). Suppose that a p-adic
Frobenius structure exists for L. Then

- the holomorphic solution is p-integral: y0 ∈ ZpJtK
- the canonical coordinate is p-integral: q = exp(y1/y0) ∈ ZpJtK
- if in addition L is self-dual and α1 = 0, then the instanton

numbers of L are p-integral: nd ∈ Zp for all d ≥ 1

In the latter case, the series φ such that Y (qp)− Y (q) = (q d
dq )3φ

is basically given by the top right Frobenius matrix entry:
φ ≈ p−3Φ03.
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The hard part: working out explicit examples
Given L = θ4 + . . ., we would like to construct Φ and show that
α1 = 0. We need a geometric model, a family of hypersurfaces
whose periods are solutions of L.

I Find g(x) ∈ Z[x±1
1 , . . . , x±1

n ] such that

y0(t) =
1

(2πi)n

∮
. . .

∮
1

1− tg(x)

dx1
x1

. . .
dxn
xn

e.g. n = 4, g(x) = x1 + x2 + x3 + x4 + 1
x1x2x3x4

L = θ4 − (5t)5 (θ + 1) (θ + 2) (θ + 3) (θ + 4)

More generally, consider a Laurent polynomial f (x) with
coefficients in Z[t].
Xf = {f (x) = 0} ⊂ Tn toric hypersurface

I Look for a subquotient in the de Rham cohomology of Tn \Xf

which, after taking a suitable localization R of Z[t], is a free
R-module generated by θj( 1

f (x))dx
x , j = 0, 1, 2, 3.
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Cohomology and differential forms
f (x) ∈ R[x±1

1 , . . . , x±1
n ], R is a localization of Z[t]

Xf = {f (x) = 0} ⊂ Tn toric hypersurface

∆ ⊂ Rn Newton polytope of f (x)

Ωf :=

{
h(x)

f (x)m

∣∣∣ m ≥ 1, h ∈ R[x±1
1 , . . . , x±1

n ]

supp(h) ⊂ m∆

}
R-module

Hn
DR(Tn \ Xf ) = Ωf

dx
x /{ exact forms } (Griffiths, Batyrev)

In our examples, we construct free subquotients generated by
derivatives θi (1/f ), i = 0, 1, . . . by restricting to numerators h(x)
supported in the interior m∆◦ and, in some cases, by taking the
G -invariant part, where G ⊂ GLn(Z) is a finite group of monomial
substitutions preserving ∆ and f (x).

I M := Ω◦
f
dx
x /{ exact forms } = Ω◦

f /
∑n

i=1 xi
∂
∂xi

(Ωf )
= Ω◦

f /{ partial derivatives }
I M ∼= ⊕3

j=0R θj(1/f ) and L(1/f ) = 0 in M
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Frobenius structure
In “Dwork crystals I” we construct the R-linear Cartier operator

Cp :
h(x)

f (x)m
=
∑

auxu dx

x
7→
∑

apuxu 6∈ Ωf

These are formal expansions with respect to a vertex b of ∆, but
the right-hand side usually doesn’t belong to Ωf .

Let σ : R → R be a Frobenius lift: a ring endomorphism such that
σ(r) ≡ rp mod p for any r ∈ R, like σ : t 7→ tp on Z[t]. Lemma:
the above

∑
apuxu belongs to the p-adic completion of Ωf σ .

Our construction gives an R-linear operator on p-adic completions

Cp : Ω̂f → Ω̂f σ ,

which commutes with θ = t d
dt and maps exact forms to exact

forms. It descends to our rank 4 free modules generated by
θi (1/f ), i = 0, 1, 2, 3:

I Matrix of Cp : M → Mσ is the Frobenius structure Φ ∈ R̂4×4

for our Picard–Fuchs differential operator L.
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Evaluation of Φ at t = 0?

Our Frobenius matrix Φ ∈ ZpJtK4×4 is defined explicitly. Still, a
direct computation of Φ0j(0) = pjαj would be notoriously
difficult.1

Cp
(

1

f (x)

)
=
∑
m≥1

hm(x)

f σ(x)m

≡
3∑

j=0

λj(t) θj
(

1

f

)σ
mod

n∑
i=1

xi
∂

∂xi
(Ω̂f σ)

λj = Φ0j

We will now explain a trick which allows to jump over the infinite
reduction process in the right-hand side. It will be possible to
access the coefficients λj directly, through certain p-adic
congruences.

1A direct computation of this sort was done by I. Shapiro in Frobenius map
for quintic threefolds, Int. Math. Res. Not. 2009, no. 13, 2519–2545.
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Theorem (MV-Frits Beukers, 2019) Assume that R is p-adically
complete and the k ’th Hasse–Witt condition is satisfied. Then

Ω̂f = Ωf (k)⊕Fk ,

where

Ωf (k) = free R-module generated by
xu

f (x)k
, u ∈ k∆

and

Fk =
{
ω =

∑
auxu ∈ Ω̂f

∣∣∣ ∀u au ∈ g .c.d .(u1, . . . , un)kR
}

=
{
ω =

∑
auxu ∈ Ω̂f

∣∣∣ ∀s ≥ 1 Csp(ω) ∈ pksΩ̂f σs

}
.

For k = 1 this result is a version of N. Katz’s Internal reconstruction of

unit-root F-crystals via expansion coefficients (1985).

Note: Fk = {formal kth partial derivatives}.
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Proof of vanishing of α1

Ω◦
f =

{
h(x)

f (x)m

∣∣∣ m ≥ 1, supp(h) ⊂ m∆◦
}

M = Ω◦
f /{ partial derivatives } ∼= ⊕3

j=0R θj(1/f )

{ partial derivatives } ⊂ F1 = { formal partial derivatives }
∪
F2 = { formal 2nd partial derivatives }

In the quintic case and several other cases which have geometric
models with sufficiently large symmetry group G , one has

{ partial derivatives } ∩ (Ω◦
f )G ⊂ F2.
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Proof of vanishing of α1

M = Ω◦
f /{ partial derivatives } ∼= ⊕3

j=0R θj(1/f )

M/F2 = R 1/f + R θ(1/f )

 

Cp(1/f ) =
3∑

j=0

λj(t)θj(1/f )σ modulo partial derivatives

= µ0(t)1/f σ + µ1(t)θ(1/f )σ mod F2

µ0(0) = λ0(0), µ1(0) = λ1(0)

For the expansion coefficients 1
f (x) =

∑
au(t)xu this yields

congruences

aps+1u(t) ≡ µ0(t)apsu(tp) + µ1(t)(θapsu)(tp) mod p2s .

These explicit congruences allow us to check the vanishing of
µ1(0) = pα1, which concludes the proof of integrality of instanton
numbers.
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Examples
In addition to the quintic case, we could prove p-integrality of
instanton numbers for the following Calabi–Yau differential
operators for all p ≥ 5:

AESZ#8 g(x) = x1 + x2 + x3 + x4 +
1

x21x2x3x4

L = θ4−1082t6(θ + 1)(θ + 2)(θ + 4)(θ + 5)

AESZ#15 g(x) = x1 + x2 + x3 + x4 +
1

x1x2
+

1

x3x4
L = θ4−33t3(θ + 1)(θ + 2)(7θ2 + 21θ + 18)

+ 183t6(θ + 1)(θ + 2)(θ + 4)(θ + 5)

AESZ#16 g(x) = x1 +
1

x1
+ x2 +

1

x2
+ x3 +

1

x3
+ x4 +

1

x4
L = (1024t4−80t2 + 1)θ4 + 64(128t4 − 5t2)θ3

+16(1472t4 − 33t2)θ2 + 32(896t4 − 13t2)θ + 128(96t4 − t2)

20 / 21



Thank you!
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