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§1 Integral

According to a dictionary,

the word integral = whole, entire or complete.

Do we have a hidden expectation that our knowledge is complete

or our world is harmonious?

Example 1. The Pythagoreans:

The universe is beautifully dominated by integers.

They encountered, however,
√

2 in the length of the diagonal of

square.
√

2 is outside their universe, which means that
√

2 is not

integrable. So this fact is unpleasant for them.



Example 2. Plato says:

Only line and circle are perfect figures.

The problem of constructions of figures using only ruler and

compass was born from this idea.

Unfortunately we can not construct in this way regular heptagon.

Or regular heptagon is not integrable for the Greeks.



History of mathematics is the history of encounters with

non-integrability.

(1) Introductions of negative numbers and 0,

and
√
−1 are radical ideas of enlarging our world.

(2) Impossibility of solving general quintic equation by extraction

of radicals.

(3) Irreducibility of the Painlevé equations.

(4) Discovery that most of Hamiltonian systems are non-integrable.



§2 Integrable theories

On the other hand, there are perfect theories dealing with inte-

grable phenomena.

(1) Theorem (Gauss). We can construct the regular 17-gon by

ruler and compass.

(2) Examples of Hamiltonian systems integrable by theta func-

tions.



§3 Our result

Theorem. Galois group of KP-hierarchy is Abelian.

Showing

Galois theoretically Soliton theory is integrable.

Background

Theory of Morales and Ramis says that if a Hamiltonian system

is integrable in the sense of Liouville and Arnold, then the Lie al-

gebra of Galois group of the variational equation along a solution

is Abelian (Poincaré and Zyglin).

Malgrange noticed that if a Hamiltonian system is integrable

by theta functions, then the Lie algebra of his general Galois

groupoid is Abelian.



§4 KdV equation

J. S. Russel observed propagation of solitary waves in the canal

1834.

The KdV equation, which is the oldest soliton equation, is a

mathematical model of Russel’s observation.

4ut = 12uux + uxxx

proposed in 1895,

Later in the trial of solving the KdV by inverse scattering method,

it was revealed that the KdV equation is written in the following

Lax form



∂L

∂t
= [B, L],

where

L = ∂2 + 2u and B = ∂3 + 3u∂ +
3

2
ux

are differential operators and

[B, L] := BL − LB,

u = u(x, t)

being a function of x and t and

∂ = ∂/∂x.



§5 Spectral preserving deformation

General scheme is

Spectral preserving deformation of a Linear differential operator

⇒ Lax equation

We consider a system of differential equationsLψ = λψ,
∂ψ
∂t = Bψ,

where L and B are linear ordinary differential operators with

respect to derivation ∂x parametrized by t,

ψ is a function of x, t,

λ is a function of t,

the function ψ = ψ(x, t) is an eigen function of the linear operator

L with eigen value λ(t).



We further assume that the eigen value λ is independent of t.

So ∂tλ = 0 and consequently λ is a constant function.

Therefore the differential system describes a deformation of the

ordinary linear differential operator L parametrized by t with the

eigen function ψ(x, t) in such a way that the eigen value λ does

not depend on the parameter t.

The Lax equation

∂L

∂t
= [B,L]

arises from the compatibility condition

∂x∂t = ∂t∂x

of the operators ∂x and ∂t.



KP-heirarchy is an infinite set of Lax equations

∂

∂tn
L = [Bn, L], n = 1,2,3, · · · .

Sato solves KP-hierarchy by a flow on the infinite dimensional

Grassmann variety GM(m,∞).

Theorem. Galois group of the foliation on the Grassmann vari-

ety is Abelian.

Soliton theory is integrable.



§6 Pseudo-differential operators

Let R be a commutative Q-algebra and ∂ : R → R a derivation

so that

∂(a+ b) = ∂(a) + ∂(b) and ∂(ab) = ∂(a)b+ a∂(b)

for any two elements a, b ∈ R.

An element a ∈ R defines a linear operator

a : R → R, u 7→ au.

Commutation relation of the operators

∂ : R → R and a : R → R is given by

∂a = ∂(a) + a∂

Leibniz rule.



More generally, we know

∂na =
n∑
i=0

(n
i

)
∂i(a)∂n−i

for a non-negative integer n.

R[∂] := {L = an∂
n + an−1∂

n−1 + · · · + a0 | ai ∈ R for 0 ≤ i ≤ n,

the order n being dependent on L} (1)

Non-commutative ring.

Now we introduce the formal inverse

∂−1 ↔
∫



∂a = ∂(a) + a∂

Applying ∂−1 from left and right,

a∂−1 = ∂−1(∂(a))∂−1 + ∂−1a

or

∂−1a = a∂−1 − ∂−1(∂(a))∂−1.

We arrive at the commutation relation

∂−1a =
∞∑
i=0

(−1

i

)
∂i(a)∂n−i

for every element a ∈ R.

General formula

∂na =
∞∑
i=0

(n
i

)
∂i(a)∂n−i



for every element a ∈ R and for every integer n.

We consider the ring R[[∂−1]][∂] of pseudo-differential operators

∞∑
i=0

an−i∂
n−i = an∂

n + an−1∂
n−1 + · · · ,

Lemma. Equivalent conditions. (1) A pseudo-differential oper-

ator

an∂
n + an−1∂

n−1 + an−2∂
n−2 + · · · ∈ R[[∂−1]][∂]

with an 6= 0 is invertible in the ring R[[∂−1]][∂].

(2) The leading coefficient an is invertible in the ring R.



§7 KP-hierarchy

We consider an ordinary differential operator

W = ∂m + w1(x, t)∂
m−1 + w2(x, t)∂

m−2 + · · · + wm(x, t)

of order m, ∂ being ∂x as in the KdV.

So the differential operator W (x, t) is parametrized by t.

After M. Sato, we introduce an infinite number of time, the

deformation parameters. So we understand

t = (t1, t2, · · · ).

We set

L := W∂W−1.



W−1 means the formal inverse of the differential operator W .
Therefore L is a pseudo-differential operator of order 1 so that

L = ∂ + u0(x, t) + u−1(x, t)∂
−1 + · · · .

Hence Ln is a pseudo-differential operator of order n for an in-
teger n ≥ 1. So we have a decomposition

Ln = Ln+ + Ln−

such that Ln+ is the differential part of the pseudo-differential
operator Ln so that we have

Bn := Ln+ = ∂n + a1∂
n−1 + · · · + an

and

Ln− = b−1∂
−1 + b−2∂

−2 + · · · .

KP-hierarchy is written in the following Lax form

∂L

∂tn
= [Bn, L], for n = 1, 2, · · · .



The Lax equation describes the iso-spectral deformation of the

pseudo-differential operator L.
Lψ = λψ,
∂ψ
∂tn

= Bnψ,
∂λ
∂x = ∂λ

∂tn
= 0.

for n = 1, 2, · · · .



§8 Grassmann variety

Let m be a positive integer chosen once for all.

N = {0,1,2, · · · }.
We consider the C-vector space V = CN of column vectors so

that

V = {[ξ0 ξ1 ξ2 · · · ]t | ξi ∈ C for every i ∈ N}

We identify the vector space V with C[[x]].

ξ = [ξ0 ξ1 ξ2 · · · ]t ∈ V

↔

f(x) = ξ0 + ξ1x+
1

2!
ξ2x

2 +
1

3!
ξ3x

3 + · · ·



We denote by GM(m,∞) the Grassmann variety of all the m-
dimensional linear sub-spaces of the vector space V = CN.

GM(m,∞) = {m-dimensional subspace ⊂ V }.
= {m-dimensional subspace ⊂ C[[x]]}.

So to a point P of the Grassmann variety GM(m,∞),
there corresponds
a sub-space ZP of dimension m, of the vector space V .

A frame of the point P is an N ×m-matrix

Ξ = [ξ(j)i ]0≤i<∞; 1≤j≤m

such that the m-column vectors Ξ(j) = [ξ(j)i ]0≤i<∞ ∈ V of the
matrix Ξ span the vector space ZP . Therefore

ZP =
m⊕
j=1

CΞ(j).



The point P ∈ GM(m,∞) determines a C-vector subspace

< f(1)(x), f(2)(x), · · · , f(m)(x) >⊂ C[[x]],

where

f(j)(x) =
∞∑
i=0

1

i!
ξ
(j)
i xi

for 1 ≤ j ≤ m.

Notation

f(j)(x) = [1, x,
1

2!
x2, · · · ][ξ(j)i ]

f
(j)
i (x) :=

di

dxi
f(j)(x) =

∞∑
l=0

1

l!
ξ
(j)
l+ix

l.



We introduce N × N-matrix

Λ = [λij](i, j)∈N×N

such that

λij =

1, if j = i+ 1,

0, otherwise

so that the N × N matrix

Λ =


0 1 0 . .
. 0 1 0 .
. . 0 1 0
. . . . .

 .
Then we have

exp(xΛ) = I + xΛ +
1

2!
x2Λ2 + · · · .



So

exp(xΛ) =


1 x x2/2! x3/3! · · ·
0 1 x x2/2! · · ·
0 0 1 x · · ·
. . . . · · ·

 .



Therefore

H(x) := exp(xΛ)Ξ =


f(1) f(2) · · · f(m)

∂f(1) ∂f(2) · · · ∂f(m)

∂2f(1) ∂2f(2) · · · ∂2f(m)

. . · · · .



=


f(1) f(2) · · · f(m)

f
(1)
1 f

(2)
1 · · · f

(m)
1

f
(1)
2 f

(2)
2 · · · f

(m)
2

. . · · · .

 .



§9 Grassmann variety GM(m,∞) and pseudo-differential op-

erator

Consider a pseudo-differential operator

W = 1 + w1(x)∂
−1 + w2(x)∂

−2 + · · · + wm(x)∂−m

with coefficients wl(x) ∈ C[[x]] for 1 ≤ l ≤ m.

So

W∂m = ∂m + w1(x)∂
m−1 + w2(x)∂

m−2 + · · · + wm(x) ∈ C[[x]][∂].

is a linear ordinary differential operator with coefficients in C[[x]].

We consider a linear ordinary differential equation

W∂mf = 0

of order m that is equivalent to

∂mf + w1(x)∂
m−1f + w2(x)∂

m−2f + · · · + wm(x)f = 0. (2)



Proposition. The linear differential equation (2) determines a
C-vector subspace Sol ⊂ C[[x]] of dimension m.
Conversely the sub-space Sol ⊂ C[[x]] determines the differential
equation (2) and hence the operator W .

Proof of the second assertion.
Given m-linearly independent formal power series solutions

f(j)(x) =
∞∑
i=0

1

i!
ξ
(j)
i xi ∈ C[[x]]

of (2) for for 1 ≤ j ≤ m.



f
(1)
m−1w1(x) + f

(1)
m−2w2(x) + · · · + f

(1)
0 wm(x) = −f(1)

m ,

f
(2)
m−1w1(x) + f

(2)
m−2w2(x) + · · · + f

(2)
0 wm(x) = −f(2)

m ,

· · ·
f
(m)
m−1w1(x) + f

(m)
m−2w2(x) + · · · + f

(m)
0 wm(x) = −f(m)

m ,



where f
(j)
i (x) := dif(j)/dxi.

Since the Wronskian

Wr :=

∣∣∣∣∣∣∣∣∣∣∣

f
(1)
m−1 f

(1)
m−2 · · · f

(1)
0

f
(2)
m−1 f

(2)
m−2 · · · f

(2)
0

. . · · · .

f
(m)
m−1 f

(m)
m−2 · · · f

(m)
0

∣∣∣∣∣∣∣∣∣∣∣
6= 0

because she solutions are linearly independent. the Wronskian

Wr that is a formal power series is invertible in C[[x]][x−1. It

follows from by the formula of Cramer that we can solve the

wl(x)’s in the formal Laurent series ring C[[x]][x−1];

wl(x) =
Al
Wr

∈ C[[x]],



where the numerator

Al :=

∣∣∣∣∣∣∣∣∣∣∣

f
(1)
m−1 · · · −f(1)

m · · · f
(1)
0

f
(2)
m−1 · · · −f(2)

m · · · f
(2)
0

. · · · . · · · .

f
(m)
m−1 · · · −f(m)

m · · · f
(m)
0

∣∣∣∣∣∣∣∣∣∣∣
obtained by replacing the l-th column of the Wronskian by the

column vector

[−f(1)
m − f

(2)
m · · · − f

(m)
m ]t.



Corollary to the proof.

Given a point P ∈ GM(m,∞)

⇓
A subspace of dimension m ⊂ C[[x]]

⇓ Formula of Cramer

Differential operator

∂m + w1(x)∂
m−1 + w2(x)∂

m−2 + · · · + wm(x)

⇓
Pseudo-differential operator

W = 1 + w1(x)∂
−1 + w2(x)∂

−2 + · · · + wm(x)∂−m ∈ S)(m)

with coefficients in C[[x]][x−1].



Remarkable picture.

GM(m,∞) → R[[∂−1]][∂],

R being C[[x]][x−1].

To have a clearer picture, we set

U0 := {P ∈ GM(m,∞) | There exists a frame Ξ of the point P such that

det [ξ(j)i ]0≤i≤m−1,1≤j≤m 6= 0. }

So U0 is a Zariski open sub-set of the Grassmann variety.

On the Zariski open set U0 ⊂ GM(m,∞)

U0 → S0(m) := {W = 1 + w1(x)∂
−1 + w2(x)∂

−2 + · · ·
∈ C[[x]][[∂−1]][∂] |wl = 0 for l > m }



§10 Dynamical system on GM(m,∞)

Sato introduces a dynamical system on the Grassmann variery
GM(m,∞)

⇓
Dynamical system on
S0(m) = {1+w1(x)∂

−1+w2(x)∂
−2 = · · ·+wm(x)∂−m ∈]C[[x]][[∂]][∂−1}

⇓
Pseudo-differential operator parametrized by t = (t1, t2, t3, · · · )
W := W (t1, t2, t3, · · · ) = 1+w1(t, x)∂

−1+w2(t, x)∂
−2+· · ·wm(t, x)∂−m

⇓
Pseudo-differential operator parametrized by t = (t1, t2, t3, · · · )
L := W∂W−1

⇓
Lax equation is solved for all n = 1,2,3, · · ·

∂L

∂tn
= [Bn, L].



Definition of the dynamical system on GM(m,∞)

Let Ξ = [ξ(j)i ] ∈MN,m(C)

Dynamical system on the frames

exp(t1Λ + t2Λ
2 + t3Λ

3 + · · · )Ξ ∈MN,m(C)

⇓
Dynamical system on C[[x]]

exp(xΛ) exp(t1Λ + t2Λ
2 + t3Λ

3 + · · · )Ξ
= exp((x+ t1)Λ + t2Λ

2 + t3Λ
3 + · · · )Ξ ∈MN,m(C[[x]]) (3)

[f(j)
i (t, x)]0≤i<∞,1≤j≤m := exp((x+t1)Λ+t2Λ

2+t3Λ
3+· · · )Ξ ∈MN,m(C[[t, x]])



(1)
∂l

∂xl
f
(j)
0 (t, x) = f

(j)
l (t, x), (4)

(2)
∂l

∂xl
f
(j)
i (t, x) =

∂

∂tl
f
(j)
i (t, x) = f

(j)
i+l(t, x) (5)

f
(j)
i (t, x) =

∞∑
k=0

ξ
(j)
i+kpk(t, x),

where

pn(x+ t1, t2, t3, · · · ) =
∑ xν0t

ν1
1 t

ν2
2 · · ·

ν0!ν1!ν2! · · ·
∈ Q[x, t2, t2, · · · ],

where the summation extends all the positive integers

ν0, ν1, ν2, · · ·

such that

ν0 + ν1 + 2ν2 + 3ν3 + · · · = n.

Schur polynomial.



§11 Galois group of the KP-hierarchy

Take Ξ = [ξ(j)i ] ∈ M∞,m(C) such that the ξ
(j)
i ’s are algebraically

independent over C.

Then the f
(j)
i (t, x)’s are algebraically independent over C.

Let L be the differential field generated by wk(t, x)’s over C with

derivations ∂/∂x, ∂/∂t1, ∂/∂t2, · · · .

Theorem. Galois group Inf-gal(L/C) is Abelian.

Let L′ be the differential field generated by the f
(j)(t,x)
i with

derivations ∂/∂x, ∂/∂t1, ∂/∂t2, · · · .
So L′/L/C. Theorem follows from

Theorem. Inf-gal(L′/C) is Abelian.



L′/C = C < f
(j)
i (t, x) >i∈N,1≤j≤m /C

The f
(j)
i (t, x)’s are transcendental over C satisfying the lineair

partial differential equations!!

(1)
∂l

∂xl
f
(j)
0 (t, x) = f

(j)
l (t, x), (6)

(2)
∂l

∂xl
f
(j)
i (t, x) =

∂

∂tl
f
(j)
i (t, x) = f

(j)
i+l(t, x) (7)

They are the generic solution of the linear partial differential

equations (1) and (2).



§11 Galois theory for differential equations

Galois tried applied his ambiguity thoery to analysis.

S. Lie, E. Picard, J. Drach, E. Vessiot, E. Kolchin, . . .

Infinite dimensional theory and finite dimensional theory

Given an algebraic vector field X on an algebraic vriety V over

C.

Assume there exists an operation (G,V ) of algebraic group G on

the algebraic variety V over C such that

X ∈ LieG ⊂ H0(V,ΘV ).



Intuitively, Galois group of the vector field X on V is the smallest

algebraic sub-group H of G such that

X ∈ LieH ⊂ LieG ⊂ H0(V,ΘV ).

It is not canonical? What do we do, when there is no

algebraic group action?

Replace the group action by the jet space J(V × V ) that is an

algebraic groupoid. Canonical choice!


