Alternative proof of [DV02, Th. 6.2.2, 1)

Lucia Di Vizio *

13th February 2005

Introduction

We recall the precise statement. Let $\mathcal{M} = (M, \Phi_q)$ be a q-difference module of finite rank μ over a q-difference algebra $\mathcal{A} \subset K(x)$, essentially of finite type over the ring of integers \mathcal{V}_K of the number field K^1 . By definition, \mathcal{M} is regular singular at zero if $\mathcal{M} \otimes_{\mathcal{A}} K((x))$ has a basis over K((x)) in which Φ_q acts through a matrix in $Gl_{\mu}(K)$. We say that \mathcal{M} is regular singular if it is regular singular at 0 and at ∞ , *i.e.* if it is regular singular at 0 after a variable change z = 1/x.

Theorem 1 Let the set Σ_{nilp} of finite places v of K such that \mathcal{M} has unipotent reduction² modulo ϖ_v be infinite. Then the q-difference module \mathcal{M} is regular singular.

In [DV02, Th. 6.2.2] we used a result of Pragmaan [Pra83] (*cf.* also [DV02, 1.4.4]) about the formal classification of singularities of finite difference operators. Here we follow [Kat70, §11].

Proof of theorem 1

Of course it is enough to prove that 0 is a regular singular point for \mathcal{M} .

Proposition 2 [Sau00, Annexe B] Let $\mathcal{M}_{K(x)} = \mathcal{M} \otimes_{\mathcal{A}} K(x)$. The following fact are equivalent: 1) \mathcal{M} is regular singular at 0.

2) The action of Φ_q on one (and actually on any any) cyclic basis³ \underline{e} of $\mathcal{M}_{K(x)}$

(1)
$$\Phi_{q\underline{e}} = \underline{e} \begin{pmatrix} 0 & \cdots & 0 & a_{0}(x) \\ \hline 1 & & 0 & a_{1}(x) \\ & \ddots & & \vdots \\ 0 & & 1 & a_{\mu-1}(x) \end{pmatrix}$$

is such that $a_0(x), \ldots, a_{\mu-1}(x) \in K(x)$ have no poles at 0 and $a_0(0) \neq 0$.

Let $d \in \mathbb{N}$ be equal to 1 or to a multiple of μ ! and let L be a finite extension of K containing an element \tilde{q} such that $\tilde{q}^d = q$. We consider the field extension $K(x) \hookrightarrow L(t), x \mapsto t^d$: the field L(t) has a natural structure of \tilde{q} -difference algebra extending the q-difference structure of K(x). It follows by the previous proposition that:

Corollary 3 The q-difference module $\mathcal{M}_{K(x)}$ is regular singular at x = 0 if and only if the \tilde{q} -difference module $\mathcal{M}_{L(t)}$ is regular singular at t = 0.

Proof. It is enough to notice that if \underline{e} is a cyclic basis for $\mathcal{M}_{K(x)}$, then $\underline{e} \otimes 1$ is a cyclic basis for $\mathcal{M}_{L(t)} \cong \mathcal{M}_{K(x)} \otimes_{K(x)} L(t)$ and $\Phi_{\tilde{q}}(\underline{e} \otimes 1) = \Phi_q(\underline{e}) \otimes 1$.

In the next lemma we construct a rational gauge transformation that allows to avoid the use of the much stronger Praagmann [Pra83] result:

^{*}École Normale Supérieure, 45 rue d'Ulm, 75005 Paris, France. e-mail: lucia.di.vizio@ens.fr

¹for notation *cf.* [DV02, §1] and in particular [DV02, 1.1.2], [DV02, 1.1.5]

²for the definition of unipotent reduction cf. [DV02, §5]

 $^{^{3}}$ cf. [DV02, §1.3]

Lemma 4 There exists a basis \underline{f} of the \tilde{q} -difference module $\mathcal{M}_{L(t)}$, such that $\Phi_{\tilde{q}}\underline{f} = \underline{f}B(t)$, with $B(t) \in Gl_{\mu}(L(t))$, and an integer k such that

(2)
$$\begin{cases} B(t) = \frac{B_k}{t^k} + \frac{B_{k-1}}{t^{k-1}} + \dots, \text{ as an element of } Gl_{\mu}(L((t)));\\ B_k \text{ is a constant non nilpotent matrix.} \end{cases}$$

Proof. We follow [Kat70, §11]. If 0 is a regular singular point for $\mathcal{M}_{K(x)}$, it follows from the previous proposition that it is enough to chose d = 1 and K(x) = L(t). Therefore let us suppose that $\mathcal{M}_{K(x)}$ is not regular singular at 0 and fix a cyclic basis \underline{e} of $\mathcal{M}_{K(x)}$: then $\Phi_q \underline{e} = \underline{e}A(x)$, with A(x) of the form (1). Let

(3)
$$k = \max_{j=0,\dots,\mu-1} \left(-\frac{1}{\mu-j} \operatorname{ord}_{t=0} a_j(t^d) \right) \neq 0.$$

Notice that the rational number k is actually an integer. Consider the basis $\underline{f} = \underline{e}F(t)$ of $\mathcal{M}_{L(t)}$ with $F(t) = \operatorname{diag}(1, t^k, \ldots, t^{(m-1)k})$. Then

$$\Phi_{\tilde{q}}\underline{f} = \underline{f} \left[F(t)^{-1}A(x)F(\tilde{q}t) \right] = \underline{f} \begin{pmatrix} 0 & \cdots & 0 & a_0(t^d)\tilde{q}^{(\mu-1)k}t^{(\mu-1)k} \\ \hline t^{-k} & 0 & a_1(t^d)\tilde{q}^{(\mu-1)k}t^{(\mu-2)k} \\ & \ddots & & \vdots \\ 0 & t^{-k} & a_{\mu-1}(t^d)\tilde{q}^{(\mu-1)k} \end{pmatrix}$$

It follows from (3) that $\operatorname{ord}_{t=0}a_j(t^d)\widetilde{q}^{(\mu-1)k}t^{(\mu-j-1)k} \ge -k$ and that we have an equality for at least one $j = 0, \ldots, \mu - 1$. hence that

$$\Phi_{\tilde{q}}\underline{f} = \underline{f} \left(\frac{B_k}{t^k} + h.o.t \right), \text{ with } B_k = \begin{pmatrix} 0 & \cdots & 0 & b_0 \\ 1 & & 0 & b_1 \\ & \ddots & & \vdots \\ 0 & & 1 & b_{\mu-1} \end{pmatrix}$$

and $b_0, \ldots, b_{m-1} \in L$ not all equal to 0. One can verify recursively that $\det(t-B_k) = t^{\mu} - \sum_{i=0,\ldots,\mu-1} b_i t^i$ and hence that B_k is not nilpotent.

Let $\mathcal{B} \subset L(t)$ be any \tilde{q} -difference algebra essentially of finite type over the ring of integers \mathcal{V}_L of L, containing the entries of B(x). Then there exists a \mathcal{B} -lattice \mathcal{N} of $\mathcal{M}_{L(t)}$ inheriting the \tilde{q} -difference module structure from $\mathcal{M}_{L(t)}$ and having the following properties:

1. \mathcal{N} has unipotent reduction modulo infinitely many finite place of L, namely almost all the places dividing a place in Σ_{nilp} ;

2. there exists a basis \underline{f} of \mathcal{N} over \mathcal{B} such that $\Phi_{\underline{q}}\underline{f} = \underline{f}B(t)$ and B(t) verifies (2).

Iterating the operator $\Phi_{\tilde{q}}$ we obtain:

$$\Phi_{\widetilde{q}}^{m}(\underline{f}) = \underline{f}B(t)B(\widetilde{q}t)\cdots B(\widetilde{q}^{m-1}t) = \underline{f}\left(\frac{B_{k}^{m}}{q^{\frac{km(m-1)}{2}}x^{mk}} + h.o.t.\right)$$

We know that for almost any finite place w of L for whom we have unipotent reduction the matrix B(t) verifies

(4)
$$(B(t)B(\widetilde{q}t)\cdots B(\widetilde{q}^{\kappa_w-1}t)-1)^{n(w)} \equiv 0 \mod \varpi_w ,$$

where ϖ_w is an uniformizer of the palce w, κ_w is the order \widetilde{q} modulo ϖ_w and n(w) is a convenient positive integer. Suppose that $k \neq 0$. Then $B_k^{\kappa_w} \equiv 0$ modulo ϖ_w , for infinitely many w, and hence that B_k is a nilpotent matrix, in contradiction with lemma 4. So necessarily k = 0.

Finally we have $\Phi_{\tilde{q}}(\underline{f}) = \underline{f}(B_0 + h.o.t)$. It follows from (4) that B_0 is actually invertible, which implies that $\mathcal{M}_{L(t)}$ is regular singular at 0. Corollary 3 allows to conclude.

References

- [DV02] Lucia Di Vizio. Arithmetic theory of q-difference equations. The q-analogue of Grothendieck-Katz's conjecture on p-curvatures. Inventiones Mathematicae, 150(3):517-578, 2002.
- [Kat70] Nicholas M. Katz. Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin. Inst. Hautes Études Sci. Publ. Math., (39):175-232, 1970.
- [Pra83] C. Praagman. The formal classification of linear difference operators. Nederl. Akad. Wetensch. Indag. Math., 45(2):249-261, 1983.
- [Sau00] Jacques Sauloy. Systèmes aux q-différences singuliers réguliers: classification, matrice de connexion et monodromie. Annales de l'Institut Fourier, 50(4):1021–1071, 2000.