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Abstract

Generalizing the main result of [AMCW13], we prove that a linear di�erential system is in reduced form
in the sense of Kolchin and Kovacic if and only if any di�erential module in an algebraic construction admits
a constant basis. Then we derive an explicit version of this statement. We �nally deduce some properties of
the Lie algebra of Katz's intrinsic Galois group.
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1 Introduction

Let us consider the �eld of rational functions C(x), with the derivation ∂ = d
dx , and a linear di�erential system

∂~y = A~y, where A is a square matrix of order n with coe�cients in C(x). One can attach to such an object an
algebraic group, called the di�erential Galois group, whose geometric properties encode the algebraic properties
of the solutions of the linear di�erential system. The problem of calculating explicitly the di�erential Galois
group of ∂~y = A~y is old and still di�cult. Among the several references, we cite [CS99], [Hru02], [vdH07], [Fen15]
and [AMP18] that do not make any assumption on the order n of the system. Implemented (or implementable)
algorithms exist only for small dimensions n. See for example [Kov86], [SU93], [vHRUW99], [Hes01], [vH02],
[Per02], [NvdP10], [CS18].

Instead of calculating directly the di�erential Galois group of ∂~y = A~y, one can try to study, or calculate,
the Lie algebra of the di�erential Galois group, called Galois-Lie algebra in what follows. The Galois-Lie algebra
already contains a signi�cant part of the information. Kolchin and Kovacic have proved that one can transform
∂~y = A~y into an equivalent system ∂~y = B~y de�ned over a �nite extension k of C(x), such that B belongs to the
set of k-rational points of the Galois-Lie algebra (see [vdPS03, Proposition 1.31]). One can even prove that the
Galois-Lie algebra is then �generated� by the entries of the matrix B. These ideas are formalized in [AMCW13,
�2.3]. The linear di�erential system ∂~y = B~y is called a reduced form of ∂~y = A~y. A linear di�erential system
∂~y = A~y is said to be in reduced form if A is a k-rational point of the Galois-Lie algebra.
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Main results. In the present work, we prove three results on reduced forms and their relation to the Galois-
Lie algebra. First of all, we prove that a system is in reduced form if and only if any di�erential module in a
construction admits a constant basis (see Theorem 3.2, in particular the equivalence 1⇔ 3). This extends the
criterion for reduced form from [AMCW13] which concerned only invariant lines (see the equivalence 1⇔ 2 in
Theorem 3.2).

Our second contribution is Theorem 3.9 that gives an e�ective characterization of a gauge transformation
that transforms a linear di�erential system into a reduced one. It may be considered as an e�ective counterpart
of Theorem 3.2, based on the �local� data of the semi-invariants. Compared to the original result by Kolchin
and Kovacic on the existence of reduced forms, we have to perform an algebraic extension of the base �eld k,
which may not be optimal, in order to gain the e�ectivity. Theorem 3.9 extends a result which only appeared
in the course of the proof of [AMCW13, Proposition 27], under the assumption that the di�erential system is
completely reducible.

Finally, we prove Theorem 4.5 on the Lie algebra of the intrinsic Galois group, introduced in [Kat82],
where the idea of focusing on the Galois-Lie algebra rather than on the di�erential Galois group itself is
pursued. Indeed, Katz introduces another Galois group for the linear di�erential system ∂~y = A~y, called
the generic or the intrinsic Galois group. Then he considers the Lie algebra of such a group, for which he
gives a conjectural description equivalent to a well-known conjecture of Grothendieck on the algebraicity of the
solutions of a linear di�erential system. We will call it the Katz algebra. In the last section, we gather material
from [Kat82, Ber92, And04, vdPS03] and show how our criteria for reduced forms, combined with standard
Tannakian tools, clarify the structure of the Katz algebra. Namely, for a reductive group, Theorem 4.5 shows
that the Katz algebra is a k-form of the Galois-Lie algebra.

The algorithm in [BCDVW16]. In the latter reference, we showed how one can compute the Galois-Lie
algebra of an (absolutely) irreducible linear di�erential system and hence (a good part of) its di�erential Galois
group. Notice that in [DW19], it is shown how to derive the (connected) Galois group of the reduced form from
the Galois-Lie algebra, so that one can actually recover the connected component of the Galois group of the
original system.

The algorithm selects a Lie algebra that is potentially the Katz algebra and checks that there exists a
gauge transformation that transforms its generators into a set of constant generators of a Lie algebra, that is
a candidate for being the Lie algebra of the Galois group. To do so, it uses Theorem 3.9 in the particular
case of a completely reducible di�erential system, hence in the case considered in [AMCW13]. See [BCDVW16,
Lemma 5.1]. Theorem 4.5 completes the mathematical background of the algorithm, although it is technically
not needed in it.

Organization of the paper. In Section 2, we recall some notions on di�erential modules, tensor constructions
and di�erential Galois theory. In Section 3, we prove our two theorems on the criteria for a linear di�erential
system to be in reduced form. In Section 4, we apply the previous results to the study of the Katz algebra.

2 Notation and de�nitions

We consider a characteristic zero di�erential �eld (k, ∂), that is a characteristic zero �eld k with a derivation
∂ : k → k, such that ∂(a + b) = ∂(a) + ∂(b) and ∂(ab) = ∂(a)b + a∂(b), for any a, b ∈ k. We suppose that the
sub�eld of constants C := k∂ = {f ∈ k : ∂f = 0} is algebraically closed.

2.1 Di�erential modules

A di�erential module M = (M,∇) over k (of rank n) is a k-vector space M of dimension n, with a C-linear
map ∇ : M →M such that ∇(fm) = ∂(f)m+ f∇(m) for any f ∈ k and any m ∈M . For a detailed exposition
on di�erential modules, see [vdPS03, �2.2]. We denote by M∇ or ker∇ the set of horizontal elements of M,
that is elements m ∈M satisfying ∇(m) = 0. This is a C-vector space of dimension at most n.

Main properties of di�erential modules. Given a basis (denoted as a row) e := (e1, · · · , en) of M over k,
the action of ∇ with respect to the basis e is described by a square matrix A ∈Mn(k) as follows:

∇e = −eA.

For any ~y ∈ kn such that e~y represents an element ofM , we have ∇(e~y) = e(∂~y−A~y). Thus horizontal elements
ofM correspond to solutions over k of the di�erential system

[A] : ∂~y = A~y.
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We say that [A] : ∂~y = A~y is the linear di�erential system associated toM with respect to the basis e.

If f = eP , with P ∈ GLn(k), is another basis of M , then the horizontal elements ofM are of the form f~z,
with ~z ∈ kn, where ~z veri�es the linear di�erential system:

∂(~z) = P [A]~z, P [A] := P−1AP − P−1∂(P ).

We say that two matrices A,B ∈Mn(k) are equivalent over k if there exists a gauge transformation P ∈ GLn(k)
such that B = P [A].

Notice that one can extend the scalars of M to a �eld extension k′ of k, equipped with an extension of ∂.
The Leibnitz rule allows to extend ∇ to M ⊗k k

′, so that it makes sense to consider gauge transformations in
GLn(k′), as counterpart of basis changes ofM⊗k k

′ = (M ⊗k k
′,∇).

Algebraic constructions.

De�nition 2.1. A construction of linear algebra is a �nite iteration of the basic constructors ⊕ (direct sum),
⊗ (tensor product), ∗ (dual), Symr (r-th symmetric power, for r ∈ N) and ∧r (r-th exterior power). Given a
construction of linear algebra and a vector space M , we denote by Constr(M) the �nite-dimensional k-vector
space obtained by applying the construction to M .

Given vector spaces M1 and M2 with respective bases e and f , an application of each of the above basic
constructors produces canonically a new basis: for instance, (e1, . . . , en, f1, . . . , fm) is a basis for M1 ⊕M2,
(ei⊗fj | i = 1, . . . , n; j = 1, . . . ,m) is a basis forM1⊗M2, and so on (see [vdPS03, 2.2 page 42], and [AMCW13,
Section 3]) . This way, given a vector space M with basis e and a construction Constr, we iteratively construct
a canonical basis, denoted Constr(e), of Constr(M). Two di�erent constructions may produce two isomorphic
vector spaces. In this case, there is a canonical isomorphism between the two vector spaces which identi�es the
canonical bases.

Remark 2.2.

1. Notice that this list implicitly contains Hom (homomorphisms) and End (endomorphisms) via the canonical
identi�cations Hom(M1,M2) ∼= M1 ⊗M∗2 and End(M) ∼= M ⊗M∗. See also Example 2.3 below.

2. Some authors use additional basic constructors such as quotients and subspaces. We choose not to do so to
avoid the rising of apparent singularities (see [AMCW13, Remark 18]) and because this list is su�cient for our
purposes. See �3.2, where we need an ordinary point for all constructions.

Let H denote a linear algebraic group, with Lie algebra h, acting on M . Let the linear map σ ∈ H have
a matrix U in the basis e. The morphism induced by σ on Constr(M) is denoted by Constr(σ). Its matrix in
the basis Constr(e) is denoted by Constr(U) and the map U 7→ Constr(U) is a group morphism. Similarly, for
h ∈ h, it acts on M as a linear derivation Dh with matrix N . The action of this linear derivation Dh on the
basis Constr(e) of Constr(M) induces a matrix constr(N); the map N 7→ constr(N) is a Lie algebra morphism.
In what follows, we will use the gothical letters constr for these constructions �in the sense of Lie algebras�.

Note that the entries of Constr(U) are polynomials in the entries of U and in 1/ det(U); the 1/ det(U) is
needed to have duals as, when Constr(M) = M∗, Constr(U) = (U−1)T . The entries of constr(N) are linear
forms in the entries of N . See [vdPS03, 2.4 page 53] and [AMCW13, �3.1 and �3.2].

Let P ∈ GLn(k). If we consider a change of basis f = eP in the vector space M , then the corresponding
change-of-basis matrix in Constr(M) will be Constr(P ) and we have Constr(f) = Constr(e)Constr(P ). The
constructions of linear algebra apply functorially to di�erential modules. Let M = (M,∇) be a di�erential
module over k. The operator ∇ induces a C-linear map from Constr(M) to Constr(M), that we will also denote
by ∇, de�ning a di�erential module structure over Constr(M). We will call the latter a construction ofM (or
tensor construction) and denote it Constr(M) = (Constr(M),∇).

Let −A be the matrix of ∇ with respect to a basis e as de�ned above. For any construction Constr(M),
the matrix of ∇ with respect to Constr(e) will be −constr(A). For example, in the case Constr(M) = M∗,
constr(A) = −AT , while if Constr(M) =M⊗kM∗, then constr(A) = A⊗ In − In ⊗ AT . See [AMCW13, �3.1
and �3.2].

Example 2.3. LetM = (M,∇) be a di�erential module over k and let −A be the matrix of ∇ with respect
to a basis e. We consider the di�erential module End(M) = (Endk(M),∇). If ϕ ∈ Endk(M) then ∇(ϕ) is the
endomorphism of M de�ned by ∇(ϕ)(m) = ∇(ϕ(m))− ϕ(∇(m)), for all m ∈ M . If F is the matrix of ϕ with
respect to e, one can check that ∇(ϕ)(e) = e(∂F −AF +FA). If we denote by square matrices F the elements
of End(M) with respect to the basis induced by e, then the linear di�erential system associated to End(M)
with respect to the basis induced by e is ∂F = AF − FA.
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The horizontal elements of End(M) are the elements ϕ ∈ Endk(M) such that∇(ϕ(m)) = ϕ(∇(m)), ∀m ∈M.
Thus the horizontal elements of the di�erential module End(M) are exactly the k-endomorphisms of M which
commute with ∇. They are called di�erential module endomorphisms of M. They form a C-algebra denoted
by E(M) which is called the eigenring ofM.

Among all the possible constructions, the di�erential module M ⊗k M∗ will play a special role in the
exposition below. If we identify it canonically to End(M), then the linear di�erential system associated to
M⊗kM∗ in the basis induced by e is exactly ∂F = AF −FA. The set E([A]) of matrices F ∈Mn(k) satisfying
the above matrix di�erential equation is called the eigenring of the system [A] : ∂~y = A~y. It is isomorphic (as
a C-algebra) to E(M).

2.2 Picard-Vessiot extensions

We introduce very brie�y some notions of di�erential Galois theory, with the main purpose of �xing the notation.
There exists several detailed introduction to the topic. We refer to [vdPS03] for a general introduction and to
[AMCW13] for more speci�c notions which are needed in this paper.

Let us consider the linear di�erential system [A] : ∂~y = A~y. To any such system we can attach a k-algebra
R, with an extension of ∂, having the following properties:

1. there exists U ∈ GLn(R) such that ∂U = AU ;

2. the entries of U plus detU−1 generate R over k, namely R = k[U,detU−1];

3. R has no proper non-trivial ideals stable by ∂, i.e., it is a simple di�erential ring.

We say that R is a Picard-Vessiot ring of k for [A]. It is an integral domain and its ring of constants R∂ coincides
with C. Its quotient �eld K = Frac(R) is generated (as a �eld) by the entries of U and its sub�eld of constant
is again C. We call K a Picard-Vessiot extension of k for [A].

Remark 2.4.

1. If [A] and [B] are two equivalent systems over k then any Picard-Vessiot extension of k for [A] is a Picard-
Vessiot extension of k for [B]. Hence one can de�ne a Picard-Vessiot extension of k for a given di�erential
moduleM = (M,∇) as a Picard-Vessiot extension of k for the di�erential system associated toM with
respect to a basis of M .

2. Let K be a Picard-Vessiot extension of k for di�erential module M = (M,∇). The Leibnitz rule allows
to endow M ⊗k K with a natural structure of di�erential module over K, which will be denoted by
M⊗k K. The de�nition of K implies that M⊗k K is trivial, i.e., M⊗k K admits a basis over K of
horizontal elements. One can show that if a module is trivial, then all its algebraic constructions and their
subquotients are trivial. See [vdPS03, Exercice 2.12,5].

3. Let V := (M⊗k K)∇ be the C-vector space of the horizontal elements ofM⊗k K. As already pointed
out, it has dimension n.

We give now a de�nition that we will use in the main theorem.

De�nition 2.5. LetM = (M,∇) be a di�erential module and K a Picard-Vessiot extension. A semi-invariant
ofM is a horizontal element m⊗ g contained in some construction Constr(M⊗k K) ∼= (Constr(M)⊗k K,∇),
i.e., an element m ⊗ g with m ∈ Constr(M) and g ∈ K such that ∇(m ⊗ g) = 0. If m is a horizontal element
in some construction Constr(M), then it is called an invariant ofM.

For the convenience of the reader, we reprove the following classical lemma that we will use in this work.

Lemma 2.6. Let M = (M,∇) be a di�erential module and K a Picard-Vessiot extension of k for M. Fix a
basis e of M and let [A] : ∂~y = A~y be the associated linear di�erential system. The following statements are
equivalent:

1. there exists m ∈M such that ∇(m) = fm, for some f ∈ k (i.e., m generates a ∇-stable line);

2. there exists a solution g~v over K of ∂~y = A~y, with g ∈ K, such that ∂(g)/g = −f ∈ k, and ~v ∈ kn.
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Proof. Let us assume that there existsm ∈M such that ∇(m) = fm, for some f ∈ k. Then the line L generated
by m over k is a di�erential module L, and L⊗kK ⊂M⊗kK is a trivial di�erential module (see Remark 2.4).
Thus there exists g ∈ K, g 6= 0, such that m⊗ g is a horizontal element of L ⊗k K. It follows that we have:

0 = ∇(m⊗ g) = fm⊗ g +m⊗ ∂(g) = m⊗ (fg + ∂(g)) ,

which implies ∂(g)/g = −f ∈ k. If we de�ne ~v ∈ kn by the relation m = e~v, then we can check that g~v is a
solution vector of ∂~y = A~y.

Let us now suppose that we are in the situation described in the second assertion. If we de�ne m := e~v, then
we have∇(m) = e(∂~v−A~v). Moreover, we have ∂(g~v) = ∂(g)~v+g∂~v = Ag~v so that ∂~v−A~v = −(∂(g)/g)~v = f~v.
Finally ∇(m) = fm, with f ∈ k which ends the proof.

Remark 2.7. In particular, Lemma 2.6 above implies that, if m ⊗ g is a semi-invariant, then necessarily
∇(m) = (−∂(g)/g)m, or equivalently m generates a ∇-stable line L contained in a construction Constr(M) of
M . If m′ = hm, for some h ∈ k, then ∇(m′) = (−∂(g)/g + ∂(h)/h)m′ and ∇(m′ ⊗ (g/h)) = 0. Moreover, if
m⊗ g is a semi-invariant ofM, such that m generates a line L in a construction of M , and c ∈ C is a nonzero
constant, then c(m⊗ g) is another semi-invariant, corresponding to the same line L. One can prove that all the
semi-invariants can be obtained in this way.

Roughly speaking, semi-invariants ofM correspond to exponential solutions of ∂~y = constr(A)~y and invari-
ants correspond to rational solutions. For more details on these de�nitions, see [AMCW13, �3.4].

For further reference we recall the following lemma:

Lemma 2.8 ([AMCW13, Lemma 29]). Let [A] : ∂~y = A~y be the linear di�erential system associated toM with
respect to a �xed basis e. We suppose that there exist an algebraic extension k′/k and a matrix P ∈ GLn(k′)
such that, for any invariant ofM given by a horizontal element in some construction Constr(M) of coordinates
~v with respect to the basis Constr(e), the vector Constr(P )−1~v has constant coordinates. Then the same property
holds for any invariant ofM⊗k k, where k is the algebraic closure of k.

2.3 The di�erential Galois group

The di�erential Galois group of [A] (or, equivalently, ofM) is de�ned as:

Gal∂([A]) := Aut∂(K/k) := {ϕ : K → K, �eld automorphism s.t. ∀f ∈ k we have ϕ(f) = f and [ϕ, ∂] = 0},

where K is a Picard-Vessiot extension of k for [A]. The �rst result of the di�erential Galois theory is that any
fundamental matrix of solutions U ∈ GLn(R) of [A] determines a faithful representation of Gal∂([A]) as a linear
algebraic group de�ned over C:

Gal∂([A]) → GLn(C),
ϕ 7→ U−1ϕ(U).

In fact, ϕ(U) is a fundamental matrix of solutions of [A], therefore U−1ϕ(U) must be an invertible matrix with
constant coe�cients. The choice of another fundamental matrix of solutions leads to a conjugated representation.
We will sometimes simply call G the di�erential Galois group Gal∂([A]), identifying it with its image via the
morphism above and without mentioning the matrix U , unless the context makes it necessary.

We are not explaining here any result on the Galois correspondence and we refer the interested reader to
the literature. For the purpose of this paper, we mostly need to know that, if k◦ is the relative algebraic closure
of k in K, then K/k◦ is a Picard-Vessiot extension for [A] over k◦. Moreover the �eld of constants is still C
and we have Aut∂(K/k◦) = G◦, where G◦ is the connected component of G containing 1. This means that the
di�erential Galois group of [A] over k◦ coincides with the automorphisms of G that �x k◦ and can be identi�ed
with G◦.

The Galois-Lie algebra gal([A]). Since the di�erential Galois group G = Gal∂([A]) is an algebraic group
over C, one can naturally consider its Lie algebra g := gal([A]) called Galois-Lie algebra, that is the tangent
space to G◦ at 1. If we look at its C-rational points, we have:

gal([A])(C) = {N ∈Mn(C) : 1 + εN ∈ Gal∂([A])(C[ε])},

where Gal∂([A])(C[ε]) are the rational points of Gal∂([A]) over the C-algebra C[ε], with ε2 = 0.

As it is an algebraic Lie algebra over C, gal([A]) is generated as a C-vector space by a �nite subset ofMn(C).
It will be useful to notice that the same subset of matrices of Mn(C) generates, as a k-vector space, the algebra
gal([A])(k) of k-rational points of gal([A]). For further reference we recall the following result:

Proposition 2.9 ([vdPS03, Proposition 1.31]). Let h be an algebraic Lie algebra de�ned over C and such that
A ∈ h(k). Then gal([A]) ⊂ h.
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3 Reduced Forms

3.1 Characterization of reduced forms

We keep the notation of the previous section.

De�nition 3.1. We say that a linear di�erential system [A] : ∂~y = A~y is in reduced form when A belongs to
gal([A])(k). LetM = (M,∇) be a di�erential module and e be a k-basis of M . We say that e is a reduced basis
if the system associated toM with respect to the basis e is in reduced form.

As pointed out in the introduction, Kolchin and Kovacic has proved that a reduced form always exists on a
�nite extension of k. See [vdPS03, Proposition 1.31]. Criteria for reduced forms have been studied by Aparicio,
Compoint and Weil in [AMCW13]. Their main result is generalized below. Our contribution in this theorem is
the new characterization of reduced form stated in Point 3.

Theorem 3.2. Let [A] : ∂~y = A~y be the linear di�erential system associated to a di�erential module M =
(M,∇) over k, with respect to a �xed basis e. The following assertions are equivalent:

1. [A] is in reduced form;

2. For any construction Constr(M) ofM, every ∇-stable line of Constr(M) admits a constant basis (i.e., a
basis whose elements have constant coordinates with respect to the basis induced by e);

3. For any construction Constr(M) ofM, every ∇-stable sub-k-vector space of Constr(M) admits a constant
basis.

If moreover M is completely reducible (i.e. it is direct sum of irreducibles), then the assertions above are
equivalent to:

4. Any invariant ofM has constant coordinates.

Proof. Lemma 2.6 and Remark 2.7 show that the constant bases of ∇-stable lines correspond to the semi-
invariants considered in [AMCW13]. Therefore �1 ⇔ 2� is a reformulation of [AMCW13, Theorem 1]. Since
�3 ⇒ 2� is tautological, it is enough to prove that �2 ⇒ 3�. Let N = (N,∇) be a construction of M and W
be a ∇-stable sub-k-vector space of N of dimension d. It follows that ∧dW is ∇-stable sub-k-vector space of
dimension 1 of ∧dN . By assumption, there exists a non-zero element of ∧dW , whose coordinates ~w with respect
to the basis induced by e on ∧dN are in C. Hence, in the basis induced by e, the map

Ψ : N → ∧d+1N,
~v 7→ ~w ∧ ~v,

is represented by a matrix with coe�cients in C. It follows that ker Ψ has a basis of vectors with coordinates
in C, with respect to the basis induced by e. Since ker Ψ = W , we have proved �2⇒ 3�.

By de�nition, a horizontal element of a construction Constr(M) corresponds to a solution of the associated
di�erential system ∂~y = constr(A)~y with respect to the basis Constr(e). De�nition 2.5 and [vdPS03, Exer-
cice 2.38] imply that the equivalence �1 ⇔ 4� coincides with [AMCW13, Proposition 27] which ends the proof
of Theorem 3.2.

Remark 3.3. Let m ∈ Constr(M) generate a line which is invariant by ∇ and let e be a reduced basis. By
Theorem 3.2 above, we can choose m such that m = Constr(e)~v, with ~v ∈ Cn. Moreover since ∇(m) = fm
for some f ∈ k, there exists g ∈ K verifying ∂(g) = fg. This means that g~v is a solution vector of the system
associated to Constr(M) with respect to Constr(e). This is what we mean when we say that invariants and
semi-invariants have constant coordinates with respect to this reduced basis.

Example 3.4. Theorem 3.2 has as corollary the following known fact: in a reduced basis, the eigenring of
M (see Example 2.3 for the de�nition) can be identi�ed to the ring of matrices with coe�cients in C which
commute with A, hence with all the elements of a Wei-Norman decomposition of A (see [AMCW13, �2.2] and
[WN64]).

The Kolchin-Kovacic theorem implies in particular that there exists a �nite extension k′/k such thatM⊗kk
′

admits a reduced basis. See [vdPS03, Proposition 1.31 and Corollary 1.32] and [AMCW13, Remark 31].

De�nition 3.5. We say that k′ is a reduction �eld whenM⊗k k
′ admits a reduced basis.

Remark 3.6. When k′ is a reduction �eld, then the di�erential Galois group of M⊗k k
′ is connected, see

[AMCW13, Lemma 32], and the Galois correspondence implies that k′ ∩K = k◦, the �xed �eld of G◦ in the
Picard-Vessiot extension K.
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3.2 Gauge transformation to a reduced form with local conditions

Assumption 3.7. In this section, we suppose that the �eld k is a sub�eld of the �eld of meromorphic functions
over a region D of C in the variable x such that x ∈ k and ∂ = d

dx .

Remark 3.8. The �eld of rational functions k = C(x) satis�es the assumption above, as well as most di�erential
�elds occurring in the concrete examples. Indeed let k be any di�erential �eld. Then the entries of the matrix
A of the linear di�erential system [A] : ∂~y = A~y, generate a di�erential �eld k̃, which is a �nitely generated
di�erential extension of Q. Seidenberg's embedding theorem (see [Sei56, Sei52]) ensures that k̃ can be embedded
isomorphically in a di�erential �eld of meromorphic functions on an open region D of C.

We consider a linear di�erential system [A] : ∂~y = A~y, with coe�cients in k. For all points x0 ∈ D such that
x0 is not a pole of A, the system [A] has a fundamental matrix of solutions Ûx0(x) with the following properties:

1. Ûx0
(x) ∈ GLn(C[[x− x0]]),

2. Ûx0
(x0) = Id, the identity matrix.

The columns of Ûx0
(x) generate over C the vector space V of solutions of [A] (contained in C[[x− x0]]n), and

K := k(Ûx0
(x)) is a Picard-Vessiot extension of [A]. Let Constr be a construction. Then Constr(Ûx0

)(x0) is
the identity matrix (because Constr acts on matrices as a group morphism). Furthermore, Constr(Ûx0

) is a
fundamental matrix of solutions for [constr(A)]. Consider an invariant of M given by a horizontal element m
in Constr(M) such that m has coordinates ~v(x) ∈ kN with respect to the basis Constr(e). The vector ~v(x) is a
solution of [constr(A)] and hence we have ~v(x) = Constr(Ûx0

)(x)~w for some ~w with constant coe�cients in C.
The fact that Constr(Ûx0)(x0) is the identity matrix allows to conclude that ~w = ~v(x0).

In the theorem below, we give an algebraic characterization for a reduction matrix. The original Kolchin-
Kovacic theorem ensures that, when the base �eld k is a C1-�eld, there exists a reduced basis de�ned on the
relative algebraic closure k◦ of k in the Picard-Vessiot extension K. However, its proof is not e�ective and
it relies on �nding rational points on varieties and this part is not either, to our knowledge, algorithmic yet.
In order to gain e�ectiveness, we enlarge k to an algebraic extension k′, in which we can compute (without
C1-assumptions on k) a reduction matrix that is characterized by the property of transforming any invariant
in its �value at x0�. The �eld k′ may depend on the choice of x0. However, as seen in Remark 3.6, we have
k′ ∩K = k◦ so k′ ∩K does not depend on the choice of x0.

The spirit of this result and of our proof appears in the proof of [AMCW13, Theorem 3] in a particular
case. It is extended here to all constructions and this is useful for reduced form algorithms; see [BCDVW16,
Lemma 5.1], where this result was alluded to, without a full proof for lack of space.

Theorem 3.9. Let us consider a linear di�erential system ∂~y = A~y, de�ned over a �eld k, associated to a
completely reducible di�erential module M with respect to a �xed basis e. We choose a point x0 ∈ D such that
A does not have a pole at x0. Then, there exists a �nite extension k′ of k and a matrix Px0

∈ GLn(k′) such
that f := ePx0

is a reduced basis ofM⊗k k
′, having the following property:

For any invariant ofM given by a horizontal element m in some construction Constr(M) such that
m has coordinates ~v(x) ∈ kN with respect to the basis Constr(e), we have ~v(x) = Constr(Px0

)~v(x0).

Remark 3.10. In the last statement, we view Constr(e) as a basis of Constr(M ⊗k k
′) and identify an element

m ∈ Constr(M) with its image m⊗ 1 ∈ Constr(M)⊗k k
′ ∼= Constr(M ⊗k k

′).

Proof. In the new basis f , if it exists, all invariants are constant therefore it is a reduced basis, thanks to
Lemma 2.8 and Theorem 3.2. We now prove the existence. Let X be a matrix with indeterminate entries.
For any invariant in some construction Constr(M) having coordinates ~v(x) ∈ kN with respect to the basis
Constr(e), consider the equation ~v(x) = Constr(X)~v(x0). It provides an in�nite set of polynomial equations
over k in the entries of X which are all satis�ed by the entries of a fundamental matrix of solutions Ûx0(x) of
[A] (see the explanations above). As a consequence, the latter set of equations generates a proper ideal in the
ring of polynomials in n2 variables, which is �nitely generated because of the noetherianity. The Nullstellensatz
then ensures that there exists a solution P ∈ GLn(k′), where k′/k is a �nite extension of k.

Remark 3.11. Assume that M admits a reduced basis e. Consider an invariant m in some construction
Constr(M) having (constant) coordinates ~v ∈ CN with respect to the basis Constr(e). Then we have ~v =

Constr(Ûx0
(x))~c and the constant vector ~c is an invariant (in the usual sense of representation theory) of the

Galois group Gal∂([A]) in its representation induced by Ûx0(x). Now, by construction, Ûx0
(x0) = Id (the

identity matrix); as Constr acts as a group morphism, we see that Constr(Ûx0
)(x0) = Id. Now, because ~v is

constant, we have ~v = Constr(Ûx0
)(x0)~c so ~v = ~c. In a reduced basis, this observation allows to identify the

invariants ofM and those of Gal∂([A]).
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4 The intrinsic Galois-Lie algebra of Katz

LetM = (M,∇) be a di�erential module over k.

De�nition 4.1 ([Kat82]). The intrinsic Galois group GKatz of Katz is the set of ϕ ∈ GL(M) such that, for
any ∇-stable sub-k-vector space N of a construction Constr(M), N is set-wise stable under Constr(ϕ).

The Katz algebra gKatz is the Lie algebra of GKatz.

Remark 4.2. For ϕ ∈ End(M), the functor constr acts on ϕ as a Lie algebra morphism, see the explanations
before Example 2.3. In particular, for any invariant m ∈ Constr(M) and ϕ ∈ gKatz, we have constr(ϕ)(m) = 0.

By Noetherianity, gKatz is a stabilizer of a �nite family of di�erential modules contained in some constructions
ofM. This shows that gKatz is an algebraic Lie algebra. It is the central object of the famous Grothendieck-Katz
conjecture on p-curvatures. The following properties of gKatz are known, see [Kat82, And04, vdPS03], but are
reproved for self-containedness.

Lemma 4.3. LetM = (M,∇) be a di�erential module over k, K a Picard-Vessiot extension, G the di�erential
Galois group ofM and g the Galois-Lie algebra.

1. The Lie algebra gKatz can be de�ned as the stabilizer of a single line in an algebraic construction of M
(which can be chosen to be ∇-invariant).

2. The Lie algebra gKatz is a di�erential module for the structure induced byM⊗kM∗.

3. gKatz = (g⊗C K)G.

Proof. 1. Because of the Noetherianity, a theorem of Chevalley ensures that gKatz is the stabilizer of a �nite
family Wi of ∇-stable k-vector spaces contained in some constructions of M . A classical argument then shows
that gKatz can be de�ned as the stabilizer of ∧d ⊕i Wi, where d is the dimension of ⊕iWi over k. See [Kat82,
proof of Proposition 9.3]

2. If m generates a ∇-stable line in some construction of M , which de�nes gKatz as a stabilizer, and ϕ ∈ gKatz,
then constr(ϕ)(m) = αm and ∇(m) = βm, for some α, β ∈ k. We conclude that:

∇(constr(ϕ))(m) = ∇(constr(ϕ)(m))− constr(ϕ)(∇(m))
= ∇(αm)− constr(ϕ)(βm)
= ∂(α)m+ α∇(m)− βconstr(ϕ)(m)
= ∂(α)m.

Therefore ∇(constr(ϕ)) belongs to gKatz.

3. The Tannakian correspondence will show that gKatz
∼= (g⊗k K)

G. Indeed, we have seen that gKatz is the
stabilizer of a line L. Then LC := (L⊗C K)∇ is a C-line de�ned in the corresponding construction on the C-
vector space of solutions V := (M⊗kK)∇. It is stabilized by g so g⊗CK stabilizes LC⊗CK. Hence (g⊗CK)G

stabilises (LC ⊗C K)G. Now (LC ⊗C K)G = L so (g ⊗C K)G stabilises L and thus (g ⊗C K)G ⊆ gKatz. In
fact, the same argument shows that (g ⊗C K)G stabilizes any di�erential module in a construction and thus
(g⊗C K)G = gKatz.

This ends the proof.

De�nition 4.4. An invariant m of M in Constr(M) is called a Chevalley invariant of gKatz when gKatz =
{h ∈ gl(M) | h(m) = 0}.

Theorem 4.5. Let M = (M,∇) be a di�erential module over k, G the di�erential Galois group of M, g the
Galois-Lie algebra and gKatz the Katz algebra. Let k

′ be a reduction �eld so thatM⊗k k
′ admits a reduced basis

e. IfM is completely reducible, then g⊗C k
′ = gKatz ⊗k k

′.

Proof. In a reduced basis ofM⊗k k
′, Remark 3.11 shows that g and gKatz⊗k k

′ have the same invariants. Now
M is completely reducible (equivalently, the Galois group G is reductive) so both g and gKatz are completely
reducible and this remains true after extension of scalars. From [Bor91, Chap. II, Sect. 5.5 page 92] or
[AMCW13, Lemma 26], it follows that both g and gKatz ⊗k k

′ are determined by their invariants. These two
observations show that a Chevalley invariant of g is also a Chevalley invariant of gKatz ⊗k k

′. Let m be a
Chevalley invariant of gKatz ⊗k k

′ in some construction Constr(M)⊗k k
′. In the reduced basis, m has constant

coe�cients: we have m = Constr(e)~v, with ~v ∈ Cn. Thus, a matrix N = (nij)i,j is in gKatz ⊗k k
′ if and only

if constr(N)~v = 0. This relation yields a system of linear equations L((ni,j)i,j) = 0 for the entries (ni,j)i,j of
N , with coe�cients in C. Now, as seen above, ~v is also a Chevalley invariant of the Galois-Lie algebra g. So a
matrix is in g if and only if its entries satisfy the same linear equations L((ni,j)i,j) = 0. Consequently, g⊗C k

′

and gKatz ⊗k k
′ share the same constant basis so that g⊗C k

′ = gKatz ⊗k k
′.
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De�nition 4.6. Let k′ be an extension of k. Let W be a subspace of a construction Constr(M)⊗k k
′. We say

that W is de�ned over C when it is generated by constant matrices (i.e., when it is a k′-form of a C-space).

Corollary 4.7. Let k′ be a reduction �eld so that M⊗k k
′ admits a reduced basis e. Then gKatz ⊗k k

′ is
de�ned over C. Moreover, if A is the matrix of the associated linear di�erential system with respect to e, then
A ∈ gKatz ⊗k k

′.

Proof. Let L be a ∇-invariant line in some Constr(M) such that gKatz is the stabilizer of L. By Theorem 3.2,
we can choose a generator m of L⊗C k

′ whose coordinates are constant with respect to the reduced basis. This
shows that gKatz ⊗k k

′ (but not gKatz in general) is de�ned over C. The fact that A ∈ gKatz ⊗k k
′ follows from

the de�nition of a reduced basis and from Theorem 4.5.

Example 4.8. We illustrate the previous results on an example where everything can be checked by hand
calculations. Let

A =

(
0 1

x 1
2x

)
.

The Galois group G is a central extension of the in�nite dihedral group (see [AMCW13, Example 6.1]). The
connected component G◦ of G containing 1 is the multiplicative group Gm with Lie algebra gm generated by(

1 0
0 −1

)
.

Furthermore, using [BCDVW16], we can see that the Katz algebra is 1-dimensional and it is generated by

N1 :=

(
0 1

x

1 0

)
.

We have ∇(N1) := N ′1 − [A,N1] = − 1
2xN1. Over k = C(x), no nonzero multiple of N1 is conjugated to a

constant matrix. However, over the �nite extension k′ := C(
√
x),
√
xN1 is conjugated to a constant matrix.

Indeed, we have N1 = P−1DP with

D =

 1√
x

0

0 − 1√
x

 =
1√
x

(
1 0
0 −1

)
, P =

(
1 −1
√
x
√
x

)
.

We see that gKatz ⊗k k
′ is now generated by the (constant) generator of the Galois-Lie algebra gm and,

applying the gauge transformation P , we have the reduced form

P [A] =

( √
x 0

0 −
√
x

)
=
√
x

(
1 0
0 −1

)
.

This shows that gKatz ⊗k k
′ = gm ⊗C k

′ and P [A] ∈ gKatz ⊗k k
′. Note that gKatz is not de�ned over C whereas

gKatz ⊗k k
′ is.

Remark 4.9. Following the de�nition of the eigenring E([A]) in Example 2.3, any matrix in E([A]) maps a
solution of [A] to a solution of [A]. Example 3.4 showed that, in a reduced basis, the eigenring is generated
by constant matrices which commute with A. In reduced form, we have A =

∑d
i=1 fiNi where fi ∈ k′,

the fi are linearly independent over C and the Ni generate g (see [AMCW13, De�nition 6 and Remark 7]).
Theorem 4.5 shows that the Ni also generate gKatz ⊗k k

′ as a Lie algebra. Given a constant matrix T ∈ E([A]),
we have [A, T ] = 0, i.e.,

∑d
i=1 fi[Ni, T ] = 0. As the fi are linearly independent over C, it follows that we have

[Ni, T ] = 0 for all i. So, in a reduced basis, the eigenring becomes the set of constant matrices which commute
with gKatz ⊗k k

′ (or, equivalently, with g).

In [And04], André warns that spaces which are stable under gKatz may not be stable under ∇. We can see
this easily using reduced forms. Consider a linear di�erential system [A] : ∂~y = A~y having all its solutions
algebraic over k. Then gKatz = 0 so that anything is stable under gKatz. In a reduced basis, the matrix of the
linear di�erential system is the zero matrix and ∇ coincides with ∂ = d

dx . A random vector in kn is not stable
under ∇ even though it is stable under gKatz. However, any line de�ned over C is clearly stable under ∂ and
hence under ∇. The next result builds on this observation to characterize which spaces, among those which are
stable under gKatz, are stable under ∇.
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Proposition 4.10. Let M = (M,∇) be a completely reducible di�erential module over k and k′ denote a
reduction �eld for M. Let W be a subspace of a construction Constr(M) ⊗k k

′. Then W is stable under ∇ if
and only if both conditions below are ful�lled:

1. W is stable under gKatz ⊗k k
′;

2. W is de�ned over C.

Proof. The �only if� part follows from the de�nition of the Katz algebra (Point 1.) and from Theorem 3.2 (Point
2.). Now, assume that W is stable under gKatz ⊗k k

′ and de�ned over C. Let C1, . . . , Cs denote a constant
basis of W . Let A be the matrix of the linear di�erential system associated withM⊗k k

′ in a reduced basis.
We have A =

∑
j fj(x)Nj , where fj(x) ∈ k′ and the Nj form a (constant) basis of gKatz (and of g). As the Ci

are constant, ∇ acts on them via ∇(Ci) = −constr(A)Ci and thus ∇(Ci) = −
∑

j fj(x)constr(Nj)Ci. Now, by
hypothesis W is stable under gKatz ⊗k k

′ so that constr(Nj)Ci is a linear combination (over k′) of the Cl. It
follows that ∇(Ci) is in W as announced.

Each space in Constr(V ) which is invariant under g is in (Tannakian) correspondence with a submodule of
Constr(M), invariant under ∇ and hence under gKatz. A reciprocal property would be to characterize, among
all subspaces in any Constr(M) that are stable under gKatz, which ones are stable under ∇ (and hence are in
Tannakian correspondence with a g-module in Constr(V ). Proposition 4.10 shows that this it is possible to do
that at the cost of extending scalars. When we study the subspaces of Constr(M)⊗kk

′ which are invariant under
gKatz ⊗k k

′, the ones which are invariant under ∇ (and hence in tannakian correspondence with a g-module)
are exactly those which admit a constant basis.
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