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ABSTRACT
We consider a linear differential system [A] : y′ = Ay, where
A has coefficients in the differential field C(x). The differen-
tial Galois group G of [A] is a linear algebraic group which
measures the algebraic relations among solutions. Although
there exist general algorithms to compute G, none of them is
either practical or implemented. This paper proposes an al-
gorithm, of probabilistic nature, to compute the Lie algebra
g of G. The algorithm is implemented in Maple.
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1. INTRODUCTION
Given a linear differential system [A] : y′ = Ay with

A ∈ Mn(C(x)), its differential Galois group G measures ev-
erything that algebra can see about the solutions, see [24].
For example, it measures solvability (with applications to in-
tegrability of dynamical systems, see references in [1, 2]), re-
ducibility, transcendance properties for number theory, and
so on. In theory, there exist general algorithms for comput-
ing differential Galois groups. Compoint and Singer gave
such an algorithm in [11] in the case of reductive groups.
Hrushovski gave a general algorithm in [18] which was re-
cently clarified and improved by Feng in [15]. A symbolic-
numeric algorithm is proposed by van der Hoeven in [23],
based on the Schlesinger-Ramis density theorems. However,
although these are wonderful decision procedures, none of
them are either practical or implemented.

For a large class of problems, it is sufficient to compute
the Lie algebra g of G (which amounts to computing the
connected component of the identity G◦) instead of the dif-
ferential Galois group G itself. See, for instance, the work
by Nguyen and van der Put in [21] where they study when
a given differential system can be solved in terms of systems
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of lower order. The purpose of the present paper is to use
a similar philosophy for computing g. Our starting point is
the theory of Katz ([20]). Let M be the differential mod-
ule associated with [A]. There is a theoretical identification
(tannakian correspondence) between g and a submodule W
of End(M). Our main contribution is to make this iden-
tification algorithmic and provide an effective algorithm to
compute g when M is absolutely irreducible. To achieve
this, we proceed in four main steps. The first step (Section 3)
consists in computing a maximal decomposition of End(M).
Using eigenring’s techniques, this requires to compute ratio-
nal solutions ([3]) of a structured system of dimension n4.
By exploiting the structure of the system, we reduce this
problem to computing rational solutions of systems of lower
dimensions which significantly improves the complexity of
this step. In Section 4, to find a candidate for the submodule
W (corresponding to g), we use a modular approach based
on Grothendieck-Katz conjecture (see Conjecture 4.1). We
choose a prime p, compute the p-curvature χp ([9]) and iden-
tify the submodule of End(M) whose reduction modulo p
contains χp. This provides a guess for W which is given by
a basis M1, . . . ,Md of matrices in Mn(C(x)). The next steps
(Section 5) rely on the fact that g can also be directly read off
from a reduced form of [A] (see Theorem 5.1). Using recent
results from [2], we then prove that computing a reduction
matrix amounts to computing a conjugation matrix between
two semi-simple Lie sub-algebras of gln(C(x)) respectively
generated by the Mi and their evaluations Mi(x0) at some
ordinary point x0 of [A]. For the third step of our algorithm,
we use a method for computing conjugation matrices based
on results on semi-simple Lie algebras ([19, 13]). In our last
step, we find a reduction matrix among the conjugation ma-
trices. If our guess for W is not correct, then the third and
fourth steps may fail. In this case, we go back to the second
step and restart with another prime. Our algorithm (Sec-
tion 6) is probabilistic in the sense that there are examples
for which we have infinitely many bad choices for p but the
result is guaranteed otherwise. Note that a reduced form is
obtained as a byproduct of our algorithm. We have a proto-
type implementation of our algorithm in Maple. We have
applied it to many examples and it turns out that the most
costly step is the decomposition of End(M). This step has a
polynomial complexity in n ([6]) compared to the exponen-
tial (several levels) complexity in n of the existing algorithms
for computing G ([15]).

Notations.
Throughout this paper, k , C(x) denotes the differential



field of rational functions in the (complex) variable x with

the derivation ′ , d
dx

. For the actual calculations in our

algorithms, C is replaced by a computable subfield of Q. If
u1, . . . , un are elements of some vector space E, we denote
by u in bold the column vector u = (u1 . . . un)T ∈ En. For
a square matrix U ∈ Mn(k) of size n with entries in k, we
denote Ui• (resp U•i) the ith row (resp. column) of U , and

Vect(U) , (U1•, . . . , Un•)
T ∈ kn

2

is the vector obtained by
stacking the vectors UTi• successively. Conversely, for a vec-

tor v ∈ kn
2

, we note Mat(v) the matrix in Mn(k) obtained
by the reverse operation. The Kronecker product A ⊗ B of
A ∈ Mn×p(k) and B ∈ Mq×r(k) is the matrix defined by:

A⊗B ,

 a1,1 B . . . a1,pB
...

...
...

an,1 B . . . an,pB

 ∈ Mnq×pr(k).

If A ∈ Mn(k), we denote [A] the linear differential system
[A] : y′ = Ay, where y is a column vector of n unknown
functions. A change of variables also called gauge transfor-
mation y = P z with P ∈ GLn(k) yields z′ = P [A] z, where

P [A] , P−1 (AP − P ′). The linear differential systems [A]
and [P [A]] are then said to be (gauge) equivalent over k.

2. PRELIMINARIES
We recall here some definitions and facts concerning differ-

ential modules, linear differential systems, differential Galois
groups and their Lie algebras. See, e.g., [24] for more details.

2.1 Differential modules and systems
A differential module M over k is a finite dimensional k-

vector space equipped with an additive map ∂ : M → M
satisfying ∂(f m) = f ′m + f ∂(m), for all f ∈ k and for all
m ∈M. A differential submodule ofM is then a sub-vector
space of M which is stable under the action of ∂.

A differential module M is irreducible if it has no non-
trivial submodule. Otherwise it is reducible. M is absolutely
irreducible if k ⊗kM is irreducible. M is decomposable if
there exist two non-trivial differential submodules M1 and
M2 of M such that we have the direct sum decomposition
M = M1 ⊕M2. Otherwise M is indecomposable. M is
completely reducible if it is a direct sum of irreducible mod-
ules.

From Krull-Schmidt theorem, every differential module
M can be written asM =M1⊕M2⊕· · ·⊕Mr, where the
Mi’s are indecomposable differential submodules ofM and
the integer r together with the dimensions of the differential
submodulesMi in such a decomposition are uniquely deter-
mined byM. In the sequel, such a decomposition is called a
maximal decomposition ofM. IfM is completely reducible,
then in a maximal decompositionM =M1⊕M2⊕· · ·⊕Mr,
the differential submodules Mi are irreducible.

LetM be a differential module of dimension n. Choosing
a basis e1, . . . , en,M is associated with the linear differential
system [A], where A = (ai,j)1≤i,j≤n ∈ Mn(k) is defined by

the relations ∂(ei) , −
∑n
j=1 aj,i ej , i = 1, . . . , n. A change

of basis e = PT e with P ∈ GLn(k) in M, corresponds to a
gauge transformation y = P z in [A]. The fact that M is a
reducible, decomposable or completely reducible differential
module then corresponds to the fact that [A] is equivalent
to a linear differential system [B] with B = P [A] block tri-
angular, block diagonal or block diagonal with irreducible

diagonal blocks. A maximal decomposition corresponds to
a block diagonal form with indecomposable diagonal blocks.

LetM be a differential module of dimension n over k. We
fix a basis e1, . . . , en of M and we denote by [A] the asso-
ciated linear differential system. The module M is called
trivial when ∂(ei) = 0 for all i, i.e, when [A] has a full space
of rational solutions. The dual of the differential module M
is the differential moduleM? of dimension n over k defined
by M? , Homk(M,1k), where 1k is the trivial differential
module of dimension 1 over k. The dualM? is endowed with
the map ∂? given by (∂?(φ))(m) , −φ(∂(m)) + ∂1k (φ(m)),
for φ ∈ M? and m ∈ M. The linear differential system as-
sociated with M? with respect to the dual basis e?1, . . . , e

?
n

defined by e?i (ej) = 1, if i = j and 0 otherwise, is then
[−AT ].

Let M1 and M2 be two differential modules over k en-
dowed respectively with the maps ∂1 and ∂2. The tensor
product ofM1 andM2 is the differential moduleM1⊗kM2

endowed with the map ∂ defined by ∂(m1⊗m2) , ∂1(m1)⊗
m2 +m1 ⊗ ∂2(m2), for all m1 ∈M1 and for all m2 ∈M2.

Let us now consider the differential module M⊗kM?.
With respect to the basis ei ⊗ e?j , i, j = 1, . . . , n, the ele-
ments ofM⊗kM? can be identified with matrices in Mn(k),
namely, if m = xT e ∈M and φ = yT e? ∈M?, then m⊗φ
is identified with the Kronecker product xT ⊗y. The matrix
differential system associated with M⊗kM? is then

F ′ = [A,F ] , AF − F A. (1)

If A, B and C are three matrices of appropriate dimensions,
then we have the relation Vect(ABC) = (A⊗CT ) Vect(B)
so that (1) can be written as the linear differential system

Vect(F )′ =
(
A⊗ In − In ⊗AT

)
Vect(F ). (2)

Finally, from [24, Ex. 2.38(3)], if M is an irreducible
differential module, then M⊗kM? is completely reducible
so that all its submodules can be read of from a maximal
decomposition.

2.2 Differential Galois group and Lie algebra
LetM be a differential module of dimension n over k. We

fix a basis of M and we denote by [A] the associated linear
differential system.

There exists a differential field extension K of k called
Picard-Vessiot extension forM (equivalently for [A]) which
is such that K has the same constants as k (namely, the
elements of C), [A] admits a fundamental matrix of solutions
U ∈ GLn(K) and K is the differential field generated over
k by the entries of U (see [24, §1.3, Prop. 1.22]).

The differential Galois group G ofM (equivalently of [A]),
is the group Aut∂(K/k) of differential automorphisms of the
k-algebra K, i.e., for every g ∈ G and every f ∈ K, we have
g(f ′) = g(f)′ and, if f ∈ k, then g(f) = f . The differential
Galois correspondence shows that we have KG = k, where
KG = {f ∈ K | ∀g ∈ G, g(f) = f}.

The group G acts on vectors or matrices with entries in
K componentwise. If g ∈ G and U ∈ GLn(K) is a fun-
damental matrix of solutions of [A], then g(U) is also a
fundamental matrix of solutions of [A] so that there exists
Cg ∈ GLn(C) such that g(U) = U Cg. Hence choosing a fun-
damental matrix of solutions yields a faithful representation
of G in GLn(C), i.e., the map ρ : G→ GLn(C), g 7→ Cg, is
an injective group homomorphism.



The group G viewed as a subgroup of GLn(C) is a linear
algebraic group (see [24, Thm 1.27]). Indeed, there exists a
polynomial ideal I ⊂ C[X1,1, X1,2, . . . , Xn,n,det−1], where
det−1 is the inverse of det((Xi,j)1≤i,j≤n), such that

G ∼= {M = (mi,j)1≤i,j≤n ∈ GLn(C) | ∀P ∈ I, P (mi,j) = 0}.

Let g denote the Lie algebra of the differential Galois
group G, namely, the tangent space of G at the identity.
The Lie algebra g can be represented as a Lie sub-algebra
of the Lie algebra gln(C) of n×n matrices with entries in C
and endowed with the natural Lie bracket [., .] of matrices:

g ∼= {N ∈ Mn(C) | In+εN ∈ G(C[ε]) with ε 6= 0 and ε2 = 0},

where G(C[ε]) is the set of C[ε]-points of G, i.e., the set of
matrices with entries in C[ε] satisfying the equations of the
polynomial ideal I defined above.

For g ∈ G and h ∈ g, we have g (id + ε h) g−1 = id +
ε(g h g−1) ∈ G(C[ε]). Thus g h g−1 ∈ g and G acts on g via
the adjoint action: G × g → g, (g, h) 7→ g h g−1. In terms
of matrices, the adjoint action Ad is given by (M,N) 7→
M NM−1.

Let V denote the C-vector space of solutions of [A] in Kn

and End(V ) the set of endomorphisms of V , i.e., the set of
linear maps from V to V . The set End(V ) is naturally en-
dowed with a Lie algebra structure denoted by gl(V ). As V
is a finite dimensional C-vector space of dimension n, gl(V )
can be identified with gln(C). Now, we have the following
classical isomorphism of finite dimensional k-vector spaces:
V ⊗ V ? → End(V ), v ⊗ ϕ 7→ (w ∈ V 7→ ϕ(w) v) . Conse-
quently the Lie algebra g can be viewed as a sub-vector space
of V ⊗ V ? which is stable under the adjoint action Ad of G.

With the previous notation, the tannakian correspondence
([24, Thm 2.33 & Cor. 2.35]) provides a one to one corre-
spondence between sub-vector spaces of V stable under the
action of G and differential submodules of M. More pre-
cisely, to a sub-vector space W of V stable under the action
of G corresponds the differential submodule (K ⊗C W )G of
M. This correspondence is compatible with all construc-
tions of linear algebra (see Definition 5.2 below) so that there
is a one to one correspondence between sub-vector spaces of
V ⊗V ? stable under the action of G and differential submod-
ules of M⊗M?. With the previous notation, this yields:

Proposition 2.1. The representation of g in End(V ) cor-

responds to the differential submodule gs , (K ⊗C g)G of
M⊗M?.

We shall denote by gs the “source” Lie algebra (K ⊗C g)G

included in gln(k). Note that gs corresponds to the Lie al-
gebra considered by Katz in [20, Conj. 9.2]. For expository
reasons, we assume in this paper thatM is an absolutely ir-
reducible differential module (which can be effectively tested,
see [12]). The case of a completely reducible module M is
quite similar and will appear in a forthcoming work.

Remark 2.1. The assumption that M is absolutely irre-
ducible is equivalent to saying that g acts irreducibly on V .
If we further assume, w.l.o.g., that g ⊆ sln(C), then the Lie
algebra g is semi-simple (see [19, Prop. 19.1]).

Thanks to Proposition 2.1, the Lie algebra gs can be in-
vestigated by studying differential submodules ofM⊗M?.
AsM is an irreducible differential module then, as we have
seen, the latter submodules can be found by computing a
maximal decomposition of M⊗M?.

3. DECOMPOSITION OFM⊗M?

In the sequel, M is an absolutely irreducible differential
module of dimension n over k. We fix a basis of M and we
denote by [A] the associated linear differential system.

3.1 The general decomposition method
The problem of computing a decomposition of a differen-

tial moduleM has been studied in the literature of computer
algebra: see [22, 4], [24, §4.2] and references therein.

Decomposing M (over k) is equivalent to finding a gauge
transformation P ∈ GLn(k) such that P [A] is a block diag-
onal matrix and such a gauge transformation can be found
by calculating the so-called eigenring E(A) of [A] defined by

E(A) , {F ∈ Mn(k) | F ′ = [A,F ] = AF−F A}. In practice,
computing E(A) reduces to computing the rational solutions
of the matrix differential system (1) or equivalently of the
linear differential system (2). The Maple package Inte-
grableConnections ([5]) based on Isolde ([7]) provides
a procedure for computing the eigenring using the algorithm
in [3] for computing rational solutions.

IfM =M1⊕· · ·⊕Mr is a decomposition ofM into sub-
modulesMi of dimension ni, then E(A) contains an element
similar to diag(λ1 In1 , . . . , λr Inr ), where λi ∈ C. More gen-
erally, if F ∈ E(A) satisfies that there exists T ∈ GLn(k)
such that T−1 F T = diag(F1, . . . , Fr), for constant1 matri-
ces F1, . . . , Fr having distinct eigenvalues in C (e.g., Jordan
blocks of F ), then T [A] = diag(A1, . . . , Ar) for some matri-
ces Ai ∈ Mni(k). Bases of the submodules Mi in the cor-
responding decomposition M = M1 ⊕ · · · ⊕Mr are given
by the columns of the matrix T , namely, a basis of Mi is
given by the columns T•j of T for j = (n1 + · · · + ni−1 +
1), . . . , (n1 + · · · + ni−1 + ni). Note finally that a maximal
decomposition is in general obtained by taking a random
element in the eigenring. We refer to [4] for more details.

3.2 Specific methods
In our case, we shall be interested in computing a maximal

decomposition of the differential moduleM⊗M? associated
to the linear differential system y′ =

(
A⊗ In − In ⊗AT

)
y.

If we denoteA , A⊗In−In⊗AT , then such a decomposition
can be obtained by computing the eigenring E(A) of [A].

Naturally, one could directly apply the method developed
in the previous subsection to compute E(A). However, start-
ing from a differential module of dimension n, this method
would then need to compute the rational solutions of a linear
differential system of size n4 so that the dependency on n in
the arithmetic complexity estimate for computing rational
solutions of such a linear differential system would then be
in n20 (see [6, Cor. 1]). Consequently, to obtain a more
practicable algorithm, we should take into account the spe-
cific form of the differential moduleM⊗M?/the particular
structure of the linear differential system [A⊗In−In⊗AT ].

3.2.1 Adapting the general method
The algorithm in [3] for computing rational solutions of

a linear differential system is divided into two steps: the
first one consists in computing local datas (considering one
by one each singularity of the system) in order to construct
a universal denominator for the rational solutions and the
second one consists in computing polynomial solutions of
an auxiliary linear differential system. Here, the linear dif-

1the eigenvalues of any element of E(A) are constants in C.



ferential system that we consider has a specific structure,
namely, its matrix is given by A , A⊗ In2 − In2 ⊗AT with
the previous notation A = A⊗ In− In⊗AT . Consequently,
the specific techniques developed in [8] for computing ratio-
nal solutions of [A], can be used again here. This implies
that all the local datas needed for computing rational solu-
tions of [A] can be deduced from the local datas needed for
computing rational solutions of [A]. For instance, the local
exponential parts of [A] (resp. of [A]) are the differences
(resp. the differences of the differences) between the local
exponential parts of [A]. The first step of the algorithm can
thus be performed by considering only the matrix A of size n
instead of A of size n4 which leads to a real gain. Note that
the ideas in [8] to accelerate the second step of the algorithm
can also be used again here.

3.2.2 Using structural decompositions
With the previous notation, we are interested in comput-

ing the rational solutions of the linear differential system [A]
which is associated with the differential module

End(End(M)) , (M⊗M?)⊗ (M⊗M?)?.

We shall now prove that the problem can be reduced to
computing the rational solutions of linear differential sys-
tems of size smaller than n4. To do that, we shall first use
the isomorphism (M⊗M?)? ∼= (M⊗M?) which leads to

End(End(M)) ∼= (M⊗M?)⊗ (M⊗M?). (3)

Let us provide explicit matrix formulas for (3):

Lemma 3.1. The matrix A = A⊗ In − In ⊗AT satisfies

−AT = J AJ , J ,
n∑
i=1

n∑
j=1

Ei,j(n)⊗ Ei,j(n)T ,

where Ei,j(n) denotes the elementary n×n matrix having 1
at position (i, j) and 0 elsewhere. In particular, the matrix
J is orthogonal and further satisfies J T = J−1 = J .

Proof. A result about the Kronecker product asserts
that given two square matrices M and N of size n, we have
N ⊗ M = J (M ⊗ N)J , where J is the matrix defined
in Lemma 3.1 (see [16, §2.5]). Therefore, we get −AT =
In ⊗A−AT ⊗ In = J (A⊗ In − In ⊗AT )J = J AJ .

Lemma 3.1 implies J [A] = −AT so that the isomorphism
(M⊗M?) ∼= (M⊗M?)? is explicitly given by:

M⊗M? → (M⊗M?)?, U 7→ Mat(J Vect(U)).

With the previous notation, a rational solution of the lin-
ear differential system associated with the differential mod-
ule (M⊗M?)⊗(M⊗M?) is then sent to a rational solution
of [A] by multiplication by In2 ⊗ J .

For any differential module N of dimension n, we have the
classical explicit isomorphism N ⊗N ∼= Sym2(N )⊕Λ2(N ),
where Sym2(N ) (resp. Λ2(N )) denotes the symmetric (resp.
exterior) square of the differential module N which is of

dimension n (n+1)
2

(resp. n (n−1)
2

). From (3), we thus have:

End(End(M)) ∼= Sym2(M⊗M?)⊕ Λ2(M⊗M?). (4)

Now, due to its specific structure the differential module
M⊗M? can always be decomposed which allows us to go
further in the decomposition of the right-hand side of (4).

Lemma 3.2. With the previous notation, the matrix de-
fined by T , Vect(In)T ⊗Vect(In) ∈ Mn2(C) belongs to the
eigenring E(A) and provides the decomposition

M⊗M? = 1k ⊕W, (5)

where W is a submodule of M⊗M? of dimension n2 − 1.

Proof. The fact that T ∈ E(A) is straightforward since
Vect(In) is a trivial rational solution of both y′ = Ay
and y′ = −AT y. The result then follows from the ex-
planations in Subsection 3.1 because T is the block ma-
trix (Ei,j(n))1≤i,j≤n which admits two distinct eigenvalues,
namely n of multiplicity 1 and 0 of multiplicity n2 − 1.

Theorem 3.1. With the previous notation, we have:

End(End(M)) ∼= 1k ⊕W ⊕ Sym2(W)⊕W ⊕ Λ2(W). (6)

Proof. From Lemma 3.2 and the isomorphism (4), we
obtain End(End(M)) ∼= Sym2(1k⊕W)⊕Λ2(1k⊕W). If we
denote e the basis element of 1k and ei, i = 1, . . . , n2 − 1 a
basis ofW, then a basis of Sym2(1k⊕W) is given by e.e, e.ei,
i = 1, . . . , n2 − 1 and ei.ej for i, j = 1, . . . , n2 − 1 and i ≤ j.
This basis yields the isomorphism Sym2(1k ⊕ W) ∼= 1k ⊕
W⊕Sym2(W). Moreover, a basis of Λ2(1k⊕W) is given by
e∧ei, i = 1, . . . , n2−1 and ei∧ej for i, j = 1, . . . , n2−1 and
i < j so that Λ2(1k⊕W) ∼=W⊕Λ2(W). The isomorphisms
of k-vector spaces explicitly given above are isomorphisms
of differential modules which ends the proof.

Using the previous notation, let us explain how to use (6)
for computing effectively the rational solutions of [A] :

1. Let u ∈ km with m = (n2−1)n2

2
be a rational solu-

tion of u′ = Sym2(W )u where [W ] denotes the linear
differential system associated with W;

2. Construct the associated matrix U in Sym2(1k ⊕W)
(see the proof of Theorem 3.1) which can also be viewed
as an element of (1k ⊕W)⊗ (1k ⊕W);

3. Computing (P⊗P )Vect(U), where P denotes the gauge
transformation yielding (5), we then obtain an element
of (M⊗M?)⊗ (M⊗M?);

4. Finally, using the isomorphism (3), we then get the
rational solution (P ⊗ J P ) Vect(U) of [A].

Note that the matrix P appearing in the above process
is formed by eigenvectors of the diagonalisable matrix T of
Lemma 3.2 and can be given explicitly.

Proposition 3.1. With the previous notation, the eigen-
ring E(A) can be computed from the rational solutions of two

linear differential systems of size (n2−1)n2

2
and (n2−1) (n2−2)

2
.

Proof. This is straightforward from Theorem 3.1 and
the assumption that M is irreducible since a rational solu-
tion of [W ] would lead to a decomposition of M.

Note that, in practice, this has a real gain since already

for n = 3, we have (n2−1)n2

2
= 36 and (n2−1) (n2−2)

2
= 28

compared to n4 = 81. Moreover, one can speed up the com-
putation of rational solutions since the systems under con-
siderations are symmetric (resp. exterior) squares so that
the techniques in [1, §5] can be applied to obtain the local



datas by considering smaller systems.

We now provide another isomorphism as (6). We have
End(End(M)) ∼= (M⊗M)⊗ (M⊗M)? which can be writ-
ten as End(End(M)) ∼= End(M ⊗M) so that we obtain
End(End(M)) ∼= End(S2 ⊕ Λ2), where, for the purposes of

notation, we denote S2 , Sym2(M), Λ2 , Λ2(M). We then
get: End(End(M)) ∼= End(S2)⊕ End(Λ2)⊕Hom(S2,Λ2)⊕
Hom(Λ2,S2). Finally, using the decompositions End(S2) =
1k⊕NS2 and End(Λ2) = 1k⊕NΛ2 for some differential mod-

ules NS2 and NΛ2 of respective dimensions n2 (n+1)2

4
−1 and

n2 (n−1)2

4
− 1, we have proved:

Theorem 3.2. With the previous notation, we have:

End(End(M)) ∼= 1k⊕NS2⊕1k⊕NΛ2⊕Hom(S2,Λ2)⊕Hom(Λ2, S2).
(7)

The decomposition (7) can be used exactly as (6) for our
purposes and we get:

Proposition 3.2. With the previous notation, the eigen-
ring E(A) can be computed from the rational solutions of four

linear differential systems of size n2 (n+1)2

4
−1, n2 (n−1)2

4
−1,

n2 (n2−1)
4

, and n2 (n2−1)
4

.

Note that for n = 3, we would then have to compute
the rational solutions of four linear differential systems of
respective size 35, 8, 18 and 18. The systems corresponding
to (7) have specific structures so that existing techniques
(e.g., adapting the ones developed in [8, 1]) can be used
here to speed up the computation.

4. CANDIDATE FOR THE LIE ALGEBRA
Let M be an absolutely irreducible differential module.

From Proposition 2.1, the representation of the Lie algebra
g in End(V ) corresponds to the submodule gs of M⊗M?.
Section 3 provides a maximal decomposition of the com-
pletely reducible module M⊗M? which yields all its sub-
modules. We shall now develop a method for identifying gs

as a submodule of M⊗M?.
The approach that we propose relies on the reduction

modulo a prime number p of the linear differential system
[A] or equivalently of the differential module M. Here, the
constant field C of k is replaced by a computable subfield
of Q. For almost all primes p, the coefficients of the matrix
A ∈ Mn(k) can be reduced modulo p and we obtain a matrix
Ap ∈ Mn(Fp(x)) corresponding to a linear differential sys-
tem [Ap] over the differential field Fp(x) = ⊕p−1

i=0 Fp(x
p)xi.

As in characteristic zero, a differential module Mp over
Fp(x) endowed with an action ∂ is associated with [Ap]. We
refer to [24, §13] and references therein or [20] for details
on differential modules and differential systems in charac-
teristic p. A central object for the study of differential mod-
ules/systems in characteristic p is the so-called p-curvature

defined as the operator χp , ∂p acting on Mp or equiv-
alently χp ,

(
d
dx
−Ap

)p
. In terms of matrices, the p-

curvature χp corresponds to the p-th iterate of the sequence
of matrices (χi)i≥1 defined by χ1 = Ap and, for i > 1,
χi+1 = d

dx
χi −Ap χi, so that it can be effectively computed

(see [20, 10] or [24, §13]). For a fast algorithm and complex-
ity analyses, we refer to the recent work [9].

The following Grothendieck-Katz p-curvature conjecture
([20, Conj. 9.2 & 10.1]) links the reductions modulo p of the

Lie algebra gs and the p-curvature of the reduction modulo
p of the differential system/module.

Conjecture 4.1. The Lie algebra gs is the smallest (al-
gebraic) Lie sub-algebra of gln(k) whose reduction modulo p
contains the p-curvature for almost all p.

One inclusion of the conjecture, namely, the fact that the
reduction modulo p of g contains the p-curvature for almost
all p, has been proved (see [20, Prop. 9.3]). We refer to [20]
for more details.

Let M⊗M? =
⊕r

i=1Wi be a maximal decomposition
given by a gauge transformation T ∈ GLn2(k) (see Subsec-
tion 3.1) so that the Mat(T•j)’s provide bases of the sub-
modulesWi. We can then obtain a guess for the Lie algebra
gs by using the following ModularSelection procedure:

1. Choose a prime number p such that A can be reduced
modulo p and det(T ) does not vanish modulo p. Re-
ducing the maximal decomposition

⊕r
i=1Wi modulo

p we get a decomposition
⊕r

i=1Wi,p which is given by
the reduction Tp of T modulo p;

2. Compute the p-curvature χp of [Ap];

3. Compute T−1
p Vect(χp) and let S be the set containing

the indices of its non-zero entries which correspond to
the columns of Tp involved in the writing of Vect(χp);

4. Return the Mat(T•j)’s for j ∈ S which is then a ba-
sis of the submodule of the maximal decomposition⊕r

i=1Wi whose reduction modulo p contains χp.

This method yields a submodule of M⊗M? which ac-
cording to the above Grothendieck-Katz conjecture 4.1 can
be used as a guess for the Lie algebra gs. However, Modu-
larSelection may select either a bigger or a smaller sub-
module ofM⊗M? than gs (see explanations in Section 6).
The next section will use the notion of reduced form to check
whether or not our guess is correct. Note that in practice,
we can (and will) perform the above modular guessing for
two or three prime numbers in order to refine our guess.

5. VALIDATION OF THE CANDIDATE

5.1 Reduced Form and conjugation problem
Let M be a differential module and [A] with A ∈ Mn(k)

an associated linear differential system. We denote by V
the C-vector space of solutions of M in a Picard-Vessiot
extension K of k, G the differential Galois group ofM, and
g the Lie algebra of G. In Subsection 2.2, we have seen that
g can be viewed as a C-vector space generated by matrices
N1, . . . , Nd in Mn(C).

One can associate another Lie algebra to [A] by consider-
ing a Wei-Norman decomposition of the matrix A, namely,
A =

∑m
i=1 αiAi where α1, . . . , αm is a basis of the C-vector

space generated by the entries of A, and Ai ∈ Mn(C). We
then define Lie(A) as the algebraic envelope of the Lie al-
gebra generated by the matrices Ai. The Lie algebra g
is always contained in Lie(A) hence g is also contained in
Lie(P [A]) for any matrix P ∈ GLn(k). The reduced form
corresponds to the case where we have Lie(A) = g.

Definition 5.1. Let [A] with A ∈ Mn(k) be a linear dif-
ferential system over k. Then, with the previous notation,
[A] is said to be in reduced form if A ∈ k ⊗ g.



With the previous notation, the linear differential system
[A] is thus in reduced form iff there exist f1, . . . , fd in k such
that A = f1 N1 + · · · + fdNd. The following result due to
Kolchin and Kovacic proves the existence of a reduced form:
see [24, Prop. 1.31 & Cor. 1.32] and [2, Prop. 3 & Cor. 4].

Theorem 5.1. Let [A] with A ∈ Mn(k) be a linear differ-
ential system. There exists a matrix P ∈ GLn(k) such that
[P [A]] is in reduced form.

A matrix P as in Theorem 5.1 is called a reduction matrix
for [A]. We shall now recall a useful result of [2] concerning
invariants and reduced forms.

Definition 5.2. With the previous notation, a (tensor)
construction Const(V ) on the G-module V is a vector space
obtained from V by finite iterations of tensor products ⊗,
direct sums ⊕, taking the dual ?, symmetric powers Symm,
and exterior powers Λr. To a constructor Const corresponds
naturally a “Lie algebra” constructor Const. An invariant
of [A] is a rational solution of a linear differential system
[Const(A)].

Let P ∈ GLn(k0) with k ⊆ k0 ⊂ k. A change of variables
y = P z in [A] induces an action on the elements of construc-
tions. If f is an invariant ofM given as a rational solution of
[Const(A)], then we say that P sends f to g if g = Const(P ) f
(g is then a rational solution of [Const(P [A])]). It is proved
in [2] that when a system is in reduced form, all its invariants
have constant coefficients in C and we further have:

Lemma 5.1 ([2]). Let [A] with A ∈ Mn(k) be a linear
differential system. For all ordinary point x0 ∈ C of [A],
there exists a reduction matrix P ∈ GLn(k) for [A] that
sends every invariant f of [A] to its evaluation at x0, namely
Const(P ) f = f(x0).

In Section 4, we have found a candidate for the Lie alge-
bra gs as a submodule ofM⊗M?. Let F ∈ Mn2(k) denote
the element of E(A) from which we have obtained this max-
imal decomposition and let T ∈ GLn2(k) denote the gauge
transformation which provides the maximal decomposition,
namely, T−1 F T = J is the Jordan normal form of F . Note
that J ∈ Mn2(C) and T is formed by generalized eigenvec-
tors of F so that it can be chosen as a polynomial matrix.

Following the terminology in [17], we introduce the notion
of conjugated Lie algebras.

Definition 5.3. Two Lie sub-algebras g1 and g2 of gln(k)
are said to be conjugated (over k) if there exists P ∈ GLn(k)
such that g2 = P−1 g1 P . Such a matrix P is then a conju-
gation matrix between g1 and g2.

Theorem 5.2. With the previous notation and w.l.o.g.,
let Mi , Mat(T•i), i = 1, . . . , d, be a basis of the Lie al-
gebra gs and let x0 be an ordinary point of [A] such that
det(T (x0)) 6= 0. If gt denotes the Lie sub-algebra of gln(C)
with basis M1(x0), . . . ,Md(x0), then there exists a reduction
matrix P ∈ GLn(k) for [A] that is a conjugation matrix be-
tween the Lie algebra gs and gt.

Proof. The matrix F ∈ E(A) is an invariant of [A] so
that Lemma 5.1 implies that there exists a reduction ma-
trix P that sends F to its evaluation F (x0). Now we have
T (x0)−1 F (x0)T (x0) = J so that if we perform the change of
variables defined by P inM, a new basis of gs will be given

by the Mi(x0) , Mat(T (x0)•i). On the other hand, Mi be-
longs to the constructionM⊗M? so that after a change of
variables given by P , Mi is transformed to P−1 Mi P . Con-
sequently, P is a conjugation matrix between gs and gt.

From Theorem 5.2, a reduction matrix can be found among
the conjugation matrices between the “target” Lie algebra gt

with basis Mi(x0) and the “source” Lie algebra gs with basis
Mi.

5.2 Step 1: computing conjugation matrices
LetM be an absolutely irreducible module and recall that

gt and gs are then semi-simple Lie algebras (see Remark 2.1).

Definition 5.4. Let g be a semi-simple Lie algebra of di-
mension d and rank r. Let h be a Cartan subalgebra of g,
Φ a root system associated with h and ∆ = {α1, . . . , αr} a
simple system of Φ. Then a set of canonical generators of
g is a set of 3 r non-zero matrices H1, . . . , Hr, X1, . . . , Xr,
Y1, . . . , Yr such that, for i = 1, . . . , r, Hi ∈ h, Xi ∈ Lαi ,
the root space associated with αi and Yi ∈ L−αi and which
satisfies the relations{

[Hi, Hj ] = 0, [Xi, Yj ] = δi,j Hi,

[Hi, Xj ] = cj,iXj , [Hi, Yj ] = −cj,i Yj ,
(8)

for all i, j ∈ {1, . . . , r}, where δi,j = 1 if i = j and 0 other-
wise. The matrix C = (ci,j)1≤i,j≤r is called a Cartan matrix
of g and satisfies ci,i = 2, for i = 1, . . . , r.

The sets of canonical generators (and their completion
into Chevalley bases) are central objects in the study of semi-
simple Lie algebras. We refer to [19] and [13] for more de-
tails. Moreover algorithms for computing sets of canonical
generators and Chevalley bases are given in [13].

Conjugation matrices between gt and gs can be computed
using the following ConjugationMatrices procedure2:

1. Compute a set of canonical generators {Ht
i , X

t
i , Y

t
i },

i = 1, . . . , r of gt;

2. Compute generators H̃s
i of a split Cartan sub-algebra

hs of gs such that we have χ(H̃s
i ) = χ(Ht

i ), i = 1, . . . , r,
where χ(M) denotes the characteristic polynomial of a

matrix M . This can be done by taking an ansatz H̃s
i =∑d

j=1 ai,jMj in gs and solving the algebraic equations

in the ai,j ’s provided by the relation χ(H̃s
i ) = χ(Ht

i );

3. From hs generated by the H̃s
i , compute a set of canon-

ical generators {Hs
i , X

s
i , Y

s
i }, i = 1, . . . , r of gs having

the same Cartan matrix as {Ht
i , X

t
i , Y

t
i }, i = 1, . . . , r;

4. Compute the matrices P ∈ GLn(k) such that for i =
1, . . . , r, P Xt

i = Xs
i P and P Y ti = Y si P . This amounts

to solving an overdetermined linear system of 2 r n2

equations for the n2 unknown entries of P in k.

Proposition 5.1. ConjugationMatrices computes the
conjugation matrices between the semi-simple Lie algebras gt

and gs. If gt is a representation of g in gln(C), i.e., if we
have made the correct guess for gs, then all the conjugation
matrices found are of the form P = c P̃ , with P̃ ∈ GLn(k)
and c an arbitrary element of k.

2This is probably known but we have not found a reference.



Proof. The correctness of ConjugationMatrices fol-
lows essentially from material in the book of W. de Graaf
[13], in particular, Cor. 5.11.5 (see also [19]). The split Car-
tan sub-algebra hs in Step 2 exists because we know that
gt and gs are conjugated (see Theorem 5.2). In Step 2, the

matrices Ht
i (resp. H̃s

i ) are simultaneously diagonalizable
([19, Cor. 15.3, p.80]) so that there exists P ∈ GLn(k) such

that P Ht
i = H̃s

i P , for i = 1, . . . , r. The feasability of Step 3
is ensured by the fact that we know from Theorem 5.2 that
the Lie algebras gt and gs are conjugated and a conjugation
matrix sends a set of canonical generators of gt to a set of
canonical generators of gs having the same Cartan matrix.
In Step 4, the conjugation of the Ht

i and Hs
i is automatic

because of the second relation of (8). Finally, if P and P̃

are two conjugation matrices as in Step 4, then P P̃−1 com-
mutes with all matrices in gt. As g acts irreducibly on V (see
Remark 2.1), the only such matrices are scalar multiples of
the identity (Schur’s lemma) which proves the last assertion

of the proposition, i.e., P = c P̃ .

In Algorithm 6.1 below, we shall say that “Conjugation-
Matrices fails” if the set of the matrices P computed in
Step 4 is not of the form P = c P̃ given in Proposition 5.1.
This implies that our guess for gs was not correct.

5.3 Step 2: computing a reduction matrix
In the previous subsection we have found the conjugation

matrices between the Lie algebras gt and gs. If our guess for
the Lie algebra gs was correct, then we know that among
these conjugation matrices there exists a reduction matrix
for [A]. The last step then consists in finding this reduction
matrix which if it succeeds will finally validate our choice
for the Lie algebra gs. Let P = c P̃ be as in Proposition 5.1
and let (N t

i )i=1,...,d be a Chevalley basis of gt. See [13] for
an algorithm to complete the set of canonical generators
of gt already computed into a Chevalley basis. If P is a
reduction matrix, then there exist c ∈ k and fi ∈ k such
that P [A] =

∑d
i=1 fiN

t
i . The latter relation then yields

P̃−1 A P̃ − c′

c
In − P̃−1 P̃ ′ =

d∑
i=1

fiN
t
i . (9)

Taking the trace Tr(.) of the matrices in (9) we obtain

Tr(A)− n c
′

c
− det(P̃ )′

det(P̃ )
=

d∑
i=1

fi Tr(N t
i ),

so that we get

c′

c
=

1

n

(
Tr(A)− det(P̃ )′

det(P̃ )
−

d∑
i=1

fi Tr(N t
i )

)
. (10)

A reduction matrix can then be found using the following
ReductionMatrix procedure:

1. Plug the formula (10) for c′/c into (9) (and multiply

on the left by P̃ ) and solve the (overdetermined) linear
system obtained which is formed by n2 equations for
the d ≤ n2 unknowns f1, . . . , fd in k. If the system has
no solution, then Return “Fail”;

2. Solve the scalar order one linear differential equation
for c obtained by plugging the solution found in 1 into
(10). If the solution is algebraic, then Return P = c P̃ ,
Else Return “Fail”.

6. ALGORITHM AND IMPLEMENTATION

6.1 Full algorithm
Let [A], with A ∈ Mn(k) be an absolutely irreducible lin-

ear differential system, G its differential Galois group and g
the Lie algebra of G. With the previous notation, our full
algorithm for computing the representation of g in gln(C)
can be sketched as follows3:

Algorithm 6.1.

1. Compute a maximal decomposition of M⊗M?;

2. Apply ModularSelection to get a guess for gs;

3. Apply ConjugationMatrices. If it fails, go back to
Step 2 and choose another prime p (see Remark 6.1);

4. Complete the set of canonical generators of gt into a
Chevalley basis (N t

i )i=1,...,d of gt;

5. Apply ReductionMatrix. If it fails, go back to Step 2
and choose another prime p (see Remark 6.1), Else
Return (N t

i )i=1,...,d (see Remark 6.2).

In Step 2, Algorithm 6.1 applies calculations modulo a
prime number p to make a guess for the Lie algebra gs based
on the Grothendieck-Katz conjecture 4.1. If this guess is not
correct, then Algorithm 6.1 can fail either in Step 3 or 5. In
this case we go back to Step 2 and choose another prime
p to make another guess. The reason why Algorithm 6.1
is probabilistic is that there may exist an infinite number
of (bad) primes p which lead to a wrong guess for gs. For
instance, there are examples where the p-curvature is zero
for an infinite number of primes p whereas the Lie algebra gs

is not zero. If this happens, then Grothendieck conjecture
[20, Conj. 10.1] implies also the existence of infinitely many
primes p for which the p-curvature is not zero.

We have to make two remarks concerning Algorithm 6.1.

Remark 6.1. If during our process we find two candi-
dates W1 and W2 for gs which are not correct, then due to
the Grothendieck-Katz conjecture 4.1 we must apply Steps 3-
5 to the submodule W1 +W2 before choosing another prime.
Another strategy consists in choosing directly two or three
prime numbers and comparing the submodules selected for
each prime number before making the guess for gs.

Remark 6.2. It might happen that the output of Algo-
rithm 6.1 is bigger than the actual Lie algebra g. This im-
plies that the selected submodule W chosen in Step 2 as a
guess for gs is decomposable. Therefore as soon as the can-
didate found in Step 2 is decomposable, we have to check
each submodule of W (there are only finitely many choices
as we work modulo isomorphisms).

Note that each step of Algorithm 6.1 can be performed
in an arithmetic complexity which is polynomial in n except
(maybe) in Step 2 of the procedure ConjugationMatrices
where we need to solve algebraic systems. This makes a
significant difference compared to the exponential (several
levels) complexity obtained in [15] for the computation of
the differential Galois group G.

3Note that we get a reduced form of [A] as a byproduct.



6.2 Implementation and example
We have a prototype implementation of Algorithm 6.1

in Maple. We use the package IntegrableConnections
([5]) based on Isolde ([7]) for computing the maximal de-
composition ofM⊗M? and the package LieAlgebras for
computing a set of canonical generators (and a Chevalley
basis) of gt. The other steps are based on linear algebra cal-
culations, solving linear and algebraic systems, and the final
integration of the scalar order one linear differential equa-
tion (10). We have applied our implementation to many
examples up to n = 7. It turns out that in practice the
most costly step is the decomposition of End(M). For lack
of space we only give a small example here.

Example 6.1. We consider the absolutely irreducible dif-
ferential module M associated via a choice of basis with [A]
given by:

A :=


x−1
x

x −1

−x3 + 1 0 −1

x−1
x

+ x2 x + 1 −1

 .

The Lie algebra Lie(A) of the matrix A is of dimension
9. Computing a maximal decomposition of M ⊗M?, we
find that M⊗M? = 1k ⊕W1 ⊕W2 where W1 (resp. W2)
is of dimension 3 (resp. 5). Computing the p-curvature of
[A] for a random prime p, we find that a candidate for the
Lie algebra gs is the irreducible differential submodule W1 of
M⊗M? which admits the basis M1,M2,M3 given by:

−1 0 1

0 0 0

−x2 − 1 0 1

 ,


0 1 0

−x2 0 0

0 1 0

 ,


0 1 0

−x2 − 1 0 1

0 0 0

 .

The point x0 = 1 is an ordinary point for [A] and a set of
canonical generators Ht, Xt, Y t for the Lie algebra gt gen-
erated by M1(x0),M2(x0),M3(x0) is given by:

2 i 0 −2 i

0 0 0

4 i 0 −2 i

 ,


0 −i 0

1 + i 0 −1

0 1 − i 0

 ,


0 −i 0

−1 + i 0 1

0 −1 − i 0

 .

Computing an “aligned” set of canonical generators Hs, Xs, Y s

for gs, we find:


−2 i
x

0 2 i
x

0 0 0

−2 i
(
x2+1

)
x

0 2 i
x

 ,


0 i

x
0

−ix + 1 0 −1

0 i+x
x

0

 ,


0 i

x
0

−ix − 1 0 1

0 i−x
x

0

 .

The conjugation matrices P ∈ GLn(k) such that we have
simultaneously Xt P = P Xs and Y t P = P Y s are then
given by the matrices P = c P̃ , where c ∈ k and

P̃ =


1 0 0

0 −x 0

x + 1 0 −x

 .

Solving the linear system (9) for f1, f2, f3 ∈ k, we find{
f1 =

i

2 x
, f2 = −

i

2
(x

2
+ i), f3 =

i

2
(−x

2
+ i)

}
,

and the equation (10) for c yields c′/c = −1/x so that we
find c = a/x for an arbitrary constant a ∈ C∗.

We can then conclude that the Lie algebra g viewed as a
Lie sub-algebra of gl3(C) admits the basis Ht, Xt, Y t and
R = P [A] is in reduced form where:

P =


a
x

0 0

0 −a 0

(x+1) a
x

0 −a

 , R =


−x −x2 x

x2 + 1 0 −1

−2 x −x2 + 1 x

 .

7. CONCLUSION
We have provided an algorithm for computing the Lie al-

gebra of the differential Galois group of an absolutely ir-
reducible differential system. The case of a completely re-
ducible system is not handled here only for lack of space
but can be tackled by a slightly modified algorithm. It will
appear in a future paper. Finally, the case of a reducible
system is treated in the forthcoming paper [14].
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[9] A. Bostan, X. Caruso, and É. Schost. A fast algorithm for computing the
p-curvature. In ISSAC’15, pages 69–76. ACM Press, 2015.

[10] T. Cluzeau. Factorization of differential systems in characteristic p. In
ISSAC’03, pages 58–65. ACM Press, 2003.

[11] E. Compoint and M. F. Singer. Computing Galois groups of completely
reducible differential equations. J. Symbolic Computation, 28(4-5):473–494,
1999.

[12] E. Compoint and J.-A. Weil. Absolute reducibility of differential operators
and Galois groups. J. Algebra, 275(1):77–105, 2004.

[13] W. de Graaf. Lie Algebras: Theory and Algorithms. volume 56 of
North-Holland Mathematical Library. Elsevier, 2000.

[14] T. Dreyfus and J.-A. Weil. Computing the Lie algebra of the differential
Galois group: the reducible case. Preprint, February 2016.

[15] R. Feng. Hrushovski’s algorithm for computing the Galois group of a
linear differential equation. Advances in Applied Mathematics, 65:1 – 37, 2015.

[16] M. A. Graham. Kronecker Products and Matrix Calculus with Applications. E.
Horwood Series in Math. and its Appl. Wiley & Sons, 1981.

[17] J. A. Grochow. Matrix Lie algebra isomorphism. In IEEE Conference on
Computational Complexity (CCC12), pages 203–213, 2012.

[18] E. Hrushovski. Computing the Galois group of a linear differential
equation. In Differential Galois theory (Bedlewo, 2001), volume 58 of Banach
Center Publ., pages 97–138. Polish Acad. Sci., Warsaw, 2002.

[19] J. E. Humphreys. Introduction to Lie Algebras and Representation Theory,
volume 9 of Graduate Texts in Mathematics. Springer-Verlag, 1972.

[20] N. M. Katz. A conjecture in the arithmetic theory of differential
equations. Bull. Soc. Math. France, 110(2):203–239, 1982.

[21] K. A. Nguyen and M. van der Put. Solving linear differential equations.
Journal of Pure Appl. Math., Q. 6, no. 1, Special Issue: In honor of John Tate.
Part 2:173–208, 2010.

[22] M. F. Singer. Testing reducibility of linear differential operators: a group
theoretic perspective. Appl. Alg. in Engrg. Comm. Comput., 7(2):77–104, 1996.

[23] J. van der Hoeven. Around the numeric-symbolic computation of
differential Galois groups. J. Symbolic Comput., 42(1-2):236–264, 2007.

[24] M. van der Put and M. F. Singer. Galois theory of linear differential equations,
volume 328 of Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2003.


