by

Lucia Di Vizio*

Institut de Mathématiques, case 247, Tour 46, 5^{ème} étage
4 place Jussieu, F-75252 PARIS CEDEX 05
e-mail: divizio@math.jussieu.fr

Table of contents

- §1. Introduction
- §2. Basic definitions and statement of the main results
- §3. Generic radius of convergence and nilpotence
- $\S 4$. Size of G-connections
- §5. Nilpotence and lower bounds

Appendix. Generalization of Eisenstein's theorem to the several variables case

§1. Introduction.

The notion of G-function was first introduced by C. L. Siegel in 1929. Later work of Bombieri, Chudnovsky, André, Dwork clarified the geometric content of that (one variable) notion, as a solution of a special type of linear differential operator (of arithmetic type or G-operator). A geometric theory of G-functions was established in full generality by André and Baldassarri in [AB].

We recall (a variation of) the classical definition. Let K be a number field and let \mathcal{V}_K be its ring of integers. A G-function at the origin defined over K is a formal power series

$$y(x) = \sum_{j \in \mathbb{N}} A_j x^j \in K\llbracket x
rbracket \ ,$$

such that:

- 1) Ly = 0 for some non zero $L \in K(x)\left[\frac{d}{dx}\right]$;
- 2) for each embedding $\sigma: K \hookrightarrow \mathbb{C}$, the formal power series $\sum_{j \in \mathbb{N}} \sigma(A_j) x^j \in \mathbb{C}[x]$ has a positive radius of convergence;
- 3) there exists a sequence of positive integers $\{c_s\}_{s\in\mathbb{N}}$ such that $c_sA_j\in\mathcal{V}_K$ for all $j\leq s$ and

$$\sup_{s \in \mathbb{N}^*} \frac{1}{s} \log c_s \leq \infty .$$

A first non-trivial example of a G-function is the hypergeometric series

$$_{2}F_{1}(a,b,c;x) = \sum_{j \in \mathbb{N}} \frac{(a)_{j}(b)_{j}}{(c)_{j}j!} x^{j}$$

where $a, b, c \in \mathbb{Q}$ and $(a)_j = a(a+1) \cdots (a+j-1)$. The vector

$$((c-b)_2F_1(a,b,c+1;x),c_2F_1(a,b,c;x))\\$$

- AMS Subject Classification: 11Gxx, 12H2.
- * The author was partially supported by a grant of INdAM, Rome.

is a solution of the differential system

$$\frac{dY}{dx} = YE_{a,b,c}, \quad \text{with } E_{a,b,c} = \begin{pmatrix} \frac{-c}{x} & \frac{c-a}{1-x} \\ \frac{c-b}{x} & \frac{a+b-c}{1-x} \end{pmatrix} \ .$$

The general definitions on G-connections will be recalled in §2. Of great importance in their study is the finite invariant $\tau = \sigma - \rho$. In the hypergeometric case $\tau(E_{a,b,c}) = \sigma(E_{a,b,c}) - \varrho(E_{a,b,c})$ has been calculated by B. Dwork [D, Cor. 1.2] as

$$au(E_{a,b,c}) = 1 - rac{\eta}{\Phi(N)} \; .$$

Here N is the least common denominator of a, b and c; $0 \le A, B \not \ge N$ and $0 \not \ge C \le N$ are positive integers such that $\left(\frac{A}{N}, \frac{B}{N}, \frac{C}{N}\right) \equiv (a, b, c) \mod N$; η is the cardinality of the set of all $w \in (\mathbb{Z}/N\mathbb{Z})^{\times}$ such that, if $(A^{(w)}, B^{(w)}, C^{(w)}) \equiv (wA, wB, wC) \mod N$ and $0 \le A^{(w)}, B^{(w)} \not \ge N$, $0 \not \ge C^{(w)} \le N$, we have $A^{(w)} \ge C^{(w)} \not \ge B^{(w)}$ or $B^{(w)} \ge C^{(w)} \not \ge A^{(w)}$; Φ is the Euler function.

The principal theme of this paper is the generalization to connections on arithmetic varieties of the main result [D, Th. 1.1] in the above mentioned paper by Dwork. Naturally, we use the geometric language introduced in [AB]. Our result provides a precise estimate for the invariant $\tau = \sigma - \rho$ of an arithmetic differential equation. This invariant, depending only on the geometric generic fiber of the connection, is highly significant. A consequence of our result is that for a differential equation having $\tau = 0$ is equivalent to having zero p-curvature for a set primes p of Dirichlet density 1. Indeed, this is expected to imply that the p-curvature is zero for all but a finite set of primes. The Grothendieck conjecture predicts that $\tau = 0$ should imply that the geometric generic fiber of the connection is trivial.

We also prove a result on the relation between generic v-adic radius of convergence and order of nilpotence of the reduced equation extending [DGS, III.5.1].

In the appendix, we prove a generalization of the Eisenstein theorem.

Acknowledgments. We are indebted to the late Professor Dwork for suggesting that we extend the main result of [D] to general G-modules of [AB]. We are also indebted to F. Baldassarri for his help in the preparation of the manuscript and to Y. André and G. Christol for their numerous remarks and suggestions.

§2. Basic definitions and statement of the main results.

2.1. Let K be a number field and \mathcal{V}_K be its ring of integers. We consider a non-empty open subscheme $S = \operatorname{Spec}(\mathcal{V}_S)$ of $\operatorname{Spec}(\mathcal{V}_K)$. We set

 $\Sigma_S = \{ \text{finite places of } K \text{ having center on } \mathcal{V}_S \} = \{ \text{closed points of } S \}$.

For each $v \in \Sigma_S$ we denote:

 $| \cdot |_v$ = the absolute value of K associated to v, normalized as follows:

$$|p|_v = p^{-[K_v:\mathbb{Q}_p]/[K:\mathbb{Q}]}, \text{ if } v|p;$$

 $K_v = v$ -completion of K;

 $\mathcal{V}_v = \text{ring of integers of } K_v;$

k(v) = residue field of K_v of characteristic p = p(v);

 $\pi_v = \text{a uniformizer of } \mathcal{V}_v$.

Moreover, for all $\underline{\alpha} = (\alpha_1, \dots, \alpha_d) \in \mathbb{N}^d$ we set $|\underline{\alpha}|_{\infty} = \sum_{i=1}^d \alpha_i, \ \underline{\alpha}! = \alpha_1! \cdots \alpha_d!$ and

$$\left(\frac{\alpha}{\underline{\beta}}\right) = \prod_{i=0}^d \binom{\alpha_i}{\beta_i}$$
, for all $\underline{\beta} = (\beta_1, \dots, \beta_d) \in \mathbb{N}^d$, such that $\beta_i \leq \alpha_i$ for all $i = 1, \dots, d$.

We denote by $\underline{1}_i$ the element of \mathbb{N}^d having all its entries equal to zero except the *i*-th one equal to 1.

2.2. Let \mathcal{F} be a function field over K; a smooth S-model of \mathcal{F}/K is a smooth S-scheme $f: X \longrightarrow S$ of finite type with geometrically connected non-empty fibers such that the field of rational functions of $X_K = X \times \operatorname{Spec}(K)$ is \mathcal{F} .

The choice of an S-model of \mathcal{F} privileges, for each $v \in \Sigma_S$, one extension $| \ |_{X,v}$ of $| \ |_v$ to \mathcal{F} . In fact, let η_v denote the generic point of the closed fiber $X_{k(v)} = X \times_S \operatorname{Spec}(k(v))$, the local ring \mathcal{O}_{X,η_v} is a discrete valuation ring, since it is a local regular domain of dimension one with uniformizer π_v . So we define $| \ |_{X,v}$ as the unique extension of $| \ |_v$ to a non archimedean absolute value of \mathcal{F} , such that

$$\mathcal{O}_{X,\eta_v} = \{ x \in \mathcal{F} : |x|_{X,v} \le 1 \} ,$$

normalized so to extend $| |_v$.

Let (M, ∇) be a \mathcal{F}/K -differential module of finite rank μ (i.e. $M \cong \mathcal{F}^{\mu}$) and let

$$\nabla: M \longrightarrow \Omega^1_{\mathcal{F}/K} \otimes M$$

be its integrable connection. A model of (M, ∇) on X/S is a locally free \mathcal{O}_X -module \mathcal{M} of rank μ with an integrable connection

$$\nabla: \mathcal{M} \longrightarrow \Omega^1_{X/S} \otimes \mathcal{M}$$
,

such that $(\mathcal{M}, \nabla)_{\eta_X} = (M, \nabla)$, where η_X is the generic point of X.

We define the generic

v-adic radius of convergence $R_{X,v}(M)$ of (M,∇) on X/S as follows. We consider an étale coordinate neighborhood (U,\underline{x}) , with $\underline{x}=(x_1,\ldots,x_d)$, of η_v in X and a local basis $\underline{e}=(e_1,\ldots,e_\mu)$ of \mathcal{M} in a neighborhood of the generic point of X. Let

$$D_i = \frac{\partial}{\partial x_i}$$
, for any $i = 1, \dots, d$.

For any $\underline{\alpha} = (\alpha_1, \dots, \alpha_d) \in \mathbb{N}^d$ we set

$$\underline{D}^{[\underline{\alpha}]} = \frac{1}{\underline{\alpha}!} \underline{D}^{\underline{\alpha}} = \prod_{i=1}^{d} \frac{1}{\alpha_i!} D_i^{\alpha_i} ,$$

$$\nabla \left(\underline{D}^{[\underline{lpha}]} \right) = \prod_{i=1}^d \frac{1}{\alpha_i!} \nabla \left(\frac{\partial}{\partial x_i} \right)^{\alpha_i} ,$$

and

$$(2.2.1) \hspace{1cm} \nabla \left(\underline{D^{[\underline{\alpha}]}}\right)\underline{e} = \underline{e}\mathcal{G}_{[\underline{\alpha}]}, \hspace{1cm} \text{with} \hspace{1cm} \mathcal{G}_{[\underline{\alpha}]} \in M_{\mu \times \mu}(\mathcal{F}) \hspace{1cm} \text{and} \hspace{1cm} \mathcal{G}_{[\underline{0}]} = I_{\mu} \hspace{1cm}.$$

Then

$$(2.2.2) \qquad \qquad R_{X,v}(M) = \left(\max \left(1, \limsup_{|\underline{\alpha}|_{\infty} \to \infty} |\mathcal{G}_{[\underline{\alpha}]}|_{X,v}^{1/|\underline{\alpha}|_{\infty}} \right) \right)^{-1} \ .$$

We define the global inverse radius of (M, ∇) on X/S as

(2.2.3)
$$\varrho_{X/S}(M) = \sum_{v \in \Sigma_S} \log \frac{1}{R_{X,v}(M)} \in [0, +\infty] .$$

We say that (M, ∇) is of type G or is a G-module if $\varrho_{X/S}(M) \leq \infty$, for one choice (hence for all) of S, of the S-model X and of (\mathcal{M}, ∇) .

A few questions on the dependence of $R_{X,v}(M)$ and $\varrho_{X/S}(M)$ on the choice of the model X/S, of (\mathcal{M}, ∇) , of the étale coordinates \underline{x} and of the basis \underline{e} naturally arise at this moment: we will come back to this problem in proposition 2.9.

2.3. An easy fact to show (cf. §3 below) is that, if (M, ∇) admits a model on X/S, we have for each $v \in \Sigma_S$

$$R_{X,v}(M) \geq |p|_v^{1/(p-1)}$$
.

We obtain a better estimate for $R_{X,v}(M)$ by looking at the properties of the differential module induced by (\mathcal{M}, ∇) on the closed fiber of X over v:

2.4. Let k be a field of characteristic $p \geq 0$ and X_k a smooth k-scheme of finite type. Let $(\mathcal{M}_k, \nabla_k)$ be an integrable X_k/k -connection. We recall that $(\mathcal{M}_k, \nabla_k)$ is said to be *nilpotent* of exponent $\leq n$ if, given étale coordinates (x_1, \ldots, x_d) on X_k , one has:

$$abla \left(rac{\partial}{\partial x_1}
ight)^{pw_1} \cdots
abla \left(rac{\partial}{\partial x_d}
ight)^{pw_d} = 0 \; ,$$

for all $(w_1, \ldots, w_d) \in \mathbb{N}^d$, such that $|w|_{\infty} = n$. If n = 1, we say that $(\mathcal{M}_k, \nabla_k)$ has p-curvature 0.

The following proposition (cf. §3 below for the proof) is the generalisation to the several variable case of a classical estimate (cf. [DGS, page 96]):

Proposition 2.5. Let X/S be a smooth S-model of \mathcal{F} , (\mathcal{M}, ∇) an X/S-connection as before and $v \in \Sigma_S$; then the integrable connection $(\mathcal{M}_{k(v)}, \nabla_{k(v)})$ induced on the closed fiber of X over v is nilpotent if and only if $R_{X,v}(M) \supseteq |p(v)|_v^{1/(p(v)-1)}$.

Apart from $\varrho_{X/S}(M)$, one can define another invariant $\sigma_{X/S}(M)$, attached to an \mathcal{F}/K differential module. We define $\sigma_{X/S}(M)$, called the size, as follows:

2.6. Let $f: X \longrightarrow S$ and (\mathcal{M}, ∇) be defined as in (2.2). Let \mathcal{I} be the kernel of the map $\mathcal{O}_X \otimes_{f^{-1}(\mathcal{O}_S)} \mathcal{O}_X \longrightarrow \mathcal{O}_X$, induced by mulptiplication. Then for any $n \geq 0$ one defines $\mathcal{P}_{X/S}^n = \mathcal{O}_X \otimes_{f^{-1}(\mathcal{O}_S)} \mathcal{O}_X/\mathcal{I}^{n+1}$ (cf. [BO, §2]).

Since X/S is a smooth S-model, it is possible to give an explicit description of $\mathcal{P}^n_{X/S}$ (cf. [BO, 2.2]). Let (x_1, \ldots, x_d) be local étale coordinates on X, $\xi_i = x_i \otimes 1 - 1 \otimes x_i \in \mathcal{O}_X \otimes_{\mathcal{O}_S} \mathcal{O}_X$, for $i = 1, \ldots, d$, and $\underline{\xi} = (\xi_1, \ldots, \xi_d)$. Then, for any $n \geq 1$, $\mathcal{P}^n_{X/S}$ is the \mathcal{O}_X -module generated by $\{\xi^{\underline{\alpha}} = \xi_1^{\alpha_1} \cdots \xi_d^{\alpha_d} : \underline{\alpha} \in \mathbb{N}^d, |\underline{\alpha}|_{\infty} \leq n\}$.

We notice that $\mathcal{O}_X \otimes_{\mathcal{O}_S} \mathcal{O}_X$ has a left (resp. right) \mathcal{O}_X -module structure defined by the map $\mathcal{O}_X \longrightarrow \mathcal{O}_X \otimes_{\mathcal{O}_S} \mathcal{O}_X$, $a \longmapsto a \otimes 1$ (resp. $a \longmapsto 1 \otimes a$). Then $\mathcal{P}^n_{X/S}$ has a left and a right \mathcal{O}_X -module structure induced by the \mathcal{O}_X -module structures of $\mathcal{O}_X \otimes_{\mathcal{O}_S} \mathcal{O}_X$.

We consider the induced stratification data [BO, 2.11] associated to (\mathcal{M}, ∇)

$$(2.6.1) \Theta^{(n)}: \mathcal{M} \longrightarrow \left(\mathcal{P}^n_{X/S} \otimes_{\mathcal{O}_X} \mathcal{M}\right) \otimes_{\mathcal{V}_S} K ,$$

which are linear morphisms with respect to the left \mathcal{O}_X -module structure, while the tensor product $\otimes_{\mathcal{O}_X}$ is taken with respect to the right one. These are truncated Taylor expansions of solutions of (\mathcal{M}, ∇) at the generic point

$$(2.6.2) \underline{e} \longmapsto \sum_{|\underline{\alpha}|_{\infty} \leq n} \underline{\xi}^{\underline{\alpha}} \otimes \underline{e} \mathcal{G}_{[\underline{\alpha}]} ,$$

where $\mathcal{G}_{[\alpha]}$ are defined as in (2.2.1).

We consider the ideal $I^{(n)}$ of \mathcal{V}_S

$$(2.6.3) I^{(n)} = \left\{ a \in \mathcal{V}_S : a\Theta_n(\mathcal{M}) \subset \mathcal{P}^n_{X/S} \otimes_{\mathcal{O}_X} \mathcal{M} \right\} .$$

We notice that $I^{(n)} \neq 0$ and $I^{(n+1)} \subset I^{(n)}$. We set

(2.6.4)
$$h_{X/S}(\mathcal{M}, n) = \frac{\log N(I^{(n)})}{[K : \mathbb{Q}]}, \text{ where } N(I^{(n)}) = \#(\mathcal{V}_S/I^{(n)}).$$

The size of (\mathcal{M}, ∇) on X/S is defined as

(2.6.5)
$$\sigma_{X/S}(M) = \limsup_{n \to \infty} \frac{1}{n} h_{X/S}(\mathcal{M}, n) \in [0, +\infty] .$$

If we set $I^{(n)}\mathcal{V}_v = c_{v,n}\mathcal{V}_v$, with $c_{v,n} \in \mathcal{V}_v$, and

$$(2.6.6) h_X(\mathcal{M}, n, v) = \log |c_{v,n}^{-1}|_v = \sup_{|\underline{\alpha}|_{\infty} \le n} \log |\mathcal{G}_{[\underline{\alpha}]}|_{X,v} ,$$

then we have:

Proposition 2.7.

(2.7.1)
$$h_{X/S}(\mathcal{M}, n) = \sum_{v \in \Sigma_S} h_X(\mathcal{M}, n, v) .$$

Proof. We have

$$\#\left(\mathcal{V}_S/I^{(n)}\right) = \prod_{v \in \Sigma_S} \#\left(\mathcal{V}_v/c_{n,v}\mathcal{V}_v\right) ,$$

with $\mathcal{V}_v/c_{n,v}\mathcal{V}_v=0$, for almost all $v\in\Sigma_S$. Since

$$\#\left(\mathcal{V}_v/I^{(n)}\mathcal{V}_v\right) = \#\left(\mathcal{V}_v/c_{v,n}\mathcal{V}_v\right) = \#\left(k(v)\right)^{v(c_{n,v})} = |c_{n,v}|_{X,v}^{-[K:\mathbb{Q}]} \ ,$$

we conclude.

For further reference we state the following proposition. It is a generalization of a useful result of André [A, IV §5]. The original proof of André rests on the Dwork-Robba Theorem and on some calculation deriving from the Leibniz formula. There are two proof of the several variables case: the first one, in [B], is based purely on the theory of spectral norms and on the Leibniz formula, while the second one, in [BD], is based on the generalization of the Dwork-Robba Theorem, and gives more generally continuity of the radius of convergence at points of a Berkovich analytic space.

Proposition 2.8. With the above notation, we have

(2.8.1)
$$\log \frac{1}{R_{X,y}(M)} = \lim_{n \to \infty} \frac{1}{n} h_X(\mathcal{M}, n, v) .$$

For lack of references we give a sketch of the proof:

Sketch of the proof of (2.8). By definition of $R_{X,v}(M)$, for all $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that for all $\underline{\alpha} \in \mathbb{N}^d$ such that $|\underline{\alpha}|_{\infty} \geq n_0$ we have

$$\frac{1}{|\underline{\alpha}|_{\infty}} \log |G_{[\underline{\alpha}]}|_{X,v} \leq \log \frac{1}{R_{X,v}(M)} + \varepsilon.$$

It follows that for all $n \geq n_0$ and all $\underline{\alpha} \in \mathbb{N}^d$ such that $|\underline{\alpha}|_{\infty} \leq n$ we obtain

$$\frac{1}{|\alpha|_{\infty}}\log\left|G_{[\underline{\alpha}]}\right|_{X,v}\leq\frac{1}{n}h_{X}(\mathcal{M},n,v)\leq\frac{1}{n}\sup\left(h_{X}(\mathcal{M},n_{0},v),\log\frac{1}{R_{X,v}(M)}+\varepsilon\right)$$

and hence

$$\log rac{1}{R_{X,v}(M)} = \limsup_{n o \infty} rac{1}{n} h_X(\mathcal{M}, n, v) \; .$$

Let us prove that

$$\log \frac{1}{R_{X,v}(M)} = \liminf_{n \to \infty} \frac{1}{n} h_X(\mathcal{M}, n, v) .$$

Let $\{\underline{\beta}^{(j)}: j=1,\ldots,N\}$ be the set of all $\underline{\beta} \in \mathbb{N}^d$ such that $|\underline{\beta}|_{\infty}=n$, for a fix $n \in \mathbb{N}$. Let $\underline{k} \in \mathbb{N}^N$ and $\tau = \sum_{j=1}^N k_j$. Then by induction on $\#\{k_j: k_j \neq 0\}$, using the Leibniz formula we can prove (cf. [BD]) that for $|\underline{\alpha}|_{\infty} \nleq n$ we have

(2.8.2)
$$\sup \left(0, \log \left| \mathcal{G}_{\left[\underline{\alpha}^{+} \sum_{j=1,\dots,N} k_{j} \underline{\beta}^{(j)}\right]} \right|_{X,v} \right) \\ \leq (\tau + 1) h_{X}(\mathcal{M}, n, v) + Cd(N+1) \log(\tau + 1) + Cd(\tau + N) \log(pn) ,$$

where C is a constant defined by $|p|_v = p^{-C}$. For all $\underline{\gamma} \in \mathbb{N}^d$ such that $|\underline{\gamma}|_{\infty} \ngeq n$ we write $\underline{\gamma}$ in the form $\underline{\gamma} = \underline{\alpha} + \sum_{j=1}^N k_j \underline{\beta}^{(j)}$, with $\underline{k} \in \mathbb{N}^N$ and $|\underline{\alpha}|_{\infty} \nleq n$. We take $\tau = \sum_{j=1}^N k_j = \left[\frac{|\underline{\gamma}|_{\infty}}{n}\right]$. By (2.8.2) we have

$$\frac{1}{|\underline{\gamma}|_{\infty}} \sup \left(1, \log |\mathcal{G}_{[\underline{\gamma}]}|_{X,v}\right) \leq \left(\frac{1}{|\underline{\gamma}|_{\infty}} + \frac{1}{n}\right) h_{X}(\mathcal{M}, n, v) \\
+ \frac{Cd}{|\underline{\gamma}|_{\infty}} (N+1) \log \left(\frac{|\underline{\gamma}|_{\infty}}{n} + 1\right) + Cd \left(\frac{N}{|\underline{\gamma}|_{\infty}} + \frac{1}{n}\right) \log(pn) .$$

Taking the limit for $|\gamma|_{\infty}$ we obtain

$$\log \frac{1}{R_{X,n}(M)} \leq \frac{1}{n} h_X(\mathcal{M}, n, v) + \frac{Cd}{n} \log(pn) ,$$

and hence

$$\log \frac{1}{R_{X,v}(M)} \leq \liminf_{n \to \infty} \frac{1}{n} h_X(\mathcal{M}, n, v).$$

This achieves the proof.

Proposition 2.9. The generic radius of convergence $R_{X,v}(M)$ only depends on the generic fiber (M, ∇) of (M, ∇) , in particular it is independent of the choice of the local basis \underline{e} of M on X and of the étale coordinates \underline{x} of X. The same therefore holds for $\varrho_{X/S}(M)$ (which, of course, depends of the choice of S and of the S-model X).

The size $\sigma_{X/S}(M)$ is independent of the particular X/S-model (\mathcal{M}, ∇) of (M, ∇) .

Proof. The independence of the generic radius of convergence of the choice of the étale coordinates follows from (2.6.3), (2.6.6) and (2.8.1), since the definition of $\Theta^{(n)}$ is independent of \underline{x} and \underline{e} (cf. [BO]).

We notice that two X/S-models (\mathcal{M}, ∇) and (\mathcal{M}', ∇') are isomorphic on an open subscheme of X containing η_v . The fact that the generic radius of convergence $R_{X,v}(M)$ only depends on the generic fiber (M, ∇) of (\mathcal{M}, ∇) follows from this remark, (2.6.6) and (2.8.1). Obviously, the same is true for $\varrho_{X/S}(M)$.

We now show that $\sigma_{X/S}(M)$ is independent of the particular X/S-model (\mathcal{M}, ∇) of (M, ∇) . Let (\mathcal{M}', ∇') be another X/S-model. Then (\mathcal{M}, ∇) and (\mathcal{M}', ∇') are isomorphic on an open subscheme of X. By (2.6.6), this means that there exists a finite subset $\{v_1, \ldots, v_r\}$ of Σ_S such that $h_X(\mathcal{M}, n, v) = h_X(\mathcal{M}', n, v)$ for any $v \in \Sigma_S \setminus \{v_1, \ldots, v_r\}$. Then (2.8.1) implies that

$$\begin{split} \sigma_{X/S}(M) &= \limsup_{n \to \infty} \frac{1}{n} \sum_{v \in \Sigma_S} h_X(\mathcal{M}, n, v) \\ &= \limsup_{n \to \infty} \frac{1}{n} \sum_{v \in \Sigma_S \setminus \{v_1, \dots, v_r\}} h_X(\mathcal{M}', n, v) + \sum_{v \in \{v_1, \dots, v_r\}} \log \frac{1}{R_{X, v_i}(M)} \\ &= \limsup_{n \to \infty} \frac{1}{n} \sum_{v \in \Sigma_S} h_X(\mathcal{M}', n, v) \;. \end{split}$$

This proves our assertion.

The following theorem, which is our main result, was recently proved in the one variable case by Dwork [D]. It refines a formula of Bombieri-André [A, IV.5]. The proof will be given in §4.

Main theorem 2.10. Let (M, ∇) be a differential \mathcal{F}/K -module of type G and of rank μ ; and let (\mathcal{M}, ∇) be a model of (M, ∇) over a smooth S-model X of \mathcal{F}/K . If Σ_S' is the subset of Σ_S of all primes v such that the induced connection $(\mathcal{M}_{k(v)}, \nabla_{k(v)})$ on the closed fiber $X_{k(v)}$ does not have p-curvature 0 and

(2.10.1)
$$\Delta(M) = \limsup_{n \to +\infty} \frac{1}{n} \sum_{\substack{v \in \Sigma_S' \\ n(v) \le n}} \log |p(v)|_v^{-1} ,$$

then:

$$(2.10.2) \qquad \qquad \Delta(M) \leq \sigma_{X/S}(M) - \varrho_{X/S}(M) \leq \left(1 + \frac{1}{2} + \dots + \frac{1}{\mu - 1}\right) \Delta(M) \; .$$

A consequence of the previous theorem is that one may equivalently define G-connections by the boundness of size rather than of global inverse radius.

Remark 2.11. We would like to stress the intrinsic nature of the last statement, in particular:

1) While the global inverse radius of convergence $\varrho_{X/S}(M)$ and the size $\sigma_{X/S}(M)$ depend on the choice of the scheme S and of the smooth S-model X (but not on the particular choice of the X/S-model (\mathcal{M}, ∇) of (M, ∇)), their difference $\sigma_{X/S}(M) - \varrho_{X/S}(M)$ only depends on the geometric generic fiber of the differential module (\mathcal{M}, ∇) . In fact, if X/S is a smooth model of the function field \mathcal{F}/K , then for any open dense subscheme T of S, $X_T = X \times_S T$ is an open subscheme of X and a smooth T-model. Then we recall the definition of the invariant $\tau(M)$:

$$\tau(M) = \inf_{T \hookrightarrow S} \sigma_{X_T/T}(M) .$$

Since $\Sigma_S \setminus \Sigma_T$ is finite, by (2.8) we have

$$\sigma_{X_T/T}(M) = \limsup_{n \to +\infty} \frac{1}{n} \sum_{v \in \Sigma_T} h_X(\mathcal{M}, n, v)$$

$$= \sigma_{X/S}(M) - \lim_{n \to +\infty} \frac{1}{n} \sum_{v \in \Sigma_S \setminus \Sigma_T} h_X(\mathcal{M}, n, v)$$

$$= \sigma_{X/S}(M) - \sum_{v \in \Sigma_S \setminus \Sigma_T} \log \frac{1}{R_{X,v}(M)}.$$

When we take the infimum both on the left and on the right side, we obtain

$$\sigma_{X/S}(M) - \varrho_{X/S}(M) = \inf_{T \hookrightarrow S} \sigma_{X_T/T}(M) = \tau(M)$$
.

On the other hand, if we pick two smooth models X/S and X'/S' of the function field \mathcal{F}/K , then, replacing X (resp. X') by an open dense subscheme, we may assume that S = S'. Two smooth S-models X and X' are generically isomorphic (since the local rings at their generic points are isomorphic), therefore

$$\inf_{T \hookrightarrow S} \sigma_{X_T/T}(M) = \inf_{T \hookrightarrow S} \sigma_{X_T'/T}(M) .$$

So $\tau(M) = \sigma_{X/S}(M) - \varrho_{X/S}(M)$ only depends on the \mathcal{F}/K -differential module (M, ∇) .

Now let \mathcal{F}' be a finite extension of \mathcal{F} and K' be the algebraic closure of K in \mathcal{F}' . Let S' be the normalization of S in K'. By replacing X by an open submodel, we can suppose that $X' = X \times_S S'$ is smooth over S' and hence that it is an S'-model of the compositum $K'\mathcal{F} = \mathcal{G} \subset \mathcal{F}'$. By our normalization,

$$\sigma_{X/S}(M) = \sigma_{X'/S'}(M_{\mathcal{G}})$$
 and $\varrho_{X/S}(M) = \varrho_{X'/S'}(M_{\mathcal{G}})$.

Assume now that K' = K, S' = S. Then $\mathcal{G} = \mathcal{F}$, and we can find an S-model X' of \mathcal{F}'/K and an étale covering $\varphi : X' \longrightarrow X$. We note that $\sigma_{X/S}(M) = \sigma_{X'/S}(M)$ and $\varrho_{X/S}(M) = \varrho_{X'/S}(M)$ also in this case (cf. Appendix).

This shows that $\tau(M)$ depends only on the generic geometric fiber of (\mathcal{M}, ∇) .

2) First of all we notice that the constant $\Delta(M)$ appearing in the statement of last the theorem is finite by the Prime Numbers Theorem. Moreover $\Delta(M)$ is independent of the choice of the

smooth model X/S and of the choice of S. In fact, let X'/S' be another model of the function field \mathcal{F}/K , then there exists $N \in \mathbb{N}$ such that

$$\{v \in \Sigma_S: p(v) \ge N\} = \{v \in \Sigma_{S'}: p(v) \ge N\},$$

and hence that

$$\limsup_{n \to +\infty} \frac{1}{n} \sum_{\substack{v \in \Sigma_{\mathcal{S}} \\ p(v) \le n}} \log p(v) = \limsup_{n \to +\infty} \frac{1}{n} \sum_{\substack{v \in \Sigma_{\mathcal{S}'} \\ p(v) \le n}} \log p(v) .$$

§3. Generic radius of convergence and nilpotence.

In this section we prove (2.5), which is essentially a result of local type, therefore we are going to introduce some notation, slightly different from that in §2.

Notation 3.1. We consider a number field K equipped with an ultrametric absolute value $|\cdot|$ such that $|p| \leq 1$, for a rational prime p. Let v be the valuation of K associated to $|\cdot|$, \mathcal{V} the discrete valuation ring of K associated to v, π the uniformizer of \mathcal{V} , v the residue field \mathcal{V} of characteristic v, v a smooth v-scheme of finite type, with non empty geometrically connected fibers, v the closed fiber of v, v the field of rational functions on v, v the extension of v to v associated to v, normalized so to extend v to v such that

$$|p| = p^{-[K_v:\mathbb{Q}_p]/[K:\mathbb{Q}]}.$$

Following §2, if (M, ∇) is an \mathcal{F}/K -differential module admitting a model (\mathcal{M}, ∇) on X, we define as usual

(3.1.1)
$$\nabla \left(\underline{D}^{[\underline{\alpha}]}\right) \underline{e} = \underline{e} \mathcal{G}_{[\underline{\alpha}]}, \text{ with } \mathcal{G}_{[\underline{\alpha}]} \in M_{\mu \times \mu}(\mathcal{F}) ,$$

and

$$\nabla \left(\underline{D}^{\underline{\alpha}} \right) \underline{e} = \underline{e} \mathcal{G}_{\underline{\alpha}}, \ \left(\ \mathcal{G}_{\underline{\alpha}} = \underline{\alpha}! \mathcal{G}_{[\alpha]} \ \right) \ ,$$

where $(U, \underline{x} = (x_1, \dots, x_d))$ is an étale coordinate neighborhood of the generic point of X_k , \underline{e} is a local basis of (\mathcal{M}, ∇) and $\underline{\alpha} \in \mathbb{N}^d$. We have

$$\mathcal{G}_{\underline{\alpha}+\underline{1}_i} = D_i \mathcal{G}_{\underline{\alpha}} + \mathcal{G}_{\underline{1}_i} \mathcal{G}_{\underline{\alpha}} , \text{ for all } i = 1, \dots, d \text{ and } \underline{\alpha} \in \mathbb{N}^d.$$

We set, as in the previous section,

$$(3.1.3) R_X(M) = \left(\max \left(1, \limsup_{|\underline{\alpha}|_{\infty} \to \infty} |\mathcal{G}_{[\underline{\alpha}]}|_X^{1/|\underline{\alpha}|_{\infty}} \right) \right)^{-1}.$$

We will denote by $(\mathcal{M}_k, \nabla_k)$ the integrable connection induced on X_k .

Lemma 3.2. If (M, ∇) has a model (\mathcal{M}, ∇) on X, then

$$R_X(M) \ge |p|^{1/(p-1)}$$
.

Proof. Since $|\underline{\alpha}!| \geq |p|^{\frac{|\underline{\alpha}|_{\infty}}{p-1}}$, by (3.1.2) we obtain

$$R_X(M) \geq rac{|p|^{1/(p-1)}}{\max(1,|\mathcal{G}_{\underline{1}_1}|_X,\ldots,|\mathcal{G}_{\underline{1}_d}|_X)}$$
 .

If (\mathcal{M}, ∇) is a model of (M, ∇) on X, there exists an étale coordinate neighborhood (U, \underline{x}) such that \mathcal{M} is free over U and $\mathcal{G}_{\underline{1}_i} \in M_{\mu \times \mu}(\mathcal{O}(U))$, therefore

$$|\mathcal{G}_{1_i}|_X \leq 1$$
.

So we conclude that

$$R_X(M) \ge |p|^{1/(p-1)}$$
.

If $(\mathcal{M}_k, \nabla_k)$ is nilpotent of exponent $\leq n$, we give a lower bound for $R_X(M)$:

Proposition 3.3. Let (M, ∇) be a \mathcal{F}/K -connection as in (3.1); then $(\mathcal{M}_k, \nabla_k)$ is nilpotent if and only if the following condition is satisfied:

$$R_X(M) \geq |p|^{1/(p-1)}$$
.

In particular, if $(\mathcal{M}_k, \nabla_k)$ is nilpotent of exponent $\leq n$ we have:

$$R_X(M) > |\pi|^{-1/pn} |p|^{1/(p-1)}$$
.

First we need a technical lemma.

Lemma 3.4. If $(\mathcal{M}_k, \nabla_k)$ is nilpotent of exponent $\leq n$ and if $\{\underline{w}^{(i)} : i = 1, ..., N\}$ is the set of all $\underline{w} \in \mathbb{N}^d$ such that $|\underline{w}|_{\infty} = n$, we have

$$\left|\mathcal{G}_{\sum_{i=1}^{N} s_i p_{\underline{w}}^{(i)}}\right|_X \leq |\pi|^{\sum_{i=1}^{N} s_i}.$$

Proof. For all $(w_1, \ldots, w_d) \in \mathbb{N}^d$, such that $|\underline{w}|_{\infty} = n$, we have $|\mathcal{G}_{p\underline{w}}|_X \leq |\pi| \neq 1$. We want to prove by induction on $s \in \mathbb{N}^*$ that for all $\underline{\alpha} \in \mathbb{N}^d$ we have

$$\left|\mathcal{G}_{ps\underline{w}+\underline{\alpha}}\right|_{X} \leq |\pi|^{s} \left|\mathcal{G}_{\underline{\alpha}}\right|_{X} \leq 1.$$

By Leibniz formula, we obtain

$$\begin{split} \nabla \left(\underline{D}^{p(s+1)\underline{w} + \underline{\alpha}} \right) \underline{e} &= \nabla \left(\underline{D}^{p\underline{w}} \right) \left(\underline{e} \mathcal{G}_{ps\underline{w} + \underline{\alpha}} \right) \\ &= \underline{e} \sum_{\underline{0} \leq \underline{\beta} \leq p\underline{w}} \binom{p\underline{w}}{\underline{\beta}} \mathcal{G}_{p\underline{w} - \underline{\beta}} \left(\left(\frac{\underline{\partial}}{\underline{\partial}\underline{x}} \right)^{\underline{\beta}} \mathcal{G}_{ps\underline{w} + \underline{\alpha}} \right) \end{split}$$

and hence

$$\begin{split} \mathcal{G}_{p(s+1)\underline{w}+\underline{\alpha}} &= \sum_{\underline{0} \leq \underline{\beta} \leq p\underline{w}} \binom{p\underline{w}}{\underline{\beta}} \mathcal{G}_{p\underline{w}-\underline{\beta}} \left(\left(\frac{\partial}{\partial \underline{x}} \right)^{\underline{\beta}} \mathcal{G}_{ps\underline{w}+\underline{\alpha}} \right) \\ &= \sum_{\underline{0} \leq \underline{\beta} \leq \underline{w}} \binom{p\underline{w}}{p\underline{\beta}} \mathcal{G}_{p\underline{w}-p\underline{\beta}} \left(\left(\frac{\partial}{\partial \underline{x}} \right)^{p\underline{\beta}} \mathcal{G}_{ps\underline{w}+\underline{\alpha}} \right) + \sum_{\underline{0} \leq \underline{\beta} \leq p\underline{w} \atop (p,\beta)=1} \binom{p\underline{w}}{\underline{\beta}} \mathcal{G}_{p\underline{w}-\underline{\beta}} \left(\left(\frac{\partial}{\partial \underline{x}} \right)^{\underline{\beta}} \mathcal{G}_{ps\underline{w}+\underline{\alpha}} \right) , \end{split}$$

where $(p, \underline{\beta})$ is the ideal generated in \mathbb{Z} by $\{p, \beta_1, \ldots, \beta_d\}$. Then:

1) if $\underline{0} \leq \beta \leq \underline{w}$ we have

$$egin{aligned} \left\{ egin{aligned} \left| \left(rac{p_{\underline{w}}}{p_{\underline{eta}}}
ight)
ight| & \leq 1 \\ \left| \left(\mathcal{G}_{p_{\underline{w}} - p_{\underline{eta}}}
ight|_{X} & \leq 1 \\ \left| \left(rac{\partial}{\partial \underline{x}}
ight)^{p_{\underline{eta}}} \left(\mathcal{G}_{ps_{\underline{w}} + \underline{lpha}}
ight)
ight|_{X} & \leq |\pi| \left| \mathcal{G}_{ps_{\underline{w}} + \underline{lpha}}
ight|_{X} & \leq |\pi|^{s+1} \left| \mathcal{G}_{\underline{lpha}}
ight|_{X} \end{aligned}$$

and for $\beta = 0$

$$\left|\mathcal{G}_{pw}\mathcal{G}_{psw+\alpha}\right|_{X} \leq \left|\pi\right|^{s+1} \left|\mathcal{G}_{\alpha}\right|_{X}$$
.

So

$$\left| \binom{p\underline{w}}{p\underline{\beta}} \mathcal{G}_{p\underline{w}-p\underline{\beta}} \left(\left(\frac{\partial}{\partial \underline{x}} \right)^{p\underline{\beta}} \mathcal{G}_{ps\underline{w}+\underline{\alpha}} \right) \right|_{X} \leq |\pi|^{s+1} \left| \mathcal{G}_{\underline{\alpha}} \right|_{X}, \ \forall \ \underline{0} \leq \underline{\beta} \leq \underline{w} \ .$$

2) if $(p, \beta) = 1$ and $\underline{0} \leq \beta \leq p\underline{w}$ we have

$$\left\{ \begin{array}{l} \left| \left(\frac{p\underline{w}}{\underline{\beta}} \right) \right| \leq |p| \leq |\pi| \\ \left| \mathcal{G}_{p\underline{w} - \underline{\beta}} \left(\left(\frac{\partial}{\partial \underline{x}} \right)^{\underline{\beta}} \mathcal{G}_{ps\underline{w} + \underline{\alpha}} \right) \right|_{X} \leq |\pi|^{s} \left| \mathcal{G}_{\underline{\alpha}} \right|_{X} \end{array} \right.,$$

and hence

$$\left| \left(\frac{p\underline{w}}{\underline{\beta}} \right) \mathcal{G}_{p\underline{w} - \underline{\beta}} \left(\left(\frac{\partial}{\partial \underline{x}} \right)^{\underline{\beta}} \mathcal{G}_{ps\underline{w}p + \underline{\alpha}} \right) \right|_{X} \leq |\pi|^{s+1} \left| \mathcal{G}_{\underline{\alpha}} \right|_{X}, \ \forall \ \underline{0} \lneq \underline{\beta} \leq p\underline{w}, \ (p, \underline{\beta}) = 1 \ .$$

Therefore we obtain $\left|\mathcal{G}_{ps\underline{w}+\underline{\alpha}}\right|_X\leq |\pi|^s\left|\mathcal{G}_{\underline{\alpha}}\right|_X$, for all $s\in\mathbb{N},\ \underline{\alpha}\in\mathbb{N}^d$ and $\underline{w}\in\mathbb{N}^d$ such that

From (3.4.1), by induction on $\#\{i=1,\ldots,N:s_i\neq 0\}$, it follows that

$$\left|\mathcal{G}_{\sum_{i=1}^{N} s_i p \underline{w}^{(i)}}\right|_{X} \leq |\pi|^{\sum_{i=1}^{N} s_i}.$$

Proof of proposition (3.3). Let us suppose that $R_X(M) \supseteq |p|^{1/(p-1)}$ and choose $R \supseteq 0$ such that $R_X(M) \supseteq R \supseteq |p|^{1/(p-1)}$. Then

$$\lim_{|\underline{\alpha}|_{\infty} \to \infty} \left| \frac{\mathcal{G}_{\underline{\alpha}}}{\underline{\alpha}!} \right|_{X} R^{|\underline{\alpha}|_{\infty}} = 0.$$

For any $n \in \mathbb{N}$, we write n in the form $n = n_k p^k + n_{k-1} p^{k-1} + \ldots + n_0$, with $0 \le n_i \le p-1$, for all i = 0, ..., k, and we have (cf. for instance [DGS, page 51])

$$|n!| = |p|^{\frac{n-S_n}{p-1}}, \text{ with } S_n = n_k + n_{k-1} + \ldots + n_0.$$

If we choose $\underline{\alpha} \in \mathbb{N}^d$ such that $\alpha_i = p^s$, with $s \in \mathbb{N}$, we obtain

$$\frac{R^{|\underline{\alpha}|_{\infty}}}{|\underline{\alpha}!|} = \left(\frac{R}{|p|^{1/(p-1)}}\right)^{dp^s} |p|^{d/(p-1)} \ ,$$

which implies that

$$\limsup_{|\underline{\alpha}|_{\infty} \to \infty} \frac{R^{|\underline{\alpha}|_{\infty}}}{|\underline{\alpha}!|} = +\infty \ .$$

Therefore we conclude that

$$\lim_{|\underline{lpha}|_{\infty} o \infty} |\mathcal{G}_{\underline{lpha}}|_X = 0$$
 .

It follows that there exists an $n \in \mathbb{N}$ such that, for $|\underline{\alpha}|_{\infty} \geq n$, we have $|\mathcal{G}_{\underline{\alpha}}|_{X} \neq 1$, hence $(\mathcal{M}_{k}, \nabla_{k})$ is nilpotent.

On the other hand, suppose that $(\mathcal{M}_k, \nabla_k)$ is nilpotent of exponent $\leq n$. Let $\underline{\alpha} \in \mathbb{N}^d$, with $|\underline{\alpha}|_{\infty} \geq dpn$; since there exists $i_{\circ} = 1, \ldots, d$, such that $\alpha_{i_{\circ}} \geq np$, we can find $\underline{s} \in \mathbb{N}^N$ such that:

$$\underline{\alpha} = \sum_{i=1}^{N} s_i p \underline{w}^{(i)} + \underline{\beta} ,$$

where $\{\underline{w}^{(i)}: i=1,\ldots,N\}$ is the set of all $\underline{w} \in \mathbb{N}^d$ such that $|\underline{w}|_{\infty} = n, |\underline{\beta}|_{\infty} \nleq dpn$ and

$$\sum_{i=1}^{N} s_i = \frac{|\underline{\alpha}|_{\infty} - |\underline{\beta}|_{\infty}}{pn} \ngeq \frac{|\underline{\alpha}|_{\infty}}{pn} - d.$$

By (3.1.2), $|\mathcal{G}_{\underline{\alpha}}|_X \leq |\mathcal{G}_{\underline{\alpha'}}|$, when $\alpha_i \geq \alpha'_i$ for all $i = 1, \ldots, d$; therefore the previous lemma implies:

$$|\mathcal{G}_{\underline{\alpha}}|_{X} \leq \left|\mathcal{G}_{\sum_{i=1}^{N} s_{i} p \underline{w}^{i}}\right|_{X} \leq |\pi|^{\frac{|\underline{\alpha}|_{\infty}}{pn} - d}.$$

Finally we conclude:

$$\limsup_{|\underline{\alpha}|_{\infty} \to \infty} \left| \frac{\mathcal{G}_{\underline{\alpha}}}{\underline{\alpha}!} \right|_{X}^{\frac{1}{|\underline{\alpha}|_{\infty}}} \le \limsup_{|\underline{\alpha}|_{\infty} \to \infty} |\pi|^{\left(\frac{|\underline{\alpha}|_{\infty}}{pn} - d\right) \frac{1}{|\underline{\alpha}|_{\infty}}} |p|^{-1/(p-1)}$$

$$= |\pi|^{1/pn} |p|^{-1/(p-1)} \le |p|^{-1/(p-1)}.$$

$\S 4.$ Size of *G*-connections.

In this section we will use the notation introduced in §2. We now prove our main result

Theorem 4.1. Let (M, ∇) be a differential \mathcal{F}/K -module of type G and of finite rank μ ; we assume that (M, ∇) admits a model (\mathcal{M}, ∇) over a smooth S-model X of \mathcal{F}/K . If Σ_S' is the subset of Σ_S of primes v such that the induced connection $(\mathcal{M}_{k(v)}, \nabla_{k(v)})$ on the closed fiber $X_{k(v)}$ does not have p-curvature 0 and

$$\Delta(M) = \limsup_{n \to +\infty} \frac{1}{n} \sum_{\substack{v \in \Sigma_S' \\ p(v) \le n}} \log |p(v)|_v^{-1} ,$$

then:

$$\Delta(M) \leq \sigma_{X/S}(M) - arrho_{X/S}(M) \leq \left(1 + rac{1}{2} + \dots + rac{1}{\mu - 1}
ight) \Delta(M) \;.$$

Before giving the proof of the theorem, we need a lemma:

Lemma 4.2. Under the hypothesis of the theorem, let Σ_S'' be set of all $v \in \Sigma_S$ such that the induced connection $(\mathcal{M}_{k(v)}, \nabla_{k(v)})$ on the closed fiber $X_{k(v)}$ has p-curvature 0. We have:

$$\lim_{n\to\infty} \frac{1}{n} \sum_{v\in\Sigma_S''} h_X(\mathcal{M}, n, v) = \sum_{v\in\Sigma_S''} \log \frac{1}{R_{X,v}(M)}.$$

Proof. The proof is divided in steps. In the first step we prove

$$\liminf_{n\to\infty} \frac{1}{n} \sum_{v\in\Sigma_S''} h_X(\mathcal{M}, n, v) \ge \sum_{v\in\Sigma_S''} \log \frac{1}{R_{X,v}(M)} ,$$

while steps from 2 to 5 are devoted to the proof of

(4.2.2)
$$\limsup_{n \to \infty} \frac{1}{n} \sum_{v \in \Sigma_S''} h_X(\mathcal{M}, n, v) \le \sum_{v \in \Sigma_S''} \log \frac{1}{R_{X,v}(M)}.$$

Step 1. Proof of (4.2.1).

We observe that for any $N \in \mathbb{N}$ we have

$$rac{1}{n}\sum_{v\in\Sigma_S''}h_X(\mathcal{M},n,v)\geqrac{1}{n}\sum_{v\in\Sigma_S''top p(v)\leq N}h_X(\mathcal{M},n,v)$$

and therefore by Fatou's Lemma we obtain

$$\liminf_{n\to\infty}\frac{1}{n}\sum_{v\in\Sigma_S''}h_X(\mathcal{M},n,v)\geq\sum_{v\in\Sigma_N''\atop p(v)\leq N}\log\frac{1}{R_{X,v}(M)}\;.$$

We deduce (4.2.1) by taking the limit for $N \to \infty$.

Step 2. Let $R'_{X,v} = |\pi_v|_{X,v}^{-1/p}|p|_v^{1/(p-1)}$, with p = p(v). Then

$$h_X(\mathcal{M}, n, v) \le n \log \frac{1}{R'_{X,v}}$$
.

It is enought to prove that for any $v \in \Sigma_S''$ and any $\underline{\alpha} \in \mathbb{N}^d$ we have

$$(4.2.3) |\mathcal{G}_{[\underline{\alpha}]}|_{X,v} \le \left(\frac{1}{R'_{X,v}}\right)^{|\underline{\alpha}|_{\infty}}.$$

Let $\underline{\alpha} = (\alpha_1, \dots, \alpha_d) \in \mathbb{N}^d$ be such that $\alpha_i < p$ for any $i = 1, \dots, d$. Then (4.2.3) is obviously verified. So let $\underline{\alpha} = (\alpha_1, \dots, \alpha_d) \in \mathbb{N}^d$ be such that there exists $i = 1, \dots, d$ such that $\alpha_i \geq p$. Then there exists $s_1, \dots, s_d, \beta_1, \dots, \beta_d \in \mathbb{N}$, with $0 \leq \beta_i \leq p - 1$, such that $\alpha_i = s_i p + \beta_i$, for all $i = 1, \dots, d$, *i.e.*

$$\underline{\alpha} = \sum_{i=1}^d s_i p \underline{1}_i + (\beta_1, \dots, \beta_d) .$$

By (3.1.2) and (3.4) we have

$$|G_{[\underline{\alpha}]}|_{X,v} \leq \left|\frac{G_{\sum_{i=1}^d s_i p\underline{1}_i}}{\underline{\alpha}!}\right|_{X,v} \leq \prod_{i=1}^d \frac{|\pi_v|_v^{s_i}}{|\alpha_i!|_v} \ .$$

Using (3.4.2), we deduce that

$$|G_{[\underline{\alpha}]}|_{X,v} \leq \prod_{i=1}^d |\pi_v|_v^{s_i} |p|_v^{\frac{S_{\alpha_i}-\alpha_i}{p-1}} \leq \prod_{i=1}^d \frac{|\pi_v|_v^{\left[\frac{\alpha_i}{p}\right]} |\pi_v|_v^{S_{\alpha_i}/(p-1)}}{|p|_v^{\frac{\alpha_i}{p-1}}} \;.$$

We notice that

$$\left| \frac{\alpha_i}{p} - \left[\frac{\alpha_i}{p} \right] \right| \leq \frac{S_{\alpha_i}}{p} \leq \frac{S_{\alpha_i}}{(p-1)}$$

and hence that

$$|G_{[\underline{\alpha}]}|_{X,v} \leq \prod_{i=1}^d \frac{|\pi_v|_v^{\alpha_i/p}}{|p|_v^{\frac{\alpha_i}{p-1}}} = \left(|\pi_v|_v^{1/p}|p|_v^{\frac{-1}{p-1}}\right)^{|\underline{\alpha}|_\infty},$$

which proves (4.2.3).

Step 3. Proof of the inequality

$$(4.2.4) \qquad \limsup_{n \to \infty} \frac{1}{n} \sum_{v \in \Sigma_S''} h_X(\mathcal{M}, n, v) \le \sum_{v \in \Sigma_S'' \atop p(v) \le N} \log \frac{1}{R_{X,v}(M)} + \limsup_{n \to \infty} \sum_{v \in \Sigma_S'' \atop N \le p(v) \le n} \log \frac{1}{R_{X,v}'}.$$

We notice that for $p(v) \geq |\underline{\alpha}|_{\infty}$ we have

$$|\mathcal{G}_{[\underline{lpha}]}|_{X,v} \leq 1$$
,

and hence

$$\sum_{v \in \Sigma_S''} h_X(\mathcal{M}, n, v) = \sum_{\substack{v \in \Sigma_S'' \\ n(v) \le n}} h_X(\mathcal{M}, n, v) .$$

Therefore, for any $N \in \mathbb{N}$, $N \nleq n$, by Step 2 we obtain

$$\frac{1}{n} \sum_{v \in \Sigma_S''} h_X(\mathcal{M}, n, v) = \sum_{\substack{v \in \Sigma_S'' \\ p(v) \le N}} \frac{1}{n} h_X(\mathcal{M}, n, v) + \sum_{\substack{v \in \Sigma_S'' \\ N \le p(v) \le n}} \frac{1}{n} h_X(\mathcal{M}, n, v)$$

$$\leq \sum_{\substack{v \in \Sigma_S'' \\ p(v) \le N}} \frac{1}{n} h_X(\mathcal{M}, n, v) + \sum_{\substack{v \in \Sigma_S'' \\ N \le p(v) \le n}} \log \frac{1}{R_{X,v}'}.$$

Proposition 2.8 allows us to deduce (4.2.4) by the previous inequality.

Step 4.
$$\limsup_{n\to\infty} \sum_{\substack{v\in\Sigma_S''\\N\nleq p(v)\leq n}} \log \frac{1}{R'_{X,v}}$$
 is finite.

We have

$$\sum_{\substack{v \in \Sigma_S'' \\ p(v) \ngeq N}} \log \frac{1}{R_{X,v}'} = \sum_{\substack{v \in \Sigma_S'' \\ p(v) \trianglerighteq N}} \log \left(|p(v)|_v^{1/p(v)e_v} |p(v)|_v^{-1/(p(v)-1)} \right) ;$$

where e_v is the ramification index of v with respect to p(v). Since $e_v = 1$ for almost all v, it is enough to study the convergence of the following series for N >> 0

$$\begin{split} \sum_{v \in \Sigma_{S}'' \atop p(v) \ngeq N} \log \left(|p(v)|_{v}^{\frac{1}{p(v)}} \ |p(v)|_{v}^{\frac{-1}{(p(v)-1)}} \right) &= \sum_{v \in \Sigma_{S}'' \atop p(v) \ngeq N} \log \left(|p(v)|_{v}^{\frac{-1}{p(v)(p(v)-1)}} \right) \\ &\leq \sum_{p \ngeq N} \log \left(\prod_{v \mid p} |p|_{v} \right)^{\frac{-1}{p(p-1)}} &= \sum_{p \ngeq N} \frac{\log p}{p(p-1)} \le \sum_{p \gneqq N} \frac{1}{(p-1)^{3/2}} \;. \end{split}$$

Step 5. Conclusion of the proof of (4.2.2). By Step 4, the inequality (4.2.4) becomes

$$\limsup_{n\to\infty}\frac{1}{n}\sum_{v\in\Sigma_S''}h_X(\mathcal{M},n,v)\leq \sum_{v\in\Sigma_S''\atop p(v)\leq N}\log\frac{1}{R_{X,v}(M)}+\sum_{v\in\Sigma_S''\atop p(v)\ngeq N}\log\frac{1}{R_{X,v}'}\;.$$

We conclude the proof of (4.2.2) taking $N \to +\infty$.

Proof of the theorem 4.1. Because of lemma 4.2, it is enough to prove the following inequalities:

(4.2.5)
$$\Delta(M) + \sum_{v \in \Sigma_S'} \log \frac{1}{R_{X,v}(M)} \le \limsup_{n \to \infty} \frac{1}{n} \sum_{v \in \Sigma_S'} h_X(\mathcal{M}, n, v)$$

and

$$(4.2.6) \quad \limsup_{n \to \infty} \frac{1}{n} \sum_{v \in \Sigma_S'} h_X(\mathcal{M}, n, v) \le \left(1 + \frac{1}{2} + \dots + \frac{1}{\mu - 1}\right) \Delta(M) + \sum_{v \in \Sigma_S'} \log \frac{1}{R_{X, v}(M)}.$$

We first prove (4.2.5). By definition of Σ'_S , if $n \geq p(v)$, we have

$$h_X(\mathcal{M}, n, v) \ge \log |p(v)|_v^{-1}$$
.

For $n \geq N$, we obtain

$$\frac{1}{n} \sum_{v \in \Sigma_{S}'} h_{X}(\mathcal{M}, n, v) \geq \frac{1}{n} \sum_{v \in \Sigma_{S}' \atop p(v) \leq N} h_{X}(\mathcal{M}, n, v) + \frac{1}{n} \sum_{v \in \Sigma_{S}' \atop N \leq p(v) \leq n} \log |p(v)|_{v}^{-1}$$

$$= \frac{1}{n} \sum_{v \in \Sigma_{S}' \atop p(v) \leq N} h_{X}(\mathcal{M}, n, v) + \frac{1}{n} \left(\sum_{v \in \Sigma_{S}' \atop p(v) \leq n} \log |p(v)|_{v}^{-1} - \sum_{v \in \Sigma_{S}' \atop p(v) \leq N} \log |p(v)|_{v}^{-1} \right) ;$$

hence we deduce that

$$\limsup_{n\to\infty}\frac{1}{n}\sum_{v\in\Sigma_S'}h_X(\mathcal{M},n,v)\geq\sum_{v\in\Sigma_S'\atop n(v)\leq N}\log\frac{1}{R_{X,v}(M)}+\Delta(M)\;.$$

Finally, we find (4.2.5) taking the limit for $N \to +\infty$.

We now discuss the upper bound (4.2.6). We notice that $|\mathcal{G}_{\underline{\alpha}}|_{X,v} \leq 1$ for all $\underline{\alpha} \in \mathbb{N}^d$. Then the Dwork-Robba theorem [BD]* affirms that

$$|\mathcal{G}_{[\underline{lpha}]}|_{X,v} \leq \{|\underline{lpha}|_{\infty}, (\mu-1)\}_v rac{1}{R_{X,v}(M)^{|\underline{lpha}|_{\infty}}} ,$$

where

$$\{n,s\}_v = \sup_{\substack{1 \leq \lambda_1 \lneq \lambda_2 \lneq \cdots \lneq \lambda_s \leq n \ \lambda_1,\lambda_2,\dots,\lambda_s \in \mathbb{N}}} \left(rac{1}{|\lambda_1 \cdots \lambda_s|_v}
ight) \;.$$

We set

$$\left\{egin{aligned} a_v &= |p(v)|_v^{-1} \ \Theta_{\Sigma_S'}(n) &= \sum_{v \in \Sigma_S' top p(v) \leq n} \log a_v \end{aligned}
ight.$$

and, for $n \geq p(v)$,

$$egin{aligned} heta(n,v) &= (\mu-1) \left[rac{\log n}{\log p(v)}
ight] \log a_v - \log\{n,(\mu-1)\}_v \ &= rac{[K_v:\mathbb{Q}_p]}{[K:\mathbb{Q}]} \left((\mu-1) \left[rac{\log n}{\log p(v)}
ight] \log p(v) - \log\{n,(\mu-1)\}_{p(v)}
ight) \;. \end{aligned}$$

 $\text{Let } p(v) \geq \mu \text{ and let } i=1,\ldots,\mu-1. \text{ If } (\mu-i-1)p(v)^{\left\lceil \frac{\log n}{\log p(v)}\right\rceil} \leq n \lneq (\mu-i)p(v)^{\left\lceil \frac{\log n}{\log p(v)}\right\rceil} \text{ then } i \leq n$

$$\log\{n,(\mu-1)\}_{p(v)} = (\mu-i-1)\left[\frac{\log n}{\log p(v)}\right]\log a_v + i\left(\left[\frac{\log n}{\log p(v)}\right] - 1\right)\log a_v = i\log a_v$$

and if $(\mu - 1)p(v)^{\left[\frac{\log n}{\log p(v)}\right]} \le n \le p(v)^{\left[\frac{\log n}{\log p(v)}\right]+1}$ then

$$\log\{n,(\mu-1)\}_{p(v)} = (\mu-1)\left\lceil rac{\log n}{\log p(v)}
ight
ceil \log a_v \;.$$

We conclude that for all $i = 1, ..., \mu - 1$ we have

$$\theta(n,v) = i \log a_v \quad \text{if } (\mu - i - 1) p(v)^{\left[\frac{\log n}{\log p(v)}\right]} \le n \not\subseteq (\mu - i) p(v)^{\left[\frac{\log n}{\log p(v)}\right]} \ ,$$

and

$$\theta(n,v) = 0 \ \text{ if } (\mu-1)p(v)^{\left[\frac{\log n}{\log p(v)}\right]} \leq n \lesseqgtr p(v)^{\left[\frac{\log n}{\log p(v)}\right]+1} \ .$$

$$|\mathcal{G}_{[\underline{\alpha}]}|_{X,v} \leq \sup_{|\beta|_{\infty} \leq \mu-1} \left(|G_{\underline{\beta}}|_{X,v} R_{X,v}(M)^{|\underline{\beta}|_{\infty}} \right) \{ |\underline{\alpha}|_{\infty}, (\mu-1) \}_v \frac{1}{R_{X,v}(M)^{|\underline{\alpha}|_{\infty}}} \;,$$

in the several variable case, can be deduce by [DGS, IV, 3.2], using an argument of generic line. In [G], Gachet uses the same idea to prove an analogous effective estimate on a polyannulus.

^{*} We learned the proof of the generalization of the Dwork-Robba theorem from Professor Dwork's course held at Padova University in the academic year 1994/95. The effective estimate

Hence for $n \ge \mu^2$ we deduce

$$\sum_{\substack{v \in \Sigma_S' \\ p(v) \le n}} \theta(n, v) = \sum_{\substack{v \in \Sigma_S' \\ p(v) \le \sqrt{n}}} \theta(n, v) + \sum_{h=1}^{(\mu-2)} h \left(\Theta_{\Sigma_S'} \left(\frac{n}{\mu - h - 1}\right) - \Theta_{\Sigma_S'} \left(\frac{n}{\mu - h}\right)\right)$$

$$= \sum_{h=1}^{(\mu-2)} h \left(\Theta_{\Sigma_S'} \left(\frac{n}{\mu - h - 1}\right) - \Theta_{\Sigma_S'} \left(\frac{n}{\mu - h}\right)\right) + o(n)$$

$$= (\mu - 1)\Theta_{\Sigma_S'}(n) - \left(\Theta_{\Sigma_S'}(n) + \Theta_{\Sigma_S'} \left(\frac{n}{2}\right) \dots + \Theta_{\Sigma_S'} \left(\frac{n}{\mu - 1}\right)\right) + o(n) .$$

Since $\{n, (\mu - 1)\}_v = 1$ for $p(v) \ngeq n$, we obtain

$$h_X(\mathcal{M},n,v) = \sup_{|\underline{lpha}|_{\infty} \leq n} \log |\mathcal{G}_{[\underline{lpha}]}|_{X,v} \leq n \log rac{1}{R_{X,v}(M)} + \left\{egin{array}{ll} \log\{n,(\mu-1)\}_v & ext{if } p(v) \leq n \ 0 & ext{if } p(v)
otin p(v)
otin$$

and therefore

$$\lim \sup_{n \to \infty} \frac{1}{n} \sum_{v \in \Sigma_{S}'} h_{X}(\mathcal{M}, n, v) \leq \sum_{v \in \Sigma_{S}'} \log \frac{1}{R_{X,v}(M)} + \lim \sup_{n \to \infty} \frac{1}{n} \sum_{\substack{v \in \Sigma_{S}' \\ p(v) \leq n}} \log \{n, (\mu - 1)\}_{v}$$

$$\leq \sum_{v \in \Sigma_{S}'} \log \frac{1}{R_{X,v}(M)} + \lim \sup_{n \to \infty} \frac{1}{n} \sum_{\substack{v \in \Sigma_{S}' \\ p(v) \leq n}} \left((\mu - 1) \left[\frac{\log n}{\log p(v)} \right] \log a_{v} - \theta(n, v) \right)$$

$$\leq \sum_{v \in \Sigma_{S}'} \log \frac{1}{R_{X,v}(M)} + \lim \sup_{n \to \infty} \frac{1}{n} \left(\Theta_{\Sigma_{S}'}(n) + \Theta_{\Sigma_{S}'}\left(\frac{n}{2} \right) + \dots + \Theta_{\Sigma_{S}'}\left(\frac{n}{\mu - 1} \right) \right)$$

$$+ \lim \sup_{n \to \infty} \frac{1}{n} \sum_{\substack{v \in \Sigma_{S}' \\ p(v) \leq n}} (\mu - 1) \left(\left[\frac{\log n}{\log p(v)} \right] \log a_{v} - \log a_{v} \right)$$

$$\leq \sum_{v \in \Sigma_{S}'} \log \frac{1}{R_{X,v}(M)} + \left(1 + \frac{1}{2} + \dots + \frac{1}{\mu - 1} \right) \Delta(M) + A(\mu - 1) ,$$

where

$$A = \limsup_{n o \infty} rac{1}{n} \sum_{egin{subarray}{c} v \in \Sigma'_S \ p(v) \le n \end{array}} \left(\left[rac{\log n}{\log p(v)}
ight] - 1
ight) \log a_v \; .$$

For $\sqrt{n} \nleq p(v) \leq n$ we observe that

$$1 \le \frac{\log n}{\log p(v)} \not \leqq 2$$

and hence that

$$\left(\left[\frac{\log n}{\log p(v)} \right] - 1 \right) = 0 \ .$$

We deduce that

$$\begin{split} 0 & \leq A = \limsup_{n \to \infty} \frac{1}{n} \sum_{\substack{v \in \Sigma'_S \\ p(v) \leq \sqrt{n}}} \left(\left[\frac{\log n}{\log p(v)} \right] - 1 \right) \log a_v \\ & \leq \limsup_{n \to \infty} \frac{1}{n} \sum_{\substack{v \in \Sigma'_S \\ p(v) \leq \sqrt{n}}} \left(\frac{\log n}{\log p(v)} - 1 \right) \log p(v) \\ & \leq \limsup_{n \to \infty} \frac{\log n}{n} \sum_{\substack{v \in \Sigma'_S \\ p(v) \leq \sqrt{n}}} \left(1 - \frac{\log p(v)}{\log n} \right) \\ & \leq [K : \mathbb{Q}] \left(\limsup_{n \to \infty} \frac{\log n}{n} \sum_{p \leq \sqrt{n}} \left(1 - \frac{\log p}{\log n} \right) \right) \\ & \leq [K : \mathbb{Q}] \limsup_{n \to \infty} \frac{\log n}{\sqrt{n}} = 0 \ . \end{split}$$

We conclude that A = 0 and therefore we have proved (4.2.6).

§5. Nilpotence and lower bounds.

Following [D], we give another inequality, more precise then (4.2.5), related to the order of nilpotence.

Proposition 5.1. Let (M, ∇) be a differential \mathcal{F}/K -module of type G and of rank μ ; we assume that (M, ∇) admits a model (\mathcal{M}, ∇) over a smooth S-model X of \mathcal{F}/K . If $\Sigma_S^{(m)}$ is the subset of Σ_S of all primes v such that the induced connection $(\mathcal{M}_{k(v)}, \nabla_{k(v)})$ on the closed fiber $X_{k(v)}$ is nilpotent of order m (i.e. nilpotent of order m but not of order m and

$$\Delta^{(m)}(M) = \liminf_{n \to +\infty} \frac{1}{n} \sum_{\substack{v \in \Sigma_S^{(m)} \\ p(v) \le n}} \log |p(v)|_v^{-1} ,$$

then we have (5.1.1)

$$\liminf_{n\to+\infty}\frac{1}{n}\sum_{v\in\Sigma_S^{(m)}}h_X(\mathcal{M},n,v)\geq\sum_{p\in\Sigma_S^{(m)}}\log\frac{1}{R_{X,v}(M)}+\left(1+\frac{1}{2}+\cdots+\frac{1}{(m-1)}\right)\Delta^{(m)}(M)\;.$$

Proof. There exists $\underline{w} \in \mathbb{N}^d$ such that $|\underline{w}|_{\infty} = m-1$ and

$$\left|{\cal G}_{[p\underline{w}]}
ight|_{X,v} = \left|rac{1}{(p\underline{w})!}
ight|_v \;.$$

Therefore for any $n \in \mathbb{N}$ and for $j = \min\left(\left[\frac{n}{p}+1\right], m\right)$ (i.e. either j is an integer smaller then m such that $\frac{n}{j} \nleq n \leq \frac{n}{j-1}$ either j=m) we have

$$h_X(\mathcal{M}, n, v) \ge (j-1) \log |p(v)|_v^{-1}.$$

For a fixed $N \in \mathbb{N}$, $N \geq 0$, and for $n \geq Nm$ we deduce that

$$\frac{1}{n} \sum_{\substack{v \in \Sigma_{S}^{(m)} \\ p(v) \geq N}} h_{X}(\mathcal{M}, n, v) = \frac{1}{n} \sum_{\substack{v \in \Sigma_{S}^{(m)} \\ N \leq p(v) \leq \frac{n}{m-1}}} h_{X}(\mathcal{M}, n, v) + \frac{1}{n} \sum_{j=2}^{m-1} \sum_{\substack{v \in \Sigma_{S}^{(m)} \\ \frac{n}{j} \neq p(v) \leq \frac{n}{j-1}}} h_{X}(\mathcal{M}, n, v) .$$

If we set

$$\Theta_{\Sigma_S^{(m)}}(n) = \sum_{\substack{v \in \Sigma_S^{(m)} \\ p(v) \leq n}} \log |p(v)|_v^{-1} \;,$$

then we obtain

$$\begin{split} \frac{1}{n} \sum_{v \in \Sigma_S^{(m)} \atop p(v) \ngeq N} h_X(\mathcal{M}, n, v) &\geq (m-1) \frac{1}{n} \left(\Theta_{\Sigma_S^{(m)}} \left(\frac{n}{m-1} \right) - \Theta_{\Sigma_S^{(m)}}(N) \right) \\ &+ \frac{1}{n} \sum_{j=2}^{m-1} (j-1) \left(\Theta_{\Sigma_S^{(m)}} \left(\frac{n}{j-1} \right) - \Theta_{\Sigma_S^{(m)}} \left(\frac{n}{j} \right) \right) \\ &= \frac{1}{n} \sum_{j=1}^{m-1} \Theta_{\Sigma_S^{(m)}} \left(\frac{n}{j-1} \right) - \frac{m-1}{n} \Theta_{\Sigma_S^{(m)}}(N) \;, \end{split}$$

and therefore

$$\liminf_{n o +\infty} rac{1}{n} \sum_{\substack{v \in \Sigma^{(m)} \\ v(v) \geq N}} h_X(\mathcal{M}, n, v) \geq \left(1 + rac{1}{2} + \cdots + rac{1}{(m-1)} \right) \Delta^{(m)}(M)$$

We have proved that

$$\liminf_{n\to +\infty}\frac{1}{n}\sum_{v\in \Sigma_S^{(m)}}h_X(\mathcal{M},n,v)\geq \sum_{p\in \Sigma_S^{(m)}\atop n(v)\leq N}\log\frac{1}{R_{X,v}(M)}+\left(1+\frac{1}{2}+\cdots+\frac{1}{(m-1)}\right)\Delta^{(m)}(M)\;.$$

We get (5.1.1) by taking the limit for $N \to +\infty$.

Corollary 5.2. Under the hypothesis of the previous proposition we have

$$(5.2.1) \sigma_{X/S}(M) - \varrho_{X/S}(M) \geq \sum_{m=2}^{\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{(m-1)}\right) \Delta^{(m)}(M) \ .$$

Proof. Let $\widetilde{\Sigma}_S$ be the set of all primes $v \in \Sigma_S$ such that (\mathcal{M}, ∇) has not nilpotent reduction or zero p-curvature. By Fatou's Lemma, we have

$$\sigma_{X/S}(M) \ge \liminf_{n \to +\infty} \frac{1}{n} \sum_{v \in \Sigma_S} h_X(\mathcal{M}, n, v)$$

$$\ge \sum_{m=2}^{\infty} \liminf_{n \to +\infty} \frac{1}{n} \sum_{v \in \Sigma_S^{(m)}} h_X(\mathcal{M}, n, v) + \liminf_{n \to +\infty} \sum_{v \in \widetilde{\Sigma}_S} \frac{1}{n} h_X(\mathcal{M}, n, v)$$

$$\ge \sum_{m=2}^{\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{(m-1)} \right) \Delta^{(m)}(M) + \sum_{v \in \Sigma_S} \log \frac{1}{R_{X,v}(M)}.$$

Remark 5.3. We point out that in the last inequality we have

$$\lim_{n \to +\infty} \inf_{v \in \widetilde{\Sigma}_S} \frac{1}{n} h_X(\mathcal{M}, n, v) = \sum_{v \in \widetilde{\Sigma}_S} \log \frac{1}{R_{X,v}(M)} .$$

Actually, the left hand side is greater or equal the right hand side by Fatou's lemma. To prove the other inequality we consider two cases:

1) if $(\mathcal{M}_{k(v)}, \nabla_{k(v)})$ is not nilpotent, then:

$$\left|rac{1}{n}h_X(\mathcal{M},n,v) = rac{1}{n}\log\left|rac{1}{n!}
ight|_{X,v} \leq rac{\log|p(v)|_{X,v}}{p-1} = \lograc{1}{R_{X,v}(M)}\;.$$

So

$$\liminf_{n \to +\infty} \sum_{\text{non nilpotent}} \frac{1}{n} h_X(\mathcal{M}, n, v) \le \sum_{\text{non nilpotent}} \log \frac{1}{R_{X,v}(M)} ,$$

where the sum is taken over the $v \in \Sigma_S$ such that $(\mathcal{M}_{k(v)}, \nabla_{k(v)})$ is not nilpotent.

2) if $(\mathcal{M}_{k(v)}, \nabla_{k(v)})$ has zero p-curvature, then the equality is just a consequence of (4.2).

Dwork has conjectured in his article [D] that the last lower bound (5.2.1) is, in fact, an equality.

Appendix. Generalization of Eisenstein's theorem to the several variables case.

We have defined for a smooth $\overline{\mathbb{Q}}^{alg}$ -variety V a full subcategory $\mathbf{G}(V)$ of the abelian category $\mathbf{MIC}(V)$ of quasi-coherent \mathcal{O}_V -modules with an integrable $V/\overline{\mathbb{Q}}^{alg}$ -connection, whose objects are coherent \mathcal{O}_V -modules equipped with a G-connection. It is easy to show (cf. [AB] or [B]) that $\mathbf{G}(V)$ is a thick tannakian subcategory of $\mathbf{MIC}(V)$. So, it contains (\mathcal{O}_V, V) and is stable by $-\otimes_{\mathcal{O}_V} -$, $\mathrm{Hom}_{\mathcal{O}_V}(-,-)$, duality and extensions. Moreover, it is stable by taking subquotients.

If $f:V\longrightarrow W$ is any morphism of smooth $\overline{\mathbb{Q}}^{alg}$ -varieties, f^* , in the sense of \mathcal{O} -modules, induces a functor

$$f^*: \mathbf{G}(W) \longrightarrow \mathbf{G}(V)$$
.

If $f: V \longrightarrow W$ is an étale covering (i.e. a finite étale morphism), then f_* induces a functor

$$f_*: \mathbf{G}(V) \longrightarrow \mathbf{G}(W)$$
.

This is some sort of generalization of the Eisenstein's theorem:

Proposition A.1. In the notation of §2, let $\varphi: X \longrightarrow Y$ be an étale covering of smooth S-models X and Y. Then:

- 1) If (\mathcal{M}, ∇) is a model of (M, ∇) over X/S, then $R_{X,v}(M) = R_{Y,v}(\varphi_*M)$, $\sigma_{X/S}(M) = \sigma_{Y/S}(\varphi_*M)$ and $\varrho_{X/S}(M) = \varrho_{Y/S}(\varphi_*M)$.
- 2) If (\mathcal{N}, ∇) is a model of (N, ∇) over Y/S, then $R_{X,v}(\varphi^*N) = R_{Y,v}(N)$, $\sigma_{X/S}(\varphi^*N) = \sigma_{Y/S}(N)$ and $\varrho_{X/S}(\varphi^*N) = \varrho_{Y/S}(N)$.

Proof.

1) We notice that

$$\varphi_* \mathcal{P}^n_{X/S} \cong \mathcal{P}^n_{Y/S} \otimes \varphi_* \mathcal{O}_X$$
.

Let us consider the stratification data

$$\Theta^{(n)}: \mathcal{M} \longrightarrow \left(\mathcal{P}^n_{X/S} \otimes \mathcal{M}\right) \otimes K$$
.

We obtain

$$\varphi_*\Theta^{(n)}: \varphi_*\mathcal{M} \longrightarrow \varphi_*\left(\mathcal{P}^n_{X/S}\otimes \mathcal{M}\right)\otimes K \cong \left(\mathcal{P}^n_{Y/S}\otimes \varphi_*\mathcal{M}\right)\otimes K$$
,

and hence the ideal $I^{(n)}$ (cf. (2.6.3)) does not change. Therefore we have

$$R_{X,v}(M) = R_{Y,v}(\varphi_*M), \ \sigma_{X/S}(M) = \sigma_{Y/S}(\varphi_*M) \ \text{and} \ \varrho_{X/S}(M) = \varrho_{Y/S}(\varphi_*M).$$

2) Since $\varphi^* \mathcal{P}^n_{Y/S} \cong \mathcal{P}^n_{X/S}$, applying the functor φ^* to

$$\Theta'^{(n)}: \mathcal{N} \longrightarrow \left(\mathcal{P}^n_{Y/S} \otimes \mathcal{N}\right) \otimes K$$
,

we obtain

$$\varphi^*\Theta'^{(n)}:\varphi^*\mathcal{N}\longrightarrow \varphi^*\left(\mathcal{P}^n_{Y/S}\otimes\mathcal{N}\right)\otimes K\cong \left(\mathcal{P}^n_{X/S}\otimes\varphi^*\mathcal{N}\right)\otimes K\ .$$

This proves that $R_{X,v}(\varphi^*N) = R_{Y,v}(N), \ \sigma_{X/S}(\varphi^*N) = \sigma_{Y/S}(N) \ \text{and} \ \varrho_{X/S}(\varphi^*N) = \varrho_{Y/S}(N).$

References.

- [A] André Y.: "G-functions and Geometry", Aspects of Mathematics E13, Vieweg, Braunschweig/Wiesbaden, 1989.
- [AB] André Y., Baldassarri F.: "Geometric theory of G-functions", in *Arithmetic Geometry*, F. Catanese Ed., Symp. Math. XXXVII, Cambridge Univ. Press, 1997.
 - [B] Baldassarri F.: "Generic radii of convergence of p-adic analytic connections and spectral norms", in preparation.
- [BD] Baldassarri F., Di Vizio L.: "Continuity of the local radius of convergence for a connection over a Berkovich analytic space", in preparation.
- [BO] Berthelot P., Ogus A.: "Notes on Crystalline Cohomology", Mathematical notes, Princeton University Press, 1978.
 - [D] Dwork B.: "On the size of differential modules", Duke Math. J., 96 (1999), no. 2, 225-239.
- [DGS] Dwork B., Gerotto G., Sullivan F.: "An Introduction to G-functions", Annals of Mathematical Studies 133, Princeton University Press, Princeton N.J., 1994.
 - [G] Gachet F.: "Structure Fuchsienne pour des Modules Différentiels sur une Polycouronne Ultramétrique", Rend. Sem. Mat. Univ. Padova, Vol. 102 (1999), 157-218.