On the arithmetic size of linear differential equations
by
Lucia Di Vizio*

Institut de Mathématiques, case 247, Tour 46, Feme

4 place Jussieu, F-75252 PARIS CEDEX 05

étage

e-mail: divizio@math.jussieu.fr

Table of contents

§1. Introduction

§2. Basic definitions and statement of the main results

83. Generic radius of convergence and nilpotence

84. Size of G-connections

85. Nilpotence and lower bounds

Appendix. Generalization of Eisenstein’s theorem to the several variables case

§1. Introduction.

The notion of G-function was first introduced by C. L. Siegel in 1929. Later work of
Bombieri, Chudnovsky, André, Dwork clarified the geometric content of that (one variable)
notion, as a solution of a special type of linear differential operator (of arithmetic type or G-
operator). A geometric theory of G-functions was established in full generality by André and
Baldassarri in [AB].

We recall (a variation of) the classical definition. Let K be a number field and let Vg be
its ring of integers. A G-function at the origin defined over K is a formal power series

y(@) =) Ajal € K[a]

JeN
such that:
1) Ly = 0 for some non zero L € K(z) [£];

2) for each embedding o : K — C, the formal power series ),y o(A;)z? € C[z] has a positive
radius of convergence;
3) there exists a sequence of positive integers {c,}sen such that ¢;A; € Vi for all j < s and

sup —loges S 00 .
seN* 8

A first non-trivial example of a G-function is the hypergeometric series

o Fi(a,b,c;x) = Z Mm‘j ,

7l
jen (c);i!
where a,b,c € Q and (a); =a(a+1)---(a+j —1). The vector

((C - b)ZFl(aa b,C + 1; l‘),CQFl((l, ba G .'17))

AMS Subject Classification: 11Gxx, 12H2.
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OUn the arithmetic s1ze oI linear difierential equations
is a solution of the differential system

ay

—C c—a
_ : _ | = 1—
(Ea,b,c) % = YEa,b,c; with Ea,b,c = (é a—l—bfc ) .
x 1—2x

The general definitions on G-connections will be recalled in §2. Of great importance in their
study is the finite invariant 7 = o — p. In the hypergeometric case 7(E,p.) = 0(Eqp,c) —
0(Eqp,c) has been calculated by B. Dwork [D, Cor. 1.2] as

n
T(Ea,b,c) =1- W .

Here N is the least common denominator of a, band ¢; 0 < A, B S Nand 0 S C < N are
positive integers such that (%, %, %) = (a,b,c¢) mod N; n is the cardinality of the set of all
w € (Z/NZ)* such that, if (A®), B®) ™)) = (wA,wB,wC) mod N and 0 < A®) B®) <
N,0 S C® < N, we have A®) > ¢(®) > B®) or B(®) > C(®) > A®); & is the Euler
function.

The principal theme of this paper is the generalization to connections on arithmetic vari-
eties of the main result [D, Th. 1.1] in the above mentioned paper by Dwork. Naturally, we
use the geometric language introduced in [AB]. Our result provides a precise estimate for the
invariant 7 = o — p of an arithmetic differential equation. This invariant, depending only on
the geometric generic fiber of the connection, is highly significant. A consequence of our result
is that for a differential equation having 7 = 0 is equivalent to having zero p-curvature for a
set primes p of Dirichlet density 1. Indeed, this is expected to imply that the p-curvature is
zero for all but a finite set of primes. The Grothendieck conjecture predicts that 7 = 0 should
imply that the geometric generic fiber of the connection is trivial.

We also prove a result on the relation between generic v-adic radius of convergence and
order of nilpotence of the reduced equation extending [DGS, IIL.5.1].

In the appendix, we prove a generalization of the Eisenstein theorem.

Acknowledgments. We are indebted to the late Professor Dwork for suggesting that
we extend the main result of [D] to general G-modules of [AB]. We are also indebted to F.
Baldassarri for his help in the preparation of the manuscript and to Y. André and G. Christol
for their numerous remarks and suggestions.

§2. Basic definitions and statement of the main results.

2.1. Let K be a number field and Vi be its ring of integers. We consider a non-empty open
subscheme S = Spec(Vg) of Spec(Vk). We set

Y = {finite places of K having center on Vg} = {closed points of S} .

For each v € X5 we denote:

| |,= the absolute value of K associated to v, normalized as follows:
Ip|, = p~ I/ i g

K,= v-completion of K;

V,= ring of integers of K,;

k(v)= residue field of K, of characteristic p = p(v);

my= a uniformizer of V,,.
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d
Moreover, for all a = (ay,...,aq) € N? we set [a]oo = Doisg @iy al =ai! - ag! and

d
(g) =11 (;) , for all 8= (B1,...,B4) € N, such that 8 < a; for alli = 1,...,d.
2 i=0 \Pt N

We denote by 1, the element of N? having all its entries equal to zero except the i-th one equal
to 1.

2.2. Let F be a function field over K; a smooth S-model of F/K is a smooth S-scheme
f X — S of finite type with geometrically connected non-empty fibers such that the field
of rational functions of Xx = X x Spec(K) is F.

The choice of an S-model of F privileges, for each v € ¥ g, one extension | |x, of | |, to
F. In fact, let 7, denote the generic point of the closed fiber Xj,) = X x5 Spec(k(v)), the
local ring Ox ,, is a discrete valuation ring, since it is a local regular domain of dimension one
with uniformizer 7,. So we define | |x, as the unique extension of | |, to a non archimedean
absolute value of F, such that

Oxp, ={z€F: |z|xn <1},

normalized so to extend | |,.

Let (M, V) be a F/K-differential module of finite rank p (i.e. M = F*) and let
V:M— Q@M

be its integrable connection. A model of (M,V) on X/S is a locally free Ox-module M of
rank p with an integrable connection

V:M—>Q}(/S®M,

such that (M, V), = (M, V), where nx is the generic point of X.

We define the generic

v-adic radius of convergence Rx (M) of (M,V) on X/S as follows. We consider an
étale coordinate neighborhood (U,z), with x = (z1,...,24), of 7, in X and a local basis
e=(e1,...,e,) of M in a neighborhood of the generic point of X. Let

D; = 9 , foranyi=1,...,d.
8171'

For any a = (aq,...,aq) € N we set

and
(2.2.1) Y (Q[Q]) e = €Gja), With Gig1 € My, (F) and Gg = I, -

3
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Then
-1
(2.2.2) Rx (M) = (max (1, lim sup |g[a]|X,v1/'ﬁ'°°>) .
loloo—o0
We define the global inverse radius of (M,V) on X/S as
1
(2.2.3) ox/s(M) = GZ; 1ogm € [0, +o0] .
vESs

We say that (M, V) is of type G or is a G-module if ox/s(M) S oo, for one choice (hence for
all) of S, of the S-model X and of (M, V).

A few questions on the dependence of Rx (M) and ox,s(M) on the choice of the model
X/S, of (M, V), of the étale coordinates z and of the basis e naturally arise at this moment:
we will come back to this problem in proposition 2.9.

2.3. An easy fact to show (cf. §3 below) is that, if (M, V) admits a model on X /S, we have
for each v € Xg
Rx (M) > |p|y/®~ 1)

We obtain a better estimate for Rx ,(M) by looking at the properties of the differential
module induced by (M, V) on the closed fiber of X over v:

2.4. Let k be a field of characteristic p 2 0 and X} a smooth k-scheme of finite type. Let
(My, V) be an integrable Xy /k-connection. We recall that (My, Vi) is said to be nilpotent
of exponent < n if, given étale coordinates (z1,...,24) on Xi, one has:

8 pw1 a pPwq
V(a—) V(a—) -0

for all (wy, ..., wq) € N¢, such that |w|e = n. If n = 1, we say that (My, V},) has p-curvature
0.

The following proposition (cf. §3 below for the proof) is the generalisation to the several
variable case of a classical estimate (cf. [DGS, page 96]):

Proposition 2.5. Let X/S be a smooth S-model of F, (M, V) an X/S-connection as before
and v € Xg; then the integrable connection (My(y), Vi(v)) induced on the closed fiber of X
over v is nilpotent if and only if Rx , (M) 2 |p(v)|11,/(p(v)_1).

Apart from gx,5(M), one can define another invariant ox,g(M), attached to an F/K-
differential module. We define ox,5(M), called the size, as follows:

2.6. Let f: X — S and (M, V) be defined as in (2.2). Let Z be the kernel of the map
Ox ®f-1(05) Ox — Ox, induced by mulptiplication. Then for any n > 0 one defines
Px/s = Ox Qf-1(05) Ox /I (cf. [BO, §2]).

Since X/S is a smooth S-model, it is possible to give an explicit description of P} /s (cf.
[BO, 2.2]). Let (z1,-..,z4) be local étale coordinateson X, & = z;®1-1Q®2z; € Ox Qp, Ox,
fori=1,...,d,and { = ({1,--.,&4)- Then, for any n > 1, ’P;‘(/S is the O x-module generated

by {€2=¢7" €79 1 a € N, |a| < n}.



OUn the arithmetic s1ze oI linear difierential equations
We notice that Ox ®o, Ox has a left (resp. right) Ox-module structure defined by the
map Ox — Ox ®o; Ox, a+—>a® 1 (resp. a — 1 ® a). Then 'P;‘(/S has a left and a right

O x-module structure induced by the O x-module structures of Ox ®o, Ox.
We consider the induced stratification data [BO, 2.11] associated to (M, V)

(2.6.1) oM .M — (P;‘(/S R0y M) ®ys K ,

which are linear morphisms with respect to the left O x-module structure, while the tensor
product ®p, is taken with respect to the right one. These are truncated Taylor expansions of
solutions of (M, V) at the generic point

(2.6.2) e— Y £2® el ,

[aleo<n

where G, are defined as in (2.2.1).
We consider the ideal (™ of Vg

(2.6.3) 1™ ={aeVs: a0.(M) C Py 80, M} -

We notice that (™) #£ 0 and 7(*+t1) ¢ 1", We set

o (n)
(2.6.4) hx/s(M,n) = % , where N(I(™) = # (Vg/I().

The size of (M, V) on X /S is defined as
1
(2.6.5) ox/s(M) = lim sup EhX/S(M,n) € [0,+o00] .
n—00

If we set ™MV, = ¢, ,V,, with ¢, , € V,, and

(2.6.6) hx(M,n,v) =loglcynlv = sup log|Gilx,

alo<
then we have:

Proposition 2.7.

(2.7.1) hx;s(Myn) = Y hx(M,n,v) .
VEX g

Proof. We have
# (VS/I(n)) = H #(Vv/cn,vvv) ;

’UEES

with V,, /cn oV = 0, for almost all v € 5. Since

# (Vo TW,) = # Vo feanVi) = # (@) ") = leno |55

we conclude. [ |
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For further reference we state the following proposition. It is a generalization of a useful
result of André [A, IV §5]. The original proof of André rests on the Dwork-Robba Theorem
and on some calculation deriving from the Leibniz formula. There are two proof of the several
variables case: the first one, in [B], is based purely on the the theory of spectral norms and
on the Leibniz formula, while the second one, in [BD], is based on the generalization of the
Dwork-Robba Theorem, and gives more generally continuity of the radius of convergence at
points of a Berkovich analytic space.

Proposition 2.8. With the above notation, we have

1 . 1
(2.81) log m = nli}n;o ;hX(M, n, ’U) .

For lack of references we give a sketch of the proof:

Sketch of the proof of (2.8). By definition of Rx ,(M), for all ¢ > 0 there exists ng € N
such that for all ¢ € N? such that |a|e > no we have

1 1
log |G <log =—F+—= +c¢.
2l g‘ [M|X’U N gRX,v(M)

It follows that for all n > ng and all a € N such that |a|, < n we obtain

1 1 1 1
1 < = < = log ———
e og|G[g]‘X,v < nhx(M,n,v) < sup (hx(M,no,v), og Rxa(M) —I—s)
and hence

1 1
= limsup —hx(M,n,v) .

log ———
gRX,v(M) n—oo N

Let us prove that

1
Let {ﬁ(j) :j =1,...,N} be the set of all 8 € N* such that [8|c = n, for a fix n € N. Let
keNV and 7 = Z;\;l k;. Then by induction on #{k; : k; # 0}, using the Leibniz formula we
can prove (cf. [BD]) that for || S n we have

(2.8.2) . kjgm]

""" X,v
<(r+1)hx(M,n,v) + Cd(N + 1)log(r + 1) + Cd(7 + N)log(pn) ,

where C is a constant defined by |p|, = p~C. For all ¥ € N? such that |y|oo = n we write 7 in
the form y = a + Z;\;l kjﬁ(j), with k € NV and |a|e S n. We take 7 = Z;\;l kj = [%]
By (2.8.2) we have

1 1 1
|1—OO sup (l,log |g[1]|X,U) < (@ + E)hX(M;n,U)
cd N 1
+ ——(N+1)log (i + 1) +Cd (— + —) log(pn) .

(=)



OUn the arithmetic s1ze oI linear difierential equations

Taking the limit for |y, we obtain

1 1
log —— < — —1
%8 i) < nhx(Momo) + - Flog(pn)
and hence 1
log < liminf —hx (M, n,v).
X,U( ) n—oo M
This achieves the proof. |

Proposition 2.9. The generic radius of convergence Rx (M) only depends on the generic
fiber (M,V) of (M, V), in particular it is independent of the choice of the local basis e of M
on X and of the étale coordinates  of X. The same therefore holds for ox;s(M) (which, of
course, depends of the choice of S and of the S-model X ).

The size 0x;s(M) is independent of the particular X /S-model (M, V) of (M, V).

Proof. The independence of the generic radius of convergence of the choice of the étale
coordinates follows from (2.6.3), (2.6.6) and (2.8.1), since the definition of ©(*) is independent
of z and e (¢f. [BO]).

We notice that two X/S-models (M, V) and (M',V’) are isomorphic on an open sub-
scheme of X containing 7,. The fact that the generic radius of convergence Rx ,(M) only
depends on the generic fiber (M, V) of (M, V) follows from this remark, (2.6.6) and (2.8.1).
Obviously, the same is true for ox/s(M).

We now show that ox,s(M) is independent of the particular X/S-model (M, V) of
(M,V). Let (M’', V') be another X/S-model. Then (M, V) and (M’, V') are isomorphic on
an open subscheme of X. By (2.6.6), this means that there exists a finite subset {v1,...,v,} of
Y s such that hx (M, n,v) = hx(M',n,v) for any v € Xg \ {v1,...,v,}. Then (2.8.1) implies
that

1
ox/s(M) zlimsupﬁ Z hx(M,n,v)

n—o0

vEXg
1
= lim sup — hx(M' n,v) + log ———
n—boop n Z ( ) Z & RXan(M)
v€EXg~{v1,...,ur} vE{v1,...,ur}
1
= limsup — Z hx(M',n,v) .
n—oo N
vEXg
This proves our assertion. |

The following theorem, which is our main result, was recently proved in the one variable
case by Dwork [D]. It refines a formula of Bombieri-André [A, IV.5]. The proof will be given
in §4.

Main theorem 2.10. Let (M, V) be a differential F/K-module of type G and of rank u; and
let (M, V) be a model of (M, V) over a smooth S-model X of F/K. If ¥ is the subset of Xg
of all primes v such that the induced connection (M y), Vi(v)) on the closed fiber Xy (,) does
not have p-curvature 0 and

1
(2.10.1) A(M) = limsup — Z log |p(v)|;*,
n—+oo T ven,
p(v)<n
then:
1 1

7
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A consequence of the previous theorem is that one may equivalently define G-connections
by the boundness of size rather than of global inverse radius.

Remark 2.11. We would like to stress the intrinsic nature of the last statement, in particular:

1) While the global inverse radius of convergence ox/s(M) and the size ox,5(M) depend on
the choice of the scheme S and of the smooth S-model X (but not on the particular choice of
the X/S-model (M, V) of (M, V)), their difference ox;s(M) — 0x/s(M) only depends on the
geometric generic fiber of the differential module (M, V). In fact, if X/S is a smooth model of
the function field /K, then for any open dense subscheme 7" of S, X7 = X x g T is an open
subscheme of X and a smooth T-model. Then we recall the definition of the invariant 7(M):

T(M) = nf ox./r(M).

Since Xg \ X7 is finite, by (2.8) we have

1
oxp/r(M) = limsup — Z hx(M,n,v)

n—+oo T

’UEET
) 1
= UX/S(M) _nBI-ll}oo; Z hx(M,’I’L,’U)

VEXg\XZT

1
=ox/5(M)— log — .
/ UEEESEET RX”U (M)

When we take the infimum both on the left and on the right side, we obtain
ox/s(M) = ox)s(M) = inf ox,r(M)=71(M).

On the other hand, if we pick two smooth models X/S and X'/S’ of the function field /K,
then, replacing X (resp. X') by an open dense subscheme, we may assume that S = S’. Two
smooth S-models X and X' are generically isomorphic (since the local rings at their generic
points are isomorphic), therefore

At oxp (M) = inf ox; /(M) .
So 7(M) = ox/s(M) — 0x/s(M) only depends on the F/K-differential module (M, V).

Now let F' be a finite extension of F and K' be the algebraic closure of K in F'. Let
S’ be the normalization of S in K'. By replacing X by an open submodel, we can suppose
that X’ = X xg S’ is smooth over S’ and hence that it is an S’-model of the compositum
K'F =G C F'. By our normalization,

ox/s(M) = ox:1/5/(Mg) and ox/s(M) = ox1/5:(Mg).

Assume now that K’ = K, S’ = S. Then G = F, and we can find an S-model X' of F'/K
and an étale covering ¢ : X' — X. We note that ox;5(M) = ox//s(M) and ox/s(M) =
ox+/s(M) also in this case (cf. Appendix).

This shows that 7(M) depends only on the generic geometric fiber of (M, V).
2) First of all we notice that the constant A(M) appearing in the statement of last the theorem
is finite by the Prime Numbers Theorem. Moreover A(M) is independent of the choice of the

8
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smooth model X /S and of the choice of S. In fact, let X’/S’ be another model of the function
field F/K, then there exists N € N such that

{veXs: plv) >N} ={veXs: plv) >N},

and hence that 1 1
li — 1 =l — 1 .
im sup Z ogp(v) = lim sup - Z ogp(v)

n
n—+o0 vezg n—+oo ves g
p(v)<n p(v)<n

§3. Generic radius of convergence and nilpotence.

In this section we prove (2.5), which is essentially a result of local type, therefore we are
going to introduce some notation, slightly different from that in §2.

Notation 3.1. We consider a number field K equipped with an ultrametric absolute value | |
such that |p| < 1, for a rational prime p. Let v be the valuation of K associated to | |, V the
discrete valuation ring of K associated to v, m the uniformizer of V, k the residue field V of
characteristic p, X a smooth V-scheme of finite type, with non empty geometrically connected
fibers, X the closed fiber of X, F = k(X) the field of rational functions on X, | |x the
extension of | | to F associated to X, normalized so to extend | |, i.e. such that

|p| :p_[Kv:Qp]/[K:Q] .

Following §2, if (M,V) is an F/K-differential module admitting a model (M, V) on X, we
define as usual

(3.1.1) \Y (Q[Q]) e = €Giy, With Gia) € Muxu(F)

and
V(D%)e=eGa; (G =!G4 ),

where (U,z = (z1,...,24)) is an étale coordinate neighborhood of the generic point of X, e
is a local basis of (M, V) and o € N?. We have

(3.1.2) Ga+1, = DiGa+G1.Ga , foralli=1,...,d and o € N°.

We set, as in the previous section,

-1

(3.1.3) Rx (M) = (max (1, lim sup |g[a]|X1/'9'°°)) .
lafoo—o0

We will denote by (My, Vi) the integrable connection induced on Xj.

Lemma 3.2. If (M, V) has a model (M, V) on X, then

Rx(M) > |p|t/e=1)

|2l

Proof. Since |a!| > |p| >, by (3.1.2) we obtain

|p|t/(P—1)

Rx (M) > :
x( )—max(1,|gll|x,---;‘gld‘X)

9
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If (M, V) is a model of (M,V) on X, there exists an étale coordinate neighborhood (U, z)
such that M is free over U and G, € M,x,(O(U)), therefore

So we conclude that
Rx(M) > |p|"/e=V)

If (Mg, Vi) is nilpotent of exponent < n, we give a lower bound for Rx (M):

Proposition 3.3. Let (M, V) be a F/K-connection as in (3.1); then (My, V) is nilpotent if
and only if the following condition is satisfied:

Rx (M) = |p|1/(p—1) ]
In particular, if (My, V) is nilpotent of exponent < n we have:

R (M) > || =122 p|"/ =D

First we need a technical lemma.

Lemma 3.4. If (My, V) is nilpotent of exponent < n and if {w®) : i = 1,..., N} is the set
of all w € N® such that |w|, = n, we have

< fmf2m
X

ES—

Proof. For all (wy,...,ws) € N?, such that |w|e = n, we have |Gpy|x < |7| S 1. We want to
prove by induction on s € N* that for all « € N¢ we have

(341) ‘gpsg-}-g‘x S ‘77‘8 ‘gﬁ|X é 1.

By Leibniz formula, we obtain

v ( Qp(s+1)y+g) e =V (D) (eGpswta)

B
pw) 2\~
E : Y w—f3 ((_> g sy+g)
0<p<pw ( g7 \\oz)
and hence

a\2
gp(s+1)w+g: Z (pﬂw>gpw—é<(3_m) gpswrg)

Il
|

0<B<pw * =
8 B
S ) (G R I il G LA (G ey
- w—pp sw+ta w— B swta | >
gﬂéy(pé s\ g§gz<:pﬂ g = \\oe) ™7
(p.B)=1

where (p, 8) is the ideal generated in Z by {p, 31,--.,B4}. Then:

10



OUn the arithmetic s1ze oI linear difierential equations

1)if 0 S B < w we have
( (w)\<1
pB/| —
{ gpy—pé‘xgl

(%)pé (gpsy+g) .

< |7l |Gpsw+a|x < [71*F [Ga

|gpygpsy+2|x < |mf** ‘g£|x :

2 \*2
<Z§) gpy—pﬁ ( (3_£> gp52+g)
p

2) if (p, ) =1 and 0 S B < pw we have

< w1 Gal 4, VO B<w .
X

e8] <ol <

B ’
Gpw—p ((%)_gpsﬂ+g> ‘X < |ml® ‘gﬂ|X

and hence

9\~
(pﬂw) gpﬂ—é ((@) gpsyp+g)

Therefore we obtain \gpsﬂ+g|x < |m|® \gg
|W|oo = n.
From (3.4.1), by induction on #{i =1,..., N : s; # 0}, it follows that

S ‘77‘3-'-1 |gﬁ‘X’ VQ§QSPQ, (pag):]' -

X

|X, for all s € N, o € N and w € N? such that

< i
X

9t
|

Proof of proposition (3.3). Let us suppose that Rx (M) = Ip|*/®=1) and choose R 20
such that Rx (M) = R = |p|*/(P=1). Then

Ga

X

lim
a!

[e|co—+o0

For any n € N, we write n in the form n = ngp* + np_1p* 1 + ... + ng, with 0 < n; < p—1,
foralli =0,...,k, and we have (cf. for instance [DGS, page 51])

(3.4.2) In!] = |p| T, with Sp = ng + ng_1 + ... + no.

If we choose o € N such that o; = p®, with s € N, we obtain

R|Q|oo R dp® _
= (o) e

11
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which implies that

Rl2le
lim sup = t0oo.
|| oo —+00 |Q‘
Therefore we conclude that
hm |QQ\X = 0 .

[t o —+o0

It follows that there exists an n € N such that, for |a|., > n, we have |Gy|x S 1, hence
(Mg, Vi) is nilpotent.

On the other hand, suppose that (My, V}) is nilpotent of exponent < n. Let o € N¢,
with |a|e > dpn; since there exists i, = 1,...,d, such that a;, > np, we can find s € NV such
that:

N
a=)Y spw®+8,
i=1
where {w() : i =1,..., N} is the set of all w € N? such that |w|e = n, |8 S dpn and

N

Qoo — o) o0
Zsi: |_‘ \ﬁl > |Q| —d.

=
i=1 pn pn

By (3.1.2), |Ga|x < |Gar|, when o; > of for all ¢ = 1,...,d; therefore the previous lemma
implies:

|2|oo_d

|| o

(3.4.3) 1Galx <

IN

G o]

Finally we conclude:

aloo
< limsup |7r|( »n _d)lgﬁm—l/(p—l)

X |at|oo—+00

— |7T|1/pn|p‘—1/(p—1) é |p|—1/(p—1) .

J
laloo

lim sup
a!

[t oo—+00

§4. Size of G-connections.
In this section we will use the notation introduced in §2. We now prove our main result

Theorem 4.1. Let (M,V) be a differential F/K-module of type G and of finite rank u; we
assume that (M, V) admits a model (M, V) over a smooth S-model X of F/K. If ¥y is the
subset of X5 of primes v such that the induced connection (Myy), Vi(y)) on the closed fiber
Xk(v) does not have p-curvature 0 and

. 1 1
A(M) =limsup —  _ log|p(v)l;" ,

n—-+oo uEE’s
p(v)<n
then: ) )
A(M) < ox/s(M) — ox/s(M) < (1 + 2 +.+ F) A(M) .

12
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Before giving the proof of the theorem, we need a lemma:

Lemma 4.2. Under the hypothesis of the theorem, let £ be set of all v € Xg such that the
induced connection (My(y), Vi(v)) on the closed fiber Xy ,) has p-curvature 0. We have:

1
lim — hx(M,n,v) lo
n—oo n Z X vg;” ® Rx..(M) RX v )

Proof. The proof is divided in steps. In the first step we prove

(4.2.1) lzrggf; Z hx(M,n,v) Z log )
’UEE” ’UEE”
while steps from 2 to 5 are devoted to the proof of
4.2.2 lim sup — hx(M,n,v) lo
( ) n—)oop UEZE” X UEZE” gI{Xv )
Step 1. Proof of (4.2.1).
We observe that for any N € N we have
12h(an)>12h(M )
n X y 10y ~n X y U
UGE’é ves
p(v)<N
and therefore by Fatou’s Lemma we obtain
lim inf © > hx(Myn,v) > > 1 1
im inf — n,v og——— .
n—oo mNn X T 8 RX U(M)
UEE’S’. ve):’s’. ’
p(v)<N

We deduce (4.2.1) by taking the limit for N — oo.
Step 2. Let Ry, \7rv|X1/p|p\11,/(p_1), with p = p(v). Then

hx(M,n,v) < nlog —— .
RX,v

It is enought to prove that for any v € X% and any a € N we have

leloo
1
(4.2.3) G101l %0 < | 5— .
RX v

Let a = (a1,...,aq) € N? be such that o; < p for any i = 1,...,d. Then (4.2.3) is obviously
verified. So let a = (a1,...,aq) € N be such that there exists i = 1,...,d such that oy > p.
Then there exists s1,...,84,081,...,84 € N, with 0 < 8; < p — 1, such that a; = s;p + 3;, for
alli=1,...,d, i.e.

lp]- + ﬂla "a/Bd)'

||Mm.

13
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By (3.1.2) and (3.4) we have

G d )
Zi: siPL; |7!' |31
Gl < |22 < J]
o X i1 i|v
Using (3.4.2), we deduce that
d Say—a;  d (5] (Sa;/(0-1)
Gl < [[molslple 7 < I eIl
i=1 i=1 lp|l&~*

We notice that

and hence that

which proves (4.2.3).
Step 3. Proof of the inequality

4.2.4 li — h 1 li 1
( ) imsup - Z x(M,n,v) Z ogRXU )—i- im sup Z og

n—00 ves, ves, n—00 ves!

p(v)<N NSp(v)<n
We notice that for p(v) 2 |a|s we have

9ol x0 <1,
and hence

E hx(M,n,v) = E hx(M,n,v) .
Ve ven
p(v)<n

Therefore, for any N € N, N S n, by Step 2 we obtain

1 1 1
E Z hx(M,Tl,U) = Z EhX(M,n,’U)‘F Z ﬁhX(Manav)

vezg vEZg uEEg
p(v)<N Nsp(v)<n
1 1
< g —hx(M,n,v) + E log —— .
n R,
veEDY venY ’
p(v)<N N3p(v)<n

Proposition 2.8 allows us to deduce (4.2.4) by the previous inequality.

1
Step 4. limsup Z log —— o is finite.
n—00 ves!t X,
N$p(v)<n
We have
> log R, = Y 1og () /P [p(w) /D)
’UEE” ‘UGEII
P(")>N p(v)>N

14
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where e, is the ramification index of v with respect to p(v). Since e, = 1 for almost all v, it
is enough to study the convergence of the following series for N >> 0

Z log (‘p P(v) |p( )|(P(v) 1)> Z log (\p p(v)(p(v) 1)>

vEE” 7)6)3”
P(0)ZN P(0) 2N
p(;il) ! 1
ogp
< Z log H|P|v = Z p(p—1) < Z (p—1)32 "
pZN vlp pZN pZN

Step 5. Conclusion of the proof of (4.2.2).
By Step 4, the inequality (4.2.4) becomes

hmsup— ZhXan Z logR + Z log ——
X

nreo UEE” veny v veny X,
p(v)<N p(v)>N
We conclude the proof of (4.2.2) taking N — +o0. [ |

Proof of the theorem 4.1. Because of lemma 4.2, it is enough to prove the following
inequalities:

(4.2.5) A(M) + Z log < hmsup— Z hx(M,n,v)
’UEE’ n— 00 EE’
and
1
(4.2.6) hrIin»S;p_ EZE, hx(M,n,v) < (1 +5++ j) EZE, log ———— va )

We first prove (4.2.5). By definition of ¥, if n > p(v), we have
hX(M’ n, U) > log |p(’l})|;1

For n 2 N, we obtain

1 1 1
S M) > Y k(Mo S loglp(v)l;!

vEXY veED, vexy
p(v)<N N$p(v)<n
1 1
== Z hx(M,n,v) + — Z log |p(v) Z log [p(v)|, " | ;
n ves n e::’ vesn’,
p(v)<N p(v) <n p() <N

hence we deduce that

1
hmsup— than) Z logm+A(M).

n—soco N
GZ’ ve)::fg

Finally, we find (4.2.5) taking the limit for N — +o0.

15
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We now discuss the upper bound (4.2.6). We notice that |Gy |x,, < 1 for all @ € N?. Then
the Dwork-Robba theorem [BD]* affirms that

} 1
"Ry o(M)lals

)

|g[g]‘X,v < {|Q|ooa (M - 1)

where
1
n,8ty = sup —_— ).
sk 121 S22 S SAs<n <|>\1“‘)\s|v)
A1 A2, Ag EN
We set
ay = |p(v)|;"
Os (n) = Z log a,
vez%
p(v)<n

and, for n > p(v),

logn
b(m,0) = (u = 1) | 2] oga, ~login, (- 1}y
Ky s Q] B logn e n(v) — logln. (1 —

logn

g logn
Let p(v) > pandleti=1,...,p—1. If (u—i—1)p(v) st <nsS (p—1i)p(v) [mests] then

i logn i logn )
et s~ 0~ [ 2252 T[22 g

logn logn

and if (u — 1)p(v) Erol <n S p(v) [ estoy ] +1 then

logn
log p(v)

{4~ Doy = s = 1) | it g

We conclude that for all ¢ =1,..., 4 — 1 we have

lo logn ]

B(n,v) = iloga, if (u—i— Vp(o)[m557] <n 5 (u—iyp(v)[mest

and
log n logn

O(n,v) =0 if (u— 1)p(v) [@iﬁ] <n é p(v) [10gp(v)]+1

* We learned the proof of the generalization of the Dwork-Robba theorem from Professor
Dwork’s course held at Padova University in the academic year 1994/95. The effective estimate

1
a v < G vR v M 18lee <) - Dhos—Fras ’
|Gra %, < (I 8lx0Rx,0(M) ){Igl (b —1)} Rx.o(M)l2l=

in the several variable case, can be deduce by [DGS, IV, 3.2], using an argument of generic line.
In [G], Gachet uses the same idea to prove an analogous effective estimate on a polyannulus.

16
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Hence for n > pu? we deduce

Since {n,(x — 1)}, =1 for p(v) = n, we obtain

log{n,(u - 1)}, ifp(v) <n
hx(M,n,v sup log|Gia1lx.e < nlog —————~ +
( ) = lalo<n | [o ]| Y RX,v(M) 0 if p(v) ; n

and therefore

) 1
hmsup— Z hx(M,n,v) Z log ——— RXU(M) —I—hmsupg Z log{n, (p— 1)},

n—oo EE' UEE’ n—o0 vEEfs
p(v)<n
< Z] 1 + limsu 1 Z (( 1)[ logn ]lo ay —6(n v))
og ———— + lim — - - ,
= ’ gRX,v(M) n—)oopn , l’l‘ logp(v) g v
vEXD vesl
p(v)<n
1 n n
< S log— 41 Oy @,(—) 4 Oy
> GZEI OgRX,v(M)+lr:rz,Ii>Solcl>pn< E ( )+ Es 2 + + ES <M_1)>
veZg
logn
li — - 1 —1
T Y -
S
p(v)sn
<> ! +(1+1+ 2 )A(M)+A( 1)
0 — — . e . —_— _— 3
8 R (M) 2 h—1 g
veXYy
where
) 1 logn ] )
A =limsup — —1)loga, .
noo T EZ; ([logp(v) ¢
p(2)Sn
For \/n < p(v) < n we observe that
logn <9
~ logp(v)

and hence that

(lmesial =) =2

17
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We deduce that

1 1
0<A=limsup— Y ([ g7 ]—1>logav

1
n—oo T ves’, og p(v)
p(v)<vn

1 1
< limsup — Z ( g —1>logp(v)

noeo M 0 log p(v)

p(v)<vn

logn log p(v)
< lim sup —— n Z (1 — m

n—00 e
vEEs

p(v)<vn
1 1
<[K:Q limsupﬂ E (1— ng)
n— 00 n logn
p<vn
logn

=0.
n

< [K : Q| limsup —=

n—o0

We conclude that A = 0 and therefore we have proved (4.2.6). [

§5. Nilpotence and lower bounds.

Following [D], we give another inequality, more precise then (4.2.5), related to the order
of nilpotence.

Proposition 5.1. Let (M,V) be a differential F/K-module of type G and of rank u; we

assume that (M,V) admits a model (M, V) over a smooth S-model X of F/K. If ng) is
the subset of ¥ of all primes v such that the induced connection (My(y), Vi (v)) on the closed
fiber Xy () is nilpotent of order m (i.e. nilpotent of order < m, but not of order < m —1) and

1
A™(M) = liminf = Z log [p(v)|, !

n—+oo N
vezfsm)
p(v)<n
then we have
(5.1.1)
1 1 1
iminf — Z4... (m)
%gl_ll_lgn Z hx(M,n,v) > Z longu ) (1-|—2-|- +(m—1))A (M) .

Proof. There exists w € N¢ such that |w|,, =m — 1 and

1
|g[Pﬂ]‘X,v - ‘ (pw)!

v
Therefore for any n € N and for j = min ([% + 1] ,m) (i.e. either j is an integer smaller then
m such that % S n < ;% either j = m) we have

hx(M,n,v) > (j — 1) log|p(v)[;"
For a fixed N € N, N 2 0, and for n > Nm we deduce that

m—1
1
E hX(M,n,v):E g hx(M,n,v +E E hx(M,n,v) .
uEEfgm) veﬂfsm) -7:2 vEXD g
P(V)ZN NSp(v)< =g B <p(v)< 72y

18
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If we set

Ogem (1 = ) loglp(v)

vez:g")
p(v)<n
then we obtain
> hx(M,n,v) > (m—1)l Ocim | —2 O, m (N)
= n s m—1 X
vex(™
p(v)ZN

and therefore

1 1 1
im inf = > Z4... (m)
lim nf ~ > hX(M,n,v)_<1+2+ +(m_1)>A (M)
vEng)
p(v)ZN

We have proved that

1 1 1 1
iminf — > 1+=+4-- A (M) .
ngl_il_lgn hx(M,n,v) > IOgRXv(M) (-|-2+ +(m—1)) (M)

vEE(sm) pe):(sm)
p(v)<N
We get (5.1.1) by taking the limit for N — +o0. [ |

Corollary 5.2. Under the hypothesis of the previous proposition we have

(5.2.1) ox;s(M) — ox/s(M) > > (1 + % 4+t (ml_ 1)) A™(M) .

m=2

Proof. Let &g be the set of all primes v € Xg such that (M, V) has not nilpotent reduction
or zero p-curvature. By Fatou’s Lemma, we have

ox/s(M) > Jimn inf = > hx(M,n,v)

n—-4+oo n veTs
> ngirgﬁ Z hx(M,n,v) +11m1nf Z hX(M n,v)
m=2 vez(m) UEES
>i Loy A<m)(M)+Zlog#.
= 2 (m—1) o=t Rx (M)

Remark 5.3. We point out that in the last inequality we have
1
’UGES vEXg
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Actually, the left hand side is greater or equal the right hand side by Fatou’s lemma. To prove
the other inequality we consider two cases:
1) if (Mg(v), Vi(v)) is not nilpotent, then:

1 1
—hx(M,n,v) = —log
n n

1
n!

< loglp(v)xw _ 4
X0 - p—l RX,’U(M)

So

.. 1 1
ng}rlg Z ;hX(M,n,U) < Z logm ;

non nilpotent non nilpotent

where the sum is taken over the v € X g such that (M), Vi(v)) is not nilpotent.
2) if (My(v), Vi(v)) has zero p-curvature, then the equality is just a consequence of (4.2).

Dwork has conjectured in his article [D] that the last lower bound (5.2.1) is, in fact, an
equality.

Appendix. Generalization of Eisenstein’s theorem to the several variables
case.

We have defined for a smooth @alg—variety V a full subcategory G(V') of the abelian

category MIC(V') of quasi-coherent Oy -modules with an integrable V/@alg—connection, whose
objects are coherent Oy-modules equipped with a G-connection. It is easy to show (¢f. [AB]
or [B]) that G(V) is a thick tannakian subcategory of MIC(V'). So, it contains (Oy, V') and
is stable by — ®»,, —, Home,, (—, —), duality and extensions. Moreover, it is stable by taking
subquotients.

. . —al .. .
If f: V — W is any morphism of smooth Qa g-varletles, f*, in the sense of O-modules,
induces a functor

ff:GW)— G(V).

If f: V — W is an étale covering (i.e. a finite étale morphism), then f, induces a functor
fi : G(V)— GW).
This is some sort of generalization of the Eisenstein’s theorem:

Proposition A.1l. In the notation of §2, let ¢ : X — Y be an étale covering of smooth
S-models X and Y. Then:

1) If (M, V) is a model of (M,V) over X/S, then Rx (M) = Ry,(¢.M), ox;s(M) =
oy/s(p«M) and ox/s(M) = oy/s(psM).

2) If (N, V) is a model of (N,V) over Y/S, then Rx,(¢*N) = Ry,(N), ox/s(¢*N) =

oy/s(N) and ox/s(¢*N) = oy;s(N).
Proof.
1) We notice that

Let us consider the stratification data
0 M — (Pise M) K.
We obtain
0.0 o M — o, (P}}/S ® M) R K = (’P{}/S ® <p*M) QK ,
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and hence the ideal I™) (cf. (2.6.3)) does not change. Therefore we have

Rx (M) = Ry, (p«M), ox/5(M)= 0y;s(p«M) and ox/s(M) = oy;s(p«M).

2) Since <p*73§}/s = P?(/S, applying the functor ¢* to

o™ N — (P{}/SQ@N) ® K,

we obtain

0@ N — ¢ (PR s @ N) @ K = (Phs@¢'N) 9 K .

This proves that Rx ,(¢*N) = Ry,,(N), 0x,5(¢*N) = oy;s(N) and 0x,5(¢*N) = oy;s(N).
|
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