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1 Introduction

The purpose of this survey is to provide the reader with a user friendly intro-
duction to the two articles [8] and [9], which give a Galoisian description of the
action of an endomorphism of a di�erential �eld (K, ∂) on the solutions of a
linear di�erential equation de�ned over (K, ∂). Although this paper is totally
independent from [6], the combination of the two surveys can give an overview
of the topic, which has the default of not being complete and the advantage of
being rather short, facilitating the orientation in a literature that has developed
relatively quickly.

Parameterized Galois theories start with the seminal works [15] and [2]. In
the latter the authors consider the dependence of a full set of solutions of a
linear di�erential equation with respect to a di�erential parameter, which is
incarnated in a derivation linearly independent from the one appearing in the
equation. This work has been followed by [12], which considers the problem of
di�erential dependence of a full set of solutions of a linear di�erence equation.
See [11] for a detailed introduction to this topic or [6] for a shorter survey.

The dependence of a full set of solutions of a linear functional equation
with respect to a discrete parameter is considered in [8], [9] and [18]. Due to
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the intrinsic di�culty of di�erence algebra, the proofs, but also sometimes the
statements, are more complicated than in the analogous continuous theory. We
will hide the technicalities, but the reader should not be naive and should pay
attention to easy generalizations of notions of usual algebra.

The parameterized Galois theories have given a great impulse to Galois the-
ory of functional equations. Their developments and applications, that we have
collected in a separated list of references at the end of the paper, go beyond the
scope of this survey. We won't mention any of them.

We introduce the de�nitions of di�erence and di�erential algebra that are
essential for the content of this survey. A more detailed, but still quite short,
presentation can be found in [8]. For general introductions to these topics, see
[4],[16], [13].

2 A quick overview of di�erential Galois theory

For the reader convenience we give a very short introduction to classical dif-
ferential Galois theory, as a sort of guideline for the pages below. There are
numerous introductions to this topic, going from short notes to thick volumes.
We cite here a selection of references [1], [17], [22], [21], [5], [20].

2.1 Di�erential algebra

A ∂-ring (R, ∂) is a ring R equipped with a derivation ∂, i.e., with a linear map
∂ : R → R satisfying the Leibniz rule ∂(ab) = a∂(b) + ∂(a)b for all a, b ∈ R.
For simplicity we will frequently say that R is a ∂-ring. All rings in this paper
are supposed to be commutative with 1 and to have characteristic zero. The
ring R∂ = {r ∈ R : ∂(r) = 0} is the subring of ∂-constants of R. A ∂-ideal of
R is an ideal which is stable by the action of ∂. A maximal ∂-ideal of R is a
∂-ideal of R that is maximal for the inclusion among the ∂-ideals. A maximal
∂-ideal does not need to be maximal but it is always prime. A ∂-ring is said to
be ∂-simple if it has no nontrivial ∂-ideals.

A ∂-ring is called a ∂-�eld if the underling ring is a �eld. Its subring of
∂-constants is always a �eld. Let (K, ∂) be a ∂-�eld. A ∂-�eld extension
(L, ∂)/(K, ∂) is a �eld extension L/K such that both L and K are ∂-�elds
and that the derivation of L extends the derivation of K. If A is a subset of L
then K{A}∂ (resp. K〈A〉∂) is the smallest ∂-ring (resp. ∂-�eld) containing K
and A.

2.2 A crush course in di�erential Galois theory

Let (K, ∂) be a ∂-�eld of characteristic 0. One can naturally consider a linear
di�erential system ∂(y) = Ay with coe�cient in K, i.e., a linear di�erential
system associated with a matrix A that belongs to the ring Mn(K) of square
matrices of order n with coe�cients in K.

Let us suppose that the �eld of ∂-constants of K is algebraically closed.
Under this assumption, we know that there exists a Picard-Vessiot extension
L/K for ∂(y) = Ay, i.e., a ∂-�eld extension (L, ∂)/(K, ∂), such that

1. there exists U ∈ GLn(L), whose entries generate L over K and verifying
∂(U) = AU .
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2. L∂ = K∂ =: k;

The di�erential Galois group of ∂(y) = Ay is de�ned as

Gal(L/K) := {ϕ is a �eld automorphim of L/K, commuting to ∂}.

Any automorphism ϕ ∈ Gal(L/K) sends U to another invertible matrix of
solutions of ∂y = Ay, so that U−1ϕ(U) ∈ GLn(k). This gives a (faithful) repre-
sentation Gal(L/K)→ GLn(k) of Gal(L/K) as a group of matrices: It turns out
that Gal(L/K) is an algebraic group. One can de�ne a Galois correspondence
among the intermediate ∂-�elds of L/K and the linear algebraic subgroups of
Gal(L/K).

One of the most important results of the Galois theory of di�erential equa-
tions is that the dimension dimkGal(L/K) of Gal(L/K) as an algebraic variety
is equal to the transcendence degree of the extention L/K.

3 Examples of situations encompassed by the the-

ory below

We are presenting here a few (baby) examples and problems that the reader
should keep in mind reading the sequel.

Example 3.1. Let us consider the �eld of rational functions C(α, x) in the
variables α and x, equipped with the usual derivation ∂ = d

dx , acting trivially
on C(α), and the automorphism

τ : C(α, x) → C(α, x),
f(α, x) 7→ f(α+ 1, x).

A solution of the rank 1 linear di�erential equation

∂ =
α

1− x
y

is given by the hypergeometric series:

Fα =
∑
n≥0

(α)n
n!

xn ∈ C(α)[[x]],

where (a)0 = 1 and (α)n+1 = (α + n)(α)n, for any n ≥ 1. One can naturally
ask whether Fα is also solution of a (linear) τ -equation, which in this setting
would be also called a contiguity relation. Of course, it is easy to �nd out that
Fα is solution of

τ(y) =
1

1− x
y.

The question that we address here is the following: would it be possible to read
the existence of the τ -equation above on a convenient Galois group?

Example 3.2. Another instance of the phenomenon above comes from p-adic
di�erential equations. Indeed the action of a Frobenius lift on their solutions is
of great help in their study.
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Let p be a prime number and let us consider the �eld Cp with its norm | |,
such that |p| = p−1, and an element π ∈ Cp verifying πp−1 = −p. Following
[10, Chapter II, �6] the series θ(x) ∈ Cp[[x]], de�ned by θ(x) = exp(π(xp − x)),
has a radius of convergence bigger than 1. Therefore it belongs to the �eld E†Cp

,

consisting of all series
∑
n∈Z anx

n with an ∈ Cp such that

• ∃ ε > 0 such that ∀ ρ ∈]1, 1 + ε[ we have limn→±∞ |an|ρn = 0 and

• supn |an| is bounded.

One can endow E†Cp
with an endomorphism F :

∑
n∈Z anx

n 7→
∑
n∈Z anx

pn.

(For the sake of simplicity we assume here that F is Cp-linear, which has no
consequences on this speci�c example.) The solution exp(πx) of the equation

∂(y) = πy, where ∂ = d
dx , does not belong to E†Cp

, since it has radius of con-

vergence 1. On the other hand, exp(πx) is a solution of an order one linear

di�erence equation with coe�cients in E†Cp
:

F (y) = θ(x)y, θ(x) ∈ E†Cp
.

So, here is another very classical situation in which one considers solutions of a
linear di�erential equation and �nds di�erence relations among them.

Example 3.3. Let us consider the �eld C(x) of rational functions with complex
coe�cients, equipped with the derivative ∂ = x d

dx and the endomorphism σ :

f(x) 7→ f(xd), where d ≥ 2 is a �xed integer. Then x1/d is solution of the
di�erential equation

∂(y) =
y

d
,

and satis�es a σ-equation, namely σ(y) = x. This kind of σ-equations is better
known as a Mahler equation.

Remark 3.4. Here are some comments:

1. In the examples above, the di�erence operator is sometimes an automor-
phism and sometimes an endomorphism. In general we will suppose that
we are dealing with an endomorphism acting on the solutions of the di�er-
ential equation, to include many cases of interest, such as the action of the
Frobenius of p-adic di�erential equations or the case of Mahler equations.

Notice that a �eld with an endomorphism can always be embedded in a
bigger �eld with an automorphism, called its inversive closure. So one
can always replace (K,σ) with its inversive closure. However, in [8] the
authors make great e�orts to avoid such an extension, as far as possible.
In the theory of p-adic di�erential equations, for instance, replacing the
base �eld with its inversive closure would erase the distinction between
strong and weak Frobenius structures.

2. In the examples above, all the di�erence relations are linear. This is a
coincidence, and, in general we will deal also with the existence of non-
linear di�erence relations among solutions of di�erential equations.
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4 Di�erence algebra and geometry

4.1 Di�erence algebra

A σ-ring (R, σ) is a ring R equipped with an endomorphism σ. For simplicity
we will frequently say that R is a σ-ring. The ring Rσ = {r ∈ R : σ(r) = r}
is the subring of σ-constants of R. A σ-ideal of R is an ideal which is stable
by the action of σ. A maximal σ-ideal of R is a σ-ideal of R that is maximal
for the inclusion among the σ-ideals. Notice that a maximal σ-ideal does not
need to be either maximal or prime. A σ-ring is said to be σ-simple if it has no
nontrivial σ-ideals.

σ-�elds. A σ-ring is called a σ-�eld (resp. a σ-domain) if the underlying ring is
a �eld (resp. a domain and σ is injective). The subring of σ-constants of a σ-�eld
is always a �eld. Let (k, σ) be a σ-�eld. A σ-�eld extension (L, σ)/(k, σ) is a �eld
extension L/k such that both L and k are σ-�elds and that the endomorphism
of L extends the endomorphism of k. If A is a subset of L then k{A}σ ⊂ L
(resp. k〈A〉σ ⊂ L) is the smallest σ-ring (resp. σ-�eld) containing k and A.

De�nition 4.1 (De�nition 4.1.7 in [16]). Let L|k be a σ-�eld extension. Ele-
ments a1, . . . , an ∈ L are called transformally (or σ-algebraically) independent
over k if the elements a1, . . . , an, σ(a1), . . . , σ(an), . . . are algebraically indepen-
dent over k. Otherwise, they are called transformally dependent over k.

We de�ne the σ-transcendence degree of L|k, or σ- trdeg(L|k) for short, as
the maximal cardinality of a subset of L whose elements are σ-transformally
independent over k.

The ring of σ-polynomials in the indeterminates x1, . . . , xr with coe�cients
in k, or over k, is the σ-ring k{x1, . . . , xr}σ, where x1, . . . , xr are σ-algebraically
independent over k.

De�nition 4.2. [Cf. Def. 3.1, p. 1330 in [14].] A σ-�eld k is called linearly
σ-closed if every linear system of di�erence equations over k has a fundamental
solution matrix in k. That is, for every B ∈ GLn(k) there exists Y ∈ GLn(k)
with σ(Y ) = BY .

We say that a σ-�eld k is σ-closed1 if every system of di�erence polynomial
equations with coe�cients in k, which posses a solution in some σ-�eld extension
of k, has a solution in k (see also �1.1 in [3]).

Working with a σ-closed σ-�eld spares some technicalities, but not all of
them, and not the most signi�cant. Moreover being σ-closed is in general quite a
strong requirement for a σ-�eld. Being linearly σ-closed is a weaker assumption,
although quite strong. For instance, the �eld of meromorphic functions over C
(resp C r {0}) is σ-closed for σ : f(x) 7→ f(x+ 1) (resp. σ : f(x) 7→ f(qx), for
q ∈ C, q 6= 0 and |q| 6= 1). This is not at all a trivial remark. See [19] for a
proof.

k-σ-algebras. A k-σ-algebra S is a k-algebra equipped with an endomorphism
σ, such that the natural morphism k → S commutes to σ. If there exists a �nite

1A σ-closed σ-�eld is also called a model of ACFA, in model theory language.
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set A ⊂ S such that S = k{A}σ then we say that S is a �nitely σ-generated
k-σ-algebra.

Let k be a σ-�eld and S a k-σ-algebra. We say that S is σ-separable over k
if σ is injective on the k-σ-algebra S ⊗k k′, for every σ-�eld extension k′ of k.

4.2 Breviary on σ-algebraic groups

De�nition 4.3. Let k be a σ-�eld. A σ-algebraic group over k is a (covariant)
functor G from the category of k-σ-algebras to the category of groups which is
representable by a �nitely σ-generated k-σ-algebra. I.e., there exists a �nitely
σ-generated k-σ-algebra k{G} such that

G ' Algσk(k{G},−).

Here Algσk stands for morphisms of k-σ-algebras. By the Yoneda lemma
k{G} is unique up to isomorphisms.

The most natural example in this setting is the σ-algebraic group GLn,k
which is represented by the �nitely σ-generated k-σ-algebra k{X,detX−1}σ,
where X = (Xi,j) is a square matrix of order n.

We say that H is a σ-closed subgroup of G, if it is a subfunctor of G. We
will be interested in σ-closed subgroups of GLn,k, i.e. σ-algebraic groups that
are represented by quotient of k{X,detX−1}σ by a convenient σ-ideal.

Remark 4.4. A σ-closed subgroup H of a σ-algebraic group G can, of course,
be normal, in the usual sense. See De�nition A.41 and Theorem A.43 in [8] for
the existence of the quotient G/H.

We need to de�ne the σ-dimension σ-dimk(G) of a σ-algebraic group G over
a σ-�eld k. We refer to [8, Appendix A.7] for a discussion of the di�erent issues
of such a de�nition.

De�nition 4.5. If G is a σ-algebraic group associated with the �nitely σ-
generated k-σ-algebra k{G} we de�ne:

σ-dimk(G) =

⌊
lim sup
i→∞

(
dim(k[a, . . . , σi(a)])

i+ 1

)⌋
,

where bxc denotes the largest integer not greater than x, a = (a1, . . . , am) is a
σ-generating set of k{G} over k and the dim(k[a, . . . , σi(a)]) is the usual Krull
dimension.

Remark 4.6. If k{G} is a σ-domain σ-�nitely generated over k, then σ-dimk(G)
coincides with σ- trdeg(k{G}|k). See [8, Lemma A.26].

We will need also the following de�nition:

De�nition 4.7. Let G be a σ-closed subgroup of GLn,k. We call G a σd-

constant subgroup of GLn,k if G is contained in the σ-closed subgroup GLσ
d

n,k of

GLn,k de�ned by the σ-ideal generated by σd(X)−X.

If k̃ is a σ-�eld extension of k, we say that G is conjugate over k̃ to a
σd-constant group if there exists h ∈ GLn(k̃) such that hGk̃h

−1 ≤ GLn,k̃ is

σd-constant, where Gk̃ is the restriction of the functor G to the category of

k̃-σ-algebras.
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If G is a σ-closed subgroup of GLn,k, then it is de�ned by a σ-ideal I(G) of
k{X,detX−1}σ. Notice that k{X,detX−1}σ contains a copy of k[X,detX−1],
which is the ring of rational function of the linear algebraic group GLn,k.

2 The
Zariski closure G[0] of G is the linear algebraic subgroup of GLn,k de�ned by
the ideal I(G) ∩ k[X,detX−1].

4.3 Issues with di�erence algebras and �elds

Let (k, σ) be a characteristic 0 σ-�eld. The theory below produces a Galois
group which is a σ-closed subgroup of GLn,k. The problem with di�erence
geometry is the following: no matter how huge are the σ-�eld extensions of
the σ-�eld k that we consider, we may never get enough zeros of our ideal to
characterize its geometry. A more serious way of restating this problem is the
following: one needs to look at the Galois group as a di�erence group scheme
to actually establish a Galois correspondence. The following example should
clarify the situation.

Example 4.8. Let us consider the σ-�eld k and the σ-closed subgourp G of
Gm,k de�ned by {t2 = 1}: This means that the Hopf algebra of Gm,k is the σ-
ring of σ-polynomials k

{
t, 1t
}
σ
and that G is the σ-closed subgroup de�ned by

the σ-ideal generated by the σ-polynomial t2−1. Let S be any σ-�eld extension
of k. Clearly, the group of S-rational points of G is G(S) = {1,−1}.

Let H be a σ-closed subgroup of G de�ned by the σ-ideal generated by
{t2−1, σ(t)−1}. Once more for any σ-�eld extension S of k we haveH(S) = {1},
although such an ideal is not trivial, in any sense.

Now let us consider the rational points of those groups in some k-σ-algebras.
Notice that an endomorphism of a ring (or of a k-algebra) does not need to be
injective, as in the case of σ-�elds: This allows the set of zeros to be much
larger in some k-σ-algebras than in any σ-�eld. Typically, we can consider the
rational points of G in a k-σ-algebra S which is an extension of the k-σ-algebra
k{t, t−1}σ/(t2 − 1). Similarly for the group H and the algebra k{t, t−1}σ/(t2 −
1, σ(t)− 1).

This justi�es the fact that we cannot simply consider a set of zeros in a large
σ-�eld, but we are obliged to look at such groups as di�erence group schemes,
i.e. group functors from the category of k-σ-algebras to the category of groups,
as in previous subsection. The problem will become even clearer in the Example
4.9 below.

4.4 Di�erence-di�erential algebra

A σ∂-ring R is a ring which is both a σ-ring and a ∂-ring and that satis�es the
following compatibility condition: We suppose that there exists a ∂-constant }
such that ∂σ = }σ∂.

The notions already introduced above for ∂-rings and σ-rings intuitively
generalize to this case, so that we have σ∂-ideals, σ∂-simple σ∂-ring, σ∂-�elds,
σ∂-�eld extensions, K-σ∂-algebras, and so on.

2To be precise one should introduce a di�erent notation for the σ-algebraic group GLn,k

and the linear algebraic group GLn,k. According to the de�nition that follows, we could call

GLn,k[0] the linear algebraic group, but it appears as a useless complication of the notation,

since the meaning will be always clear from the context.
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Example 4.9. Let us consider the σ∂-�eld K = C(x), with the automorphism
σ(x) = x + 1, and the usual derivation ∂ = d

dx . Moreover we consider the
σ∂-�eld extension of K de�ned by:

L := K〈
√
x〉σ,∂ = K(

√
x+ i;∀i ∈ Z, i ≥ 0)

and the group Autσ∂(L/K) of automorphisms ϕ of L over K, that commute
to σ and ∂. Since ϕ commutes with the derivation and

√
x is solution of the

equation ∂(y) = y
2x , there exists a ∂-constant cϕ such that ϕ(

√
x) = cϕ

√
x.

Moreover, ϕ(x) = x implies that c2ϕ = 1. Finally the commutativity with σ

imposes that ϕ(
√
x+ i) = σi(cϕ)

√
x+ i. Of course the only choice in C for cϕ

is 1 or −1. So:

Autσ∂(L/K) ∼= {c2ϕ = 1} = {1,−1} ⊂ Gm(C).

The invariant σ-�eld of such a group is K(
√
x+ i

√
x+ j;∀i, j ∈ Z, i, j ≥ 0),

which compromises any hope of having a decent Galois correspondence.
Now let us consider the subgroup Gm(C) de�ned by {c2ϕ = 1, σ(cϕ) = 1}. If

we look at its C points, it coincides with the trivial group {1} and therefore its
invariant �eld is the whole �eld L. Clearly this is not what we want: we really
would like to be able to say that the invariant �eld of the subgroup de�ned by
{c2ϕ = 1, σ(cϕ) = 1} is K(

√
x+ i;∀i ∈ Z, i ≥ 1).

To make sense of the situation, as we have already pointed out, one is obliged
to develop a schematic approach and look for rational points not only in σ-�eld
extensions of C but in the whole category of C-σ-algebras. See next section.

This example is already in [8]. Many more can be found in loc.cit.

5 Di�erence Galois theory of di�erential equa-

tions

The structure of the di�erence Galois theory of di�erential equations is not dif-
ferent from the structure of any Galois theory: One needs to construct a splitting
ring, the σ-Picard-Vessiot ring, and to construct a group of automorphisms of
such a ring, or of its quotient �eld, if it is a domain. Then one can classify the
groups appearing in the theory and recover information on the solutions of the
di�erential system considered in the �rst place.

Notation 5.1. We consider a σ∂-�eld (K, ∂, σ), with its �eld of ∂-constants
k = K∂ , and we suppose that there exists } ∈ k such that

(5.1) ∂σ = }σ∂,

so that k is a σ-�eld. All �elds are in characteristic 0. Our object of study will
be a linear di�erential system

(5.2) ∂(y) = Ay, with A ∈Mn(K).

Remark 5.2. If we can �nd a solution column y of (5.2) in a σ∂-�eld extension
of K, then σ(y) veri�es the di�erential system: ∂(σ(y)) = }σ(∂y) = }σ(A)σ(y).
More generally, for any positive integer d we can iterate ∂(y) = Ay and obtain:

(5.3) ∂(σd(y)) = }dσd(∂(y)) = }dσd(A)σd(y),
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where }d = }σ(}) · · ·σd−1(}).
If U is a fundamental solution of ∂(y) = Ay is some σ∂-�eld extension of

K, we can be interested in �nding all algebraic relations among the entries of
U, σU, . . . , σdU . This problem can be tackled studying the di�erential Galois
groups of the following linear di�erential system of order n(d+ 1):

(5.4) ∂(y(d)) =



A 0 · · · · · · 0

0 σ(A)
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 }dσd(A)


y(d)

If we do not want to bound the order d we need to give a meaning to a �limit�
of the di�erential Galois groups constructed for any d. The σ-Galois group of
∂(y) = Ay introduced below incarnates, heuristically, this limit. We are not
going to introduce any notion of limit, but this idea is behind all parameterized
Galois theories.

5.1 Construction of σ-Picard-Vessiot rings

De�nition 5.3. A K-σ∂-algebra R is called a σ-Picard-Vessiot ring for ∂(y) =
Ay if:

• there exists U ∈ GLn(R) such that ∂(U) = AU and R = K{U,detU−1}σ;

• R is ∂-simple.

A σ-Picard-Vessiot ring (over K) is a K-σ∂-algebra that is a σ-Picard-Vessiot
ring for a di�erential system ∂y = Ay, with coe�cients in K.

The de�nition above is subtle and needs some comments. Indeed let us
try to construct the σ∂-Picard-Vessiot ring naively. We take the ring of σ-
polynomials K{X,detX−1}σ, where X = (Xi.j) is a square matrix of order n,
and we de�ne a derivation extending ∂. Since the entries ofX are σ-algebraically
independent, we can do that as we see �t. We set ∂X = AX, ∂(σ(X)) =
}σ(∂X) = }σ(A)σ(X), and more generally, for any positive integer d:

(5.5) ∂(σd(X)) = }dσd(∂(X)) = }dσd(A)σd(X).

We have endowedK{X,detX−1}σ with a structure of σ∂-ring. Now we can con-
sider a maximal σ∂-ideal M of K{X,detX−1}σ. The ring K{X,detX−1}σ/M
almost satis�es the conditions of the de�nition above, apart that it is σ∂-simple
and most likely not ∂-simple: It has no proper ideals invariant under both σ and
∂, but it may have a proper ideal which is invariant under the action of ∂. The
point behind the de�nition of σ∂-Picard-Vessiot ring is that there exist maximal
σ∂-ideals that are also maximal ∂-ideals. This means that the construction of
R must be more sophisticated than the one that we have sketched above.

On the other hand, asking that R is ∂-simple has some advantages: A max-
imal ∂-ideal is at least prime, while a maximal σ∂-ideal does not need to be
prime, so that a σ-Picard-Vessiot ring is always a domain and even a σ-domain.
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Proposition 5.4 ([23, Lemma 2.16, p. 1392] and [8, Proposition 1.12]). Let
K be a σ∂-�eld, k := K∂ be algebraically closed and A ∈ Mn(K). Then there
exists a σ-Picard-Vessiot extension R for ∂y = Ay such that R∂ = K∂ = k.

Idea of the proof. For each one of the systems ∂(y) = Ady, as in (5.4), we are
able to construct a (classical) Picard-Vessiot ring by taking the quotient of a
ring of polynomials in the (d+ 1)n2 indeterminates X,σ(X), . . . , σd(X):

Sd := K
[
X, 1

det(X) , σ(X), 1
σ(det(X)) , . . . , σ

d(X), 1
σd(det(X))

]
by some maximal ∂-idealmd of Sd. HereX is an n×n-matrix of σ-indeterminates
and the action of ∂ on Sd is determined by ∂(X) = AX and the commutativ-
ity relation (5.1). The di�culty is to make this construction compatible with
the natural injection Sd−1 → Sd and the action of σ: Namely we need to
construct the ideals md so that md−1 ⊂ md and σ(md−1) ⊂ md. This di�-
culty can be resolved by a recourse to the prolongation lemma for di�erence
kernels (see [4, Lemma 1, Chapter 6, p. 149]). We set m :=

⋃
d≥0 md and

R := k{X, 1
det(X)}σ/m. So R is the union of the ∂-simple rings Rd := Sd/md.

One concludes using some standard theorems of di�erential algebra.

The uniqueness of the σ-Picard-Vessiot rings is a subtle matter, which may
require some technical assumptions. We recall only one statement and refer to
[8, �1.1.2] for a deeper discussion of the problem.

Corollary 5.5 ([8, Corollary 1.17]). Let K be a σ∂-�eld such that K∂ is a
σ-closed σ-�eld. Let R1 and R2 be two σ-Picard-Vessiot rings for ∂(y) = Ay
with A ∈ Mn(K). Then there exists an integer l ≥ 1 such that R1 and R2 are
isomorphic as K-∂σl-algebras.

We remind some �rst properties of σ-Picard-Vessiot ring:

Lemma 5.6. Let R be a σ-Picard-Vessiot ring over K. We have:

1. R is σ∂-simple.

2. R is a σ-domain. In particular σ and ∂ extend to the �eld of fractions L
of R and L∂ = R∂ .

3. In the notation above, let R be the σ-Picard-Vessiot ring of ∂y = Ay, with
A ∈ Mn(K), and L be the �eld of fractions of R. If Y ∈ GLn(L) is a
solution matrix of ∂y = Ay, then for any integer d ≥ 0:

K

[
Y,

1

detY
, σ(Y ),

1

detσ(Y )
, . . . , σd(Y ),

1

detσd(Y )

]
⊂ L

is a (classical) Picard-Vessiot ring for the di�erential system (5.4).

Proof. The �rst assertion is a tautology. For the second assertion see [8, Lemma
1.4]. The third assertion is proved in loc.cit., Lemma 1.3.

10



5.2 σ-Picard-Vessiot extensions

De�nition 5.7. Let K be a σ∂-�eld and A ∈ Mn(K). A σ∂-�eld extension L
of K is called a σ-Picard-Vessiot extension for ∂(y) = Ay if

1. there exists Y ∈ GLn(L) such that ∂(Y ) = AY and L = K〈Yij | 1 ≤ i, j ≤
n〉σ;

2. L∂ = K∂ .

Proposition 5.8 ([8, Proposition 1.5]). Let K be a σ∂-�eld and A ∈ Mn(K).
If L|K is a σ-Picard-Vessiot extension for ∂(y) = Ay with solution matrix
Y ∈ GLn(L), then R := K{Y, 1

det(Y )}σ is a σ-Picard-Vessiot ring for ∂(y) = Ay.

Conversely, if R is a σ-Picard-Vessiot ring for ∂(y) = Ay with R∂ = K∂ , then
the �eld of fractions of R is a σ-Picard-Vessiot extension for ∂(y) = Ay.

As far as the uniqueness is concerned we recall only the statement below.
Notice that two σ-�eld extensions L1 and L2 of a σ-�eld K are compatible if
there exists a σ-�eldM which is a σ-�eld extension ofK and two endomorphisms
of σ-�elds Li →M , for i = 1, 2.

Proposition 5.9 ([8, Corollary 1.18 and Proposition 1.19]). Let K be a σ∂-
�eld such that K∂ is a σ-closed σ-�eld. Let L1 and L2 be two σ-Picard-Vessiot
extensions for ∂(y) = Ay with A ∈Mn(K). Then

1. there exists an integer l ≥ 1 such that L1|K and L2|K are isomorphic as
∂σl-�eld extensions of K.

2. the σ∂-�elds L1 and L2 are isomorphic (as σ∂-�eld extensions of K) if
and only if L1 and L2 are compatible σ-�eld extensions of K.

To conclude this subsection we consider the following very natural situation:

Proposition 5.10 ([8, Proposition 1.14]). Let k be a σ-�eld and let K = k(x)
denote the �eld of rational functions in one variable x over k. Extend σ to K by
setting σ(x) = x and consider the derivation ∂ = d

dx . Thus K is a σ∂-�eld with
} = 1 and K∂ = k. Then for every A ∈Mn(K), there exists a σ-Picard-Vessiot
extension L|K for ∂(y) = Ay.

Proof. Since we are in characteristic zero, there exists an a ∈ kσ which is a
regular point for ∂(y) = Ay. That is, no denominator appearing in the entries of
A vanishes at a. We consider the �eld k((x−a)) of formal Laurent series in x−a
as a σ∂-�eld by setting ∂(

∑
bi(x−a)i) =

∑
ibi(x−a)i−1 and σ(

∑
bi(x−a)i) =∑

σ(bi)(x−a)i. Then k((x−a)) is naturally a σ∂-�eld extension ofK. By choice
of a, there exists a solution matrix Y ∈ GLn(k((x − a))) for ∂(y) = Ay. Since
k((x− a))∂ = k it is clear that L := K〈Y 〉σ ⊂ k((x− a)) is a σ-Picard-Vessiot
extension for ∂(y) = Ay.

5.3 The σ-Galois group and its properties

If R ⊂ R′ is an inclusion of σ∂-rings, we denote by Autσ∂(R′|R) the automor-
phisms of R′ over R in the category of σ∂-rings, i.e., the automorphisms are
required to be the identity on R and to commute with ∂ and σ.
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Let us suppose that R is a σ∂-ring and that S is a k-σ-algebra. If we endow
S with a trivial action of ∂, then we can de�ne a natural structure of σ∂-ring
over the tensor product R ⊗k S: We have ∂(r ⊗ s) = ∂(r) ⊗ s for r ∈ R and
s ∈ S. Now we are ready to introduce the notion of σ-Galois group:

De�nition 5.11. Let L|K be a σ-Picard-Vessiot extension with σ-Picard-
Vessiot ring R ⊂ L and �eld of ∂-constants k = K∂ . We de�ne σ-Gal(L|K) to
be the functor from the category of k-σ-algebras to the category of groups given
by

σ-Gal(L|K)(S) := Autσ∂(R⊗k S|K ⊗k S)

for every k-σ-algebra S. The functor σ-Gal(L|K) is de�ned on morphisms by
base extension. We call σ-Gal(L|K) the σ-Galois group of L|K.

We are interested in the geometrical properties of σ-Gal(L|K).

Proposition 5.12 ([8, Proposition 2.5]). Let L|K be a σ-Picard-Vessiot ex-
tension with σ-Picard-Vessiot ring R ⊂ L. Then σ-Gal(L|K) is a σ-algebraic
group over k = K∂ . The choice of matrices A ∈ Mn(K) and Y ∈ GLn(L)
such that L|K is a σ-Picard-Vessiot extension for ∂(y) = Ay with fundamental
solution matrix Y de�nes a σ-closed embedding

σ-Gal(L|K) ↪→ GLn,k

of σ-algebraic groups.

Indeed, if ϕ ∈ σ-Gal(L|K)(S), for some k-σ-algebra S, then Y −1ϕ(Y ) must
be an invertible square matrix with coe�cients in S, so an element of GLn,k(S).
We will identify σ-Gal(L|K) with its image in GLn,k.

Notice that another choice of fundamental solution matrix yields a conju-
gated representation of σ-Gal(L|K) in GLn,k. Therefore sometimes, we will
consider σ-Gal(L|K) as a σ-closed subgroup of GLn,k without mentioning the
fundamental solution matrix Y .

Now we state an important property of the σ-Galois group, which is exten-
sively used in applications.

Proposition 5.13 ([8, Proposition2.17]). Let L|K be a σ-Picard-Vessiot exten-
sion with σ-Galois group G and constant �eld k = K∂ . Then

σ- trdeg(L|K) = σ-dimk(G).

Finally we want to state a result that gives the relation between the σ-Galois
group and the usual Galois group of a di�erential equation.

Proposition 5.14 ([8, Proposition 2.15]). Let L|K be a σ-Picard-Vessiot ex-
tension with σ-�eld of ∂-constants k = K∂ . Let A ∈ Mn(K) and Y ∈ GLn(L)
such that L|K is a σ-Picard-Vessiot extension for ∂(y) = Ay with fundamental
solution matrix Y . We consider the σ-Galois group G of L|K as a σ-closed
subgroup of GLn,k via the embedding associated with the choice of A and Y . Set
L0 = K (Y ) ⊂ L.

Then L0|K is a (classical) Picard-Vessiot extension for the linear system
∂(y) = Ay. The (classical) Galois group of L0|K is naturally isomorphic to
G[0], the Zariski closure of G inside GLn,k.
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Remark 5.15. On can de�ned a d-th order Zariski closure G[d] of G and
compare it to the Galois group of (5.4). By now, the reader has probably
an intuition on the kind of statement that one could obtain generalizing the
proposition above. The details can be found in [8, �A5 and Proposition 2.15]

5.4 Galois correspondence

In the notation of Proposition 5.14, let S be a k-σ-algebra, τ ∈ G(S) and
a ∈ L. By de�nition, τ is an automorphism of R ⊗k S. If we write a = r1

r2
with r1, r2 ∈ R, r2 6= 0 then, we say that a is invariant under τ if and only if
τ(r1 ⊗ 1) · r2 ⊗ 1 = r1 ⊗ 1 · τ(r2 ⊗ 1) in R⊗k S.

If H is a σ-closed subgroup of G, we say that a ∈ L is invariant under H
if a is invariant under every element of H(S) ⊂ G(S), for every k-σ-algebra S.
The set of all elements in L, invariant under H, is denoted with LH . Obviously
LH is an intermediate σ∂-�eld of L|K.

If M is an intermediate σ∂-�eld of L|K, then it is clear from De�nition
5.7 that L|M is a σ-Picard-Vessiot extension with σ-Picard-Vessiot ring MR,
the ring compositum of M and R inside L. There is a natural embedding
σ-Gal(L|M) ↪→ σ-Gal(L|K) of σ-algebraic groups (in the sense that the �rst
is identi�ed to a subfunctor of the second), whose image consists of precisely
those automorphisms that leave invariant every element of M .

Theorem 5.16 (σ-Galois correspondence; [8, Theorem 3.2]). Let L|K be a σ-
Picard-Vessiot extension with σ-Galois group G = σ-Gal(L|K). Then there is
an inclusion reversing bijection between the set of intermediate σ∂-�elds M of
L|K and the set of σ-closed subgroups H of G given by

M 7→ σ-Gal(L|M) and H 7→ LH .

Theorem 5.17 (Second fundamental theorem of σ-Galois theory; [8, Theorem
3.3]). Let L|K be a σ-Picard-Vessiot extension with σ-Galois group G. Let
K ⊂ M ⊂ L be an intermediate σ∂-�eld and H ≤ G a σ-closed subgroup of G
such that M and H correspond to each other in the σ-Galois correspondence.

Then M is a σ-Picard-Vessiot extension of K if and only if H is normal in
G. If this is the case, the σ-Galois group of M |K is the quotient G/H.

6 Integrability

In [9], the authors consider several applications of the discrete parameterized
Galois theory of di�erence equations. We won't mention all of them, in partic-
ular we won't mention those concerning rank one di�erential equations. Indeed
they are not so surprising for those who know other parameterized Galois theo-
ries. We will focus on the integrability and its applications to di�erential systems
having almost simple Galois groups.

6.1 De�nition and �rst properties

De�nition 6.1. Let K be a σ∂-�eld, A ∈Mn(K), for some positive integer n,
and d ∈ Z>0. We say that ∂(y) = Ay is σd-integrable (over K), if there exists
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B ∈ GLn(K), such that

(6.1)

{
∂(y) = Ay
σd(y) = By

is compatible, i.e.,

(6.2) ∂(B) +BA = }dσd(A)B,

where }d = }σ(}) · · ·σd−1(}).

The following proposition interprets the compatibility relation (6.2) in terms
of solutions of the system (6.1).

Proposition 6.2 ([9, Proposition 5.2]). Let K be a σ∂-�eld, ∂(y) = Ay be a
linear di�erential equation with A ∈ Mn(K) and L be a σ∂-�eld extension of
K.

1. If there exist B ∈ GLn(K) and Y ∈ GLn(L) such that ∂(Y ) = AY and
σd(Y ) = BY (i.e., Y is a fundamental solution of (6.1)), then B satis�es
(6.2).

2. Conversely, assume that L is a σ-Picard-Vessiot extension for ∂(y) = Ay
such that k = K∂ is linearly σd-closed (see De�nition 4.2). If there exists
a matrix B ∈ GLn(K) verifying (6.2), then there exists a fundamental
solution Y ∈ GLn(L) of (6.1).

The following result on σd-integrability is an analogue of Proposition 2.9 in
[12], and �1.2.1 in [7]. The statement below may seem more general than the
cited results, because it contains the descent [9, Proposition 5.8].

Theorem 6.3. [[9, Proposition 5.11]] Let L|K be a σ-Picard-Vessiot extension
for ∂(y) = Ay, with A ∈ Mn(K). Then ∂(y) = Ay is σd-integrable over K if

and only if there exists a σ-separable σ-�eld extension k̃ of k := K∂ , such that
the σ-Galois group σ-Gal(L|K) is conjugate over k̃ to a σd-constant subgroup
of GLn,k̃.

The theorem above is of no help if one does not have a handy criterion. In
[9, Appendix], the authors prove some structure theorems for di�erence groups
having simple and almost simple Zariski closure, generalizing a theorem in [3].
We only state the �nal criteria that can be deduced from those geometric state-
ments.

6.2 Simple and almost simple groups

A linear algebraic groupH over a �eld k is called simple if it is non-commutative,
connected and every normal closed subgroup is trivial. IfH is non-commutative,
connected and every normal closed connected subgroup is trivial, then H is
called almost simple. We say that H is absolutely (almost) simple if the base
extension of H to the algebraic closure of k is (almost) simple.

Now we state the two criteria that are useful in applications.
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Proposition 6.4 ([9, Proposition 6.1]). Let K be an inversive σ∂-�eld, A ∈
Mn(K) and L|K a σ-Picard-Vessiot extension for ∂(y) = Ay. We assume
that the Zariski closure H of σ-Gal(L|K) inside GLn,k is an absolutely simple
algebraic group of dimension t ≥ 1 over k = K∂ . Then the following statements
are equivalent:

1. σ-Gal(L|K) is a proper σ-closed subgroup of H.

2. The σ-transcendence degree of L|K is strictly less than t.

3. There exists d ∈ Z>0 such that the system ∂(y) = Ay is σd-integrable.

Theorem 6.5 ([9, Proposition 6.4]). Let K be an inversive σ∂-�eld, ∂(y) = Ay
a di�erential system with A ∈ Mn(K) and L|K a σ-Picard-Vessiot extension
for ∂(y) = Ay. We assume that the Zariski closure H of σ-Gal(L|K) inside
GLn,k is an absolutely almost simple algebraic group of dimension t ≥ 1 over
k = K∂ . Let K ′ be the relative algebraic closure of K inside L. Then the
following statements are equivalent:

1. σ-Gal(L|K ′) is a proper σ-closed subgroup of H.

2. The σ-transcendence degree of L|K is strictly less than t.

3. There exists d ∈ Z>0 such that the system ∂(y) = Ay is σd-integrable over
K ′.

Remark 6.6. Compare to the situation with a di�erential parameter, in this
context we are obliged to make a �eld extension from K to K ′ to obtain the
integrability in the case of an almost simple group. This comes from the fact
that �nite cyclic σ-algebraic groups have many σ-closed subgroups, while cyclic
�nite di�erential groups have a simpler geometry. See Example 4.8. In other
words, the extension K ′/K corresponds to the largest �nite σ-closed subgroups
of σ-Gal(L|K). By �nite, we mean that Zariski closure is a �nite algebraic
group.

For n = 2 the theorem above can be restated in a quite explicit way:

Corollary 6.7 ([9, Proposition 6.6]). Let K = k(x) be a �eld of rational func-
tions equipped with the derivation ∂ = d

dx and an automorphism σ commuting
with ∂, such that k ⊂ C be an algebraically closed inversive σ-�eld. We assume
that the di�erential equation ∂2(y)− ry = 0, with r(x) ∈ K, has (usual) Galois
group Sl2(k) and we denote by L|K one of its σ-Picard-Vessiot extensions. Let
K ′ be the relative algebraic closure of K in L. We have:

• If the σ-transcendence degree of L|K is strictly less than 3, there exists
s ∈ Z>0 such that the di�erential system

(6.3)

 ∂2(b) + (σs(r)− r)b = 2∂(d)

∂2(d) + (σs(r)− r)d = 2σs(r)∂(b) + ∂(σs(r))b

has a non-zero algebraic solution (b, d) ∈ (K ′)2.
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• If we can �nd a solution (b, d) ∈ (K ′)2 of (6.3), such that the matrix

B =

(
d− ∂(b) b

σs(r)b− ∂(d) d

)
is invertible, then the σ-transcendence degree of

L|K is strictly less than 3.

We apply Corollary 6.7 to the case of the Airy equation

(6.4) ∂2(y)− xy = 0.

Notice that it has an irregular singularity at ∞, and that all the other points of
A1

C are ordinary. This immediately implies that (6.4) admits a basis of solutions
A(x) and B(x) in the �eld M of meromorphic functions over C.

Corollary 6.8 ([9, Proposition 6.10]). Let C(x) be the �eld of rational functions
over the complex numbers, equipped with the derivation ∂ = d

dx and the automor-
phism σ : f(x) 7→ f(x + 1), and M be the �eld of meromorphic functions over
C. In the notation above, let L = C(x)〈A(x), B(x), ∂(A(x)), ∂(B(x))〉σ ⊂ M
be the σ-Picard-Vessiot extension for the Airy equation contained in M . Then,
σ-Gal(L|C(x)) is equal to Sl2,C and the functions A(x), B(x) and ∂(B(x)) are
transformally independent over C(x).
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