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Abstract

We consider singular (aka genus 0) walks in the quarter plane and their associated generating
functions Q(x, y, t), which enumerate the walks starting from the origin, of fixed endpoint (en-
coded by the spatial variables x and y) and of fixed length (encoded by the time variable t). We
first prove that the previous series can be extended up to a universal value of t (in the sense that
this holds for all singular models), namely t = 1

2 , and we provide a probabilistic interpretation
of Q(x, y, 1

2 ). As a second step, we refine earlier results in the literature and show that Q(x, y, t)
is indeed differentially transcendental for any t ∈ (0, 1

2 ]. Moreover, we prove that Q(x, y, 1
2 ) is

strongly differentially transcendental. As a last step, we show that for certain models the series
expansion of Q(x, y, 1

2 ) is directly related to Bernoulli numbers. This provides a second proof
of its strong differential transcendence.
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1 Introduction

In combinatorics, scholars organize enumerative data as coefficients of formal power series, usually
called ordinary generating functions, OGF, for short. In the impossibility of an exact formula for
these coefficients, one usually studies their asymptotics and the singularities of their OGFs, or tries
to establish whether this latter series is solution of a certain type of functional equations. It is
particularly useful to understand whether an OGF is D-finite, i.e., solution of a linear differential
equation with rational functions coefficients: in this case the coefficients of the OGF are P-recursive,
i.e., they satisfy particular linear recurrence relations. The lesson of the applications of Galois
theory of functional equations to combinatorics is that it is frequently easier to prove that an OGF
is not a solution to a non-linear differential equation with rational function coefficients, rather than
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to prove that it is not D-finite, although the latter condition is weaker. It has indeed been proven
than many OGFs are not only non-D-finite, but even differentially transcendental, i.e., they are
not solutions of any non-linear differential equation (we will be more precise soon). In 2003, Klazar
[Kla03] proved that the OGF of Bell numbers (which count the number of partitions of a set of
given cardinality) is in fact differentially transcendental over any field of meromorphic functions
in a neighborhood of 0. In a previous work [BDVR24], we proved that Klazar’s result is actually
an instance of a rather common phenomenon and we called such OGFs strongly differentially
transcendental. While mathematical intuition says that being strongly differentially transcendental
is stronger than being merely differentially transcendental, it is not immediately clear what kind
of information is encoded in such a property.

In this paper we consider the classical models of singular walks in the quarter plane (to be
introduced below) and show, extending the results in [DHRS20], that for all specializations of
the length-parameter t in (0, 1/2) we obtain the usual differential transcendence of the associated
generating function Q(x, y, t), while for t = 1/2 we obtain a strongly differentially transcendental
series. Using a probabilistic interpretation based on Green functions of random walks, we prove
that the point t = 1/2 is indeed very special; heuristically, this connects a gap in the various kinds
of differential transcendence to a critical probabilistic phenomenon in the underlying killed random
walk.

State of the art. We consider the classical models of quarter plane walks in combinatorics:
Given a set S of prescribed steps (see examples in Table 1), describing the possible moves of the
walk, one of the main objectives is to enumerate, either exactly or asymptotically, the number of
walks starting at the origin (0, 0), staying in the quarter plane N2 = {0, 1, 2, . . .}2, with jumps in
the step set S, of length n, and ending at the point (i, j); see Figure 1 for an example of path.
Denote by #S{(0, 0)

n→ (i, j)} the number of such walks. The associated generating function is

QS(x, y, t) =
∑

i,j,n⩾0

#S{(0, 0)
n→ (i, j)}xiyjtn ∈ N[x, y][[t]] ⊂ Z[[x, y, t]]. (1.1)

Over the past two decades, these models have attracted considerable attention from the mathemat-
ical community. The main questions are: First, is it possible to solve this enumeration problem in
closed form? If not, asymptotically (e.g., when the path length n tends to infinity)? What is the
“complexity” of the generating function (1.1), as a function of the step set S? In other words, can
the function QS(x, y, t) be rational, algebraic, D-finite or differentially algebraic?

Although these questions can be addressed a priori for any step set S, it has been shown
by Bousquet-Mélou and Mishna in [BMM10] and in subsequent works that the class of nearest
neighbor walks already gives rise to an impressive variety of possible behaviors.
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A B C D E

Table 1: The five main models considered in this work, called singular models. Among
them, the first three A = {NW,NE,SE}, B = {NW,N,E,SE}, C = {NW,N,NE,E,SE}
are symmetric models with respect to the first diagonal, while the last two D =
{NW,N, SE}, E = {NW,N,NE,SE} are not.

According to [BMM10], the set of nearest neighbor walks can be divided into two subclasses, the
singular and the non-singular models. By definition, singular models are those for which the step
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set S is contained in a linear half-plane. Bousquet-Mélou and Mishna proved that there are exactly
five singular models that are truly two-dimensional, not equivalent, and can cross the quarter plane
on both axes. They are here called A–E (following the convention of [MM14]), and they are shown
in Table 1. Note that, unlike models D and E , the step sets of models A, B and C are symmetric.

These models are sometimes called directed (see [MR09]), in the sense that they cannot return
to the origin once they have left it; see Figure 1 for an example of a path, see also Figure 2. Singular
models are also called genus zero models (see [FIM17, Chap. 6]) for the following reason: in all five
cases appearing on Table 1, defining the characteristic (generating/inventory) polynomial

χS(x, y) :=
∑

(i,j)∈S

xiyj , (1.2)

the kernel polynomial
KS(x, y, t) := xy

(
1− t · χS(x, y)

)
(1.3)

is biquadratic in x and y, irreducible in C(t)[x, y], which defines a pencil of algebraic curves of genus
zero1 for generic t. In what follows, most of the time, S will be taken as one of the five step sets
listed in Table 1. When no ambiguity can arise, we will simplify our notation by removing the step
set S and the variable t; therefore K(x, y) and Q(x, y) will stand for KS(x, y, t) and QS(x, y, t),
respectively.

Figure 1: An example of path for the model A (10,000 steps). According to the classical
law of large numbers, almost every path tends to infinity along the first diagonal, with
antidiagonal “Brownian” fluctuations.

In the probabilistic setting (i.e., when one specializes t = 1
#S , where #S denotes the cardinality

of the step set S), singular models were first identified in the book [FIM17, Chap. 6]. More
precisely, genus zero models are characterized in [FIM17, Thm 6.1.1 and §6.4], where various

1This can be seen graphically using an old theorem of Henry Frederick Baker [Bak93] (see also [Bee09]), which
says that the genus of a plane curve defined by a bivariate polynomial is upper bounded by the number of grid points
inside the Newton polygon of the polynomial. In our case, the corresponding Newton polygons do not contain any
grid points.
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properties of singular models are derived, such as functional equations and explicit expressions
for the generating functions, boundary value problems, uniformizations of the associated kernel
curve (1.3), etc. See [DHRS21, FI21] for further insights into possible uniformizations.

In the combinatorial literature, singular models first appeared in Bousquet-Mélou and Mishna’s
classification [BMM10] of walks with small steps in the quarter plane. They proved that all singular
models admit an infinite group (in a sense, this group captures the symmetries of the step set S).
See also [Mis09] for a classification of quarter plane walks when the step set has cardinality 3.

In [MR09], Mishna and Rechnitzer consider the models A and D and express the generating
functions Q(x, 0, t), Q(0, y, t) and Q(x, y, t) as infinite sums of algebraic functions. As a conse-
quence, they prove that Q(1, 1, t) is not D-finite, i.e., it does not satisfy any linear differential
equation in d

dt with polynomial coefficients in t. The main argument is to show that Q(1, 1, t) has
an infinite number of singularities, which is classically incompatible with D-finiteness. Melczer and
Mishna extended these results to the models B, C and E [MM14].

Singular models are further considered in the work [DHRS20] by Dreyfus, Hardouin, Roques
and Singer. The authors show that if 0 < t < 1

#S is a transcendental number, then Q(x, y, t) is x-
and y-differentially transcendental. As in the probabilistic literature, weights are allowed on the
steps in their article [DHRS20]. The main technical novelty in [DHRS20] is the use of the Galois
theory of q-difference equations, following their work [DHRS18] in the genus-one setting. Note
that in [DHRS20] the weights are normalized so that their sum is 1 (thus they define transition
probabilities); comparing their results with ours therefore requires changing the variable t 7→ t

#S ,

in other words their assumption t ∈ (0, 1) is equivalent to t ∈ (0, 1
#S ) in our notation.

Finally, returning to the probabilistic literature, Janse van Rensburg, Prellberg and Rechnitzer
[JvRPR08] consider self-avoiding singular walks in the quarter plane, compute their growth con-
stants and prove functional equations for the associated generating functions. In [Poz11] Poznanović
obtains an interesting bijection to prove combinatorially some results in [JvRPR08]. In [HRT23],
Hoang, Tarrago and the last author of this article compute positive harmonic functions with Dirich-
let boundary conditions for singular walks (with possible large jumps). This last paper also contains
asymptotic estimates of the Green function and the description of the Martin boundary.

Our contributions and techniques. In our first result we prove that the function Q(x, y)
converges for |x|, |y| < 1 and |t| < 1

2 and that it can be defined as a series in R[[x, y]] up to t = ±1
2 .

Furthermore, at t = 1
2 , its coefficients are all rational.

Theorem 1 (See Theorem 4 below). For any model in Table 1, the power series

Q(x, y, 12) =
∑

i,j,n⩾0

#S{(0, 0)
n→ (i, j)}

2n
xiyj ∈ Q[[x, y]]

is well defined, meaning that all its coefficients are finite and define rational numbers.

In order to prove the above theorem, we use, inspired by [MR09], mainly a combinatorial
approach to recursively compute the number of paths #S{(0, 0)

n→ (i, j)}. Obviously, any path of
a singular model can be decomposed as a sequence of walks on antidiagonal segments

Sk = {(i, j) ∈ Z2 : i ⩾ 0, j ⩾ 0, i+ j = k} = {(k, 0), (k − 1, 1), . . . , (0, k)}, (1.4)

followed by diagonal jumps, see Figure 2, and also Figure 1. This decomposition can be used to
derive a fairly simple expression for the number of walks, using basic linear algebra. See Section 2.

In Section 3, we shall use that the generating function Q(x, y) ≡ QS(x, y, t) in (1.1) satisfies
the functional equation

K(x, y)Q(x, y) = xy − tx2Q(x, 0)− ty2Q(0, y), (1.5)
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with the kernel K(x, y) as in (1.3). By manipulating this equation as in [FIM17] and [DHRS20], but
with slightly different parametrizations, we get a new functional equation satisfied by the section
Q(x, 0). This new equation is a q-difference equation for t ∈

(
0, 12
)
and a finite difference equation

for t = 1
2 . Using the Ishizaki-Ogawara theorem (which we recall in Theorem 19) and Theorem 20

we conclude (for the precise definitions see Section 3):

Theorem 2. For any model S in the list A, B, C, D, E and for any t ∈
(
0, 12
]
the formal power

series Q(x, 0) ≡ QS(x, 0, t) (resp. Q(0, y), Q(x, y)) is differentially transcendental over C(x) (resp.
C(y), C(x, y)). For t = 1

2 , Q(x, 0) (resp. Q(0, y), Q(x, y)) is strongly differentially transcendental.

This result extends the main theorem of [DHRS20], which is only proven for transcendental
values of the variable t, and only for t ∈ (0, 1

#S ). Note that the paper [DHRS20] considers models
with weights. We recover their result in full generality only for the models with step sets of
cardinality 3 (namely A and D), see Section 4.4, as we have three degrees of freedom in our
parameters.

Let us give some heuristics about the change in behavior at t = 1
2 implied by Theorem 2. First,

one could argue that if a q-difference equation associated with a homography with two fixed points
degenerates into a finite difference equation, whose operator has only one fixed point, the confluence
of two special points is expected to increase the complexity of the solution. We can propose another
explanation. Namely we show in Section 4 thatQ(x, y, t) admits a natural probabilistic as the Green
function of a certain random walk, using the idea of the Cramér transform. As it turns out, the
latter transform becomes singular at t = 1

2 , so one can also interpret the point t = 1
2 as critical

from this alternative, probabilistic point of view.
We conclude the paper with a small excursion in special function theory, showing that we can

compute explicitly the rational coefficients appearing in Q(x, y, 12) in the case of the model A. In
fact, Bernoulli numbers intriguingly show up:

Theorem 3. For model A we have

QA(x, 0,±1
2) =

∑
n⩾0

Tn

4n
x2n,

where (Tn)n⩾0 =
(
1, 2, 16, 272, 7936, . . .

)
is the sequence of the tangent numbers (A000182). Equiv-

alently,

QA(x, 0,
1
2) = 2

∑
n⩾0

(22n+2 − 1)
(−1)n

n+ 1
B2n+2x

2n,

where (Bn)n⩾0 =
(
1,−1

2 ,
1
6 , 0,−

1
30 , 0,

1
42 , . . .

)
is the sequence of Bernoulli numbers.

We derive a similar result for the models B and D, in Section 5. As a direct consequence of
Theorem 3, and using known results about Bernoulli numbers (e.g., recalled in [BDVR24]), the
power series QA(x, 0,

1
2) and QB(x, 0,

1
2) are proved to be strongly differentially transcendental in a

direct manner. This provides an alternative proof of Theorem 2 for models A, B and D. Moreover,
we prove that exponential versions of the power series QA(x, 0,

1
2) and QD(x, 0,

1
2) are D-algebraic;

this can be viewed as yet another instance of the Pak-Yeliussizov Open Problem 2.4 in [Pak18].
It would be interesting to find formulas of this kind for all the five singular models and actually

establish whether they come from the confluence of some kind of q-Bernoulli numbers, appearing
for t = q/(1 + q2) with q ̸= 1. Notice that the nature of Q(1, 1, t) still remains out of reach with
these techniques.

Acknowledgements. Our warm thanks go to Mireille Bousquet-Mélou, for her interest in this project
and for her insights shared with us at various stages of its preparation. We are grateful to the
participants of the working group “Transcendence and Combinatorics” for interesting discussions
over the years, which stimulated this work.
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2 On the convergence of Q(x, y, t) with respect to t

As mentioned in the introduction, one of the original results of our paper concerns the function
Q(x, y, 12), that is the evaluation at t = 1

2 of the generating function Q(x, y, t) introduced in (1.1).

While the trivial estimate #S{(0, 0)
n→ (i, j)} ⩽ (#S)n implies that Q(x, y, t) is well defined and

analytic for |x| ⩽ 1, |y| ⩽ 1 and |t| < 1
#S , it is a priori unclear that Q(x, y, t) can be continued

analytically for larger values of |t|. This is the object of this section, in which we will prove the
following result:

Theorem 4. For any model in Table 1, the series Q(x, y, t) converges for |x|, |y| < 1 and |t| < 1/2.
Moreover,

Q(x, y, 12) =
∑

i,j,n⩾0

#S{(0, 0)
n→ (i, j)}

2n
xiyj ∈ Q[[x, y]]

is well defined, meaning that all its coefficients are finite and define rational numbers.

As explained by Mishna and Rechnitzer [MR09], singular walks naturally have a recursive
construction, as directed steps (1, 0), (1, 1), (0, 1) followed by fluctuations with antidiagonal jumps
(−1, 1) and (1,−1); see Figure 2. Reformulating some results of [MR09], we obtain in this section
a matrix-product expression for the generating function Q(x, y, t), which immediately leads to the
following partial result (proved at the very end of this section, as a consequence of Propositions 8,
13 and 14):

Proposition 5. For any model in Table 1, the power series Q(x, y, 12) is well defined in R[[x, y]],
meaning that all its coefficients are finite.

We will complete the proof of Theorem 4 by showing that the coefficients of Q(x, y, 12) are
rational (see Proposition 15 below).

2.1 Enumeration of walks on segments

For any k ⩾ 1, define Sk as the antidiagonal segment

Sk = {(i, j) ∈ Z2 : i ⩾ 0, j ⩾ 0, i+ j = k} = {(k, 0), (k − 1, 1), . . . , (0, k)}, (2.1)

see Figure 2. For P,Q ∈ Sk and n ∈ N, define wk(P,Q, n) as the number of paths in Sk starting
at P , ending at Q and having length n. We further introduce the generating function

Wk(P,Q, t) :=
∑
n⩾0

wk(P,Q, n)tn. (2.2)

For n ⩾ 2, we consider the matrix

Fn =



1 −t 0 · · · · · · 0
−t 1 −t 0 · · · 0
0 −t 1 −t 0 0
...

. . .
. . .

. . .
. . .

...
... · · · 0 −t 1 −t
0 · · · · · · 0 −t 1



−1

∈ Mn,n(R(t)), (2.3)

which in Lemma 7 below allows us to completely characterize the generating functions Wk(P,Q, t)
in (2.2). Recall that the n-th Chebychev polynomial of the second kind Un(z) ∈ Q[z] is defined
via the generating function 1/(1 − 2zt + t2) =

∑∞
n=0 Un(z)t

n, or alternatively via the equality
Un(cos θ) sin θ = sin

(
(n+ 1)θ

)
. Then, we have the following well-known statement:
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Figure 2: Recursive construction of singular walks. In this example on model A, a walk
can be decomposed as a sequence of jumps (1, 1) (black arrows) and antidiagonal jumps
(−1, 1) and (1,−1) (red). The segments Sk are defined in (2.1). See Figure 1 for an
example of a longer path.

Proposition 6 ([Kam89, Thm 3.2]). For 1 ⩽ i, j ⩽ n and |t| < 1
2 cos( π

n+1
) , let

fi,j =
(−1)i+j+1

t

Un−j(− 1
2t)Ui−1(− 1

2t)

Un(− 1
2t)

=
1

t

Un−j(
1
2t)Ui−1(

1
2t)

Un(
1
2t)

.

Then the coefficients of Fn are the fi,j for i ⩽ j and fj,i for i > j.

For an upcoming use, let us make explicit the matrix Fn at t = 1
2 . Since

∑∞
n=0 Un(−1)tn =

1/(1 + t)2, we have that Un(−1) = (−1)n(n+ 1), so fi,j = 2 i(n−j+1)
n+1 and thus

Fn|t= 1
2
=

2

n+ 1



n n− 1 n− 2 · · · 2 1
n− 1 2(n− 1) 2(n− 2) · · · 4 2
n− 2 2(n− 2) 3(n− 2) · · · 6 3

...
...

...
. . .

...
...

2 4 6 · · · 2(n− 1) n− 1
1 2 3 · · · n− 1 n


. (2.4)

We now state Lemma 7. Although it is not new, we prove it briefly, as this gives us the opportu-
nity to keep our paper self-contained and to introduce some useful notations. Lemma 7 immediately
follows from the transfer-matrix method, see e.g. [Sta12, Sec. 4.7], in particular Theorems 4.7.1 and
4.7.2.

Lemma 7. Let k ⩾ 1. For 0 ⩽ i ⩽ k, denote by Pi = (k − i, i) the points of Sk, see (2.1). The
following equality between matrices of generating functions holds:(

Wk(Pi, Pj , t)
)
0⩽i,j⩽k

= Fk+1. (2.5)
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Accordingly, for all 0 ⩽ i, j ⩽ k, the series Wk(Pi, Pj , t) is rational, with first singularity (a pole of

order one) at t = ±
(
2 cos

(
π

2+k

))−1
, with

(
2 cos

(
π

2+k

))−1
> 1

2 . In the neighborhood of
(
2 cos

(
π

2+k

))−1

we have
Wk(Pi, Pj , t) =

ci,j,k(
2 cos

(
π

k+2)
)−1 − t

+O(1), (2.6)

with ci,j,k > 0. The series Wk(Pi, Pj , t) being even, an expansion similar to (2.6) holds in the

neighborhood of −
(
2 cos

(
π

k+2)
)−1

.

Proof. We first look at the row vector of generating functions(
Wk(P0, P0, t), . . . ,Wk(Pk, P0, t)

)
with fixed ending point at P0 and varying starting points in Sk. Using a first step decomposition
of the walk, we easily obtain the identities

Wk(P0, P0, t) = 1 + tWk(P1, P0, t),

Wk(Pi, P0, t) = tWk(Pi−1, P0, t) + tWk(Pi+1, P0, t), 1 ⩽ i ⩽ k − 1,

Wk(Pk, P0, t) = tWk(Pk−1, P0, t).

In terms of matrix product, this means that(
Wk(P0, P0, t), . . . ,Wk(Pk, P0, t)

)
F−1
k+1 = (1, 0, . . . , 0),

the first vector of the canonical basis of Rk+1. Similar computations show that(
Wk(P0, Pi, t), . . . ,Wk(Pk, Pi, t)

)
F−1
k+1

is the (i + 1)-th vector of the canonical basis of Rk+1, which proves Equation (2.5), since Fk+1 is
symmetric.

We now prove the statement on the radius of convergence. For this we use the classical repre-
sentation of the Chebychev polynomials as determinants of tridiagonal matrices, proving that

det(F−1
n ) = (−t)nUn

(
− 1

2t

)
. (2.7)

On the other hand, as Un(cos θ) =
sin((n+1)θ)

sin θ , the largest zero of Un(z) happens at z = cos( π
n+1).

As a consequence, the matrix Fn is defined for |t| < 1
2 cos( π

n+1
) , which corresponds to the statement

after the change of variable n = k + 1.
In order to prove (2.6), we perform a series expansion of Un around its first zero cos( π

n+1),
namely

Un(z) =
2(n+ 1) cos( π

n+1)

sin( π
n+1)

2

(
z − cos( π

n+1)
)
+ · · ·

and use Proposition 6. In this way, we obtain (2.6), with the following expression for the constant

ci,j,k =
sin( π

k+2)
2Uk+1−j

(
cos( π

k+2)
)
Ui−1

(
cos( π

k+2)
)

(k + 2) cos( π
k+2)

,

on which we can read the positivity (recall that cos( π
k+2) is the largest root of Uk+1 and that the

roots of the Chebychev polynomials interlace, in such a way that Chebychev polynomials with
index lower than k + 1 are positive on the segment [cos( π

k+2), 1]).

We apply these preliminary results to the generating functions associated to our five models,
starting with model A.
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Figure 3: Proposition 8 can be adapted to apply to general domains, not only quarter
planes. On the left, a domain with periodic boundary; on the right, an arbitrary domain.

2.2 Preliminary results for singular walks with step set A

In this subsection, we focus on the model A, the first model in Table 1. Notice that for model A
a walk can jump from one segment Sk to another only thanks to the step (1, 1): a walk starting in
(0, 0) can only jump to S2 and then either stay on S2 or jump to S4, and so on. This immediately
implies that there are no walks ending on points of the segment Sk, when k is odd. More formally,
let us fix Qk ∈ Sk = {(k − i, i) : i = 0, . . . , k} and consider the series∑

n⩾0

#A{(0, 0)
n→ Qk}tn. (2.8)

Then the series (2.8) above is identically zero for any odd value of the integer k ⩾ 1. This proves
the first (trivial) part of the following proposition, which is the key-point of this subsection. To
state its second part, we need to define the following sequence of matrices (An)n⩾3:

An =


0 1 0 · · · · · · 0
0 0 1 0 · · · 0
...

...
. . .

. . .
. . .

...
0 · · · · · · 0 1 0

 ∈ Mn−2,n(R). (2.9)

Proposition 8. If k is odd, the series (2.8) is identically zero. Moreover, for any k ⩾ 1, one has(∑
n⩾0

#A{(0, 0)
n→ (2k − i, i)}tn

)
0⩽i⩽2k

= tkA3F3 · · ·A2k+1F2k+1,

with A2k+1 and F2k+1 as in (2.9) and (2.3), respectively.

Remark 9. The expression given in Proposition 8 is robust in the following sense: if the boundary
of the quarter plane were replaced by any other boundary, as in Figure 3, then a very similar
matrix-product expression for the generating function would hold. This observation applies more
generally for all singular step sets S.

Proposition 8 is not new and is equivalent to a result proved in [MR09]: we will compare our
formulation with the one contained in loc. cit. in Corollary 11 below. To prove Proposition 8 we
need the following lemma:

Lemma 10. For even values of k ⩾ 1, the generating function (2.8) is rational and its first poles

are at t = ±
(
2 cos

(
π

2+k

))−1
.
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Proof. Using the obvious decomposition of a walk from (0, 0) to Q2k ∈ S2k as a sequence of jumps
(1, 1) followed by fluctuations on the segments S2, . . . , S2k, see again Figure 2, one has

#A{(0, 0)
n+k→ Q2k} =

∑
Q2∈S2,Q4∈S4,...,Q2k−2∈S2k−2∑

n1+···+nk=n

w2((1, 1), Q2, n1)w4(Q2 + (1, 1), Q4, n2) · · ·w2k(Q2k−2 + (1, 1), Q2k, nk).

As a consequence,∑
n⩾0

#A{(0, 0)
n→ Q2k}tn =

tk
∑

Q2∈S2,Q4∈S4,...,Q2k−2∈S2k−2

W2((1, 1), Q2, t) · · ·W2k(Q2k−2 + (1, 1), Q2k, t). (2.10)

Using now Lemma 7, it appears that we wrote the series (2.8) as a finite sum of rational functions,
with explicitly given radii of convergence.

To show that the singularity of
∑

n⩾0#A{(0, 0)
n→ Q2k}tn in (2.10) at t =

(
2 cos

(
π

2+k

))−1
is

not removable, we use Equation (2.6) from Lemma 7. More specifically, we perform an expansion

of (2.10) at t =
(
2 cos

(
π

2+k

))−1
. We have∑

n⩾0

#A{(0, 0)
n→ Q2k}tn =

C(
2 cos( π

2+k )
)−1 − t

+O(1),

where C can be computed as follows, setting t0 =
(
2 cos( π

2+k )
)−1

:

C = t−k
0

∑
Q2∈S2,Q4∈S4,...,Q2k−2∈S2k−2

W2((1, 1), Q2, t0) · · ·W2k−2(Q2k−4 + (1, 1), Q2k−2, t0)c̃Q2k−2,Q2k,k,

(2.11)
where c̃Q2k−2,Q2k,k = ci,j,k in (2.6), with the indices i and j corresponding respectively to Pi =
Q2k−2 + (1, 1) and Pj = Q2k. In (2.11), C appears as a sum of terms which are all positive,
therefore C > 0. The proof is complete.

Proof of Proposition 8. Given k ⩾ 1, the matrix A2k+1 describes how the walk jumps from the
segment S2k−2 to the next one, S2k, and may thus be called a jump matrix. More precisely, in the
model A, if the walk exits the segment S2k−2 at the point (2k − 2− i, i), then it will enter S2k at
position (2k − 2 − i, i) + (1, 1) = (2k − 1 − i, i + 1); see Figure 2. From a matrix point of view,
this corresponds to the following computation: given the vector e2k−1

i := (0, . . . , 0, 1, 0, . . . , 0) ∈
M1,2k−1(R) with the 1 at position i, one has

e2k−1
i A2k+1 = e2k+1

i+1 .

The proof of Proposition 8 is then immediate from (2.10) and using Lemma 7.

In this part we compare our results to that of Mishna and Rechnitzer [MR09]. They consider
the generating function

Dk(y) =
k∑

i=0

∑
n⩾0

#A{(0, 0)
n→ (k − i, i)}tnyi ∈ Q(t)[y] ∩Q[y][[t]]. (2.12)

It is clear that D0(y) = 1 and D2ℓ+1(y) = 0 for all ℓ ⩾ 0. Mishna and Rechnitzer further prove,
with the notation t = q

1+q2
, that the following result holds.

10



Corollary 11 ([MR09, Eq. (45)]). The generating function Dk(y) satisfies the functional equation

(qk+2 + 1)(yq − 1)(y − q)Dk(y) = q3(yk+2 + 1)Dk−2(q)− qy2(qk+2 + 1)Dk−2(y). (2.13)

We now show how we can deduce Corollary 11 from our Proposition 8.

Proof of Corollary 11. We shall identify polynomials with row vectors. Therefore, the generating
function D2k in (2.12) is exactly the row vector appearing in the left-hand side of the main equation
in Proposition 8.

We shall first rewrite (2.13) in an equivalent way, simply by dividing the left- and the right-hand
sides by q(qk+2 + 1)/t, and then replacing k by 2k. We get

(ty2 − y + t)D2k(y) = tq2
y2k+2 + 1

q2k+2 + 1
D2k−2(q)− ty2D2k−2(y). (2.14)

Using the identification between polynomials and row vectors, (2.14) is an equality between row
vectors of length 2k + 3.

Using now Proposition 8, the left-hand side of (2.14) may be written as

(ty2 − y + t)D2k(y) = tkA3F3 · · ·A2k+1F2k+1


t −1 t · · · · · · 0
0 t −1 t · · · 0
...

...
. . .

. . .
. . .

...
0 · · · · · · t −1 t

 ,

where the last matrix belongs to M2k+1,2k+3(R[t]). The product of the last three matrices simplifies
remarkably: (

t(F2k+1)[[2,2k]],1|0| − I2k−1|0|t(F2k+1)[[2,2k]],2k+1

)
∈ M2k−1,2k+3(R(t)),

where we used the following notation: (F2k+1)[[2,2k]],1 is a column vector of length 2k− 1 formed by
the elements (2, 1) up to (2k, 1) of the matrix F2k+1.

The last term in (2.14) is

−ty2D2k−2(y) = −tk−1A3F3 · · ·A2k−1F2k−1t
(
0|0|I2k−1|0|0

)
.

We can now state a matrix identity which is a lifting of (2.14) at the matrix level (somehow a
factorization by the common prefix tkA3F3 · · ·A2k−1F2k−1):

A2k+1F2k+1


t −1 t · · · · · · 0
0 t −1 t · · · 0
...

...
. . .

. . .
. . .

...
0 · · · · · · t −1 t

+
(
0|0|I2k−1|0|0

)

− qtA2k+1F2k+1


1 0 · · · 0 0

0 0
...

...
...

... 0 0
0 0 · · · 0 1

 = 0.

This concludes the proof.
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2.3 Preliminary results for the models B, C, D and E

In this subsection we denote by S any of the following step sets: B, C, D or E , thereby extending
the results to all models of Table 1. As above, the number of n-length S-walks from (0, 0) to an
arbitrary point Qk ∈ Sk is denoted by #S{(0, 0)

n→ Qk}. We begin with a statement analogous to
Lemma 10.

Lemma 12. If S is not A, then for any k ⩾ 1 and any Qk ∈ Sk, the generating function∑
n⩾0

#S{(0, 0)
n→ Qk}tn (2.15)

is rational, with first pole at t =
(
2 cos

(
π

2+k

))−1
.

The rationality property remains valid for model A, see Lemma 10; however, due to parity
issues the series (2.15) is zero when S = A and k is odd, hence a separate statement.

Proposition 8 may be extended immediately to models B and D, replacing the jump matrices
An by Bn and Dn in Mn−1,n(R), as follows:

Dn =


0 1 0 · · · 0

0 0 1
. . . 0

...
...

. . .
. . .

...
0 · · · · · · 0 1

 and Bn =



0 1 0 · · · · · · 0

1 0 1
. . .

...

0 1 0 1
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . . 1 0 1

0 · · · 0 0 1 0


. (2.16)

More precisely:

Proposition 13. For any k ⩾ 1, one has(∑
n⩾0

#B{(0, 0)
n→ (k − i, i)}tn

)
0⩽i⩽k

= tkB2F2 · · ·Bk+1Fk+1,(∑
n⩾0

#D{(0, 0)
n→ (k − i, i)}tn

)
0⩽i⩽k

= tkD2F2 · · ·Dk+1Fk+1,

with Bn, Dn and Fn as in (2.16) and (2.3), respectively.

Models C and E contain some more intrinsic complexity, due to the following: if a walk is on
the segment Sk, the next step could bring it either on Sk+1 or on Sk+2.

Given k ⩾ 1, we will call Ck the set of compositions of k with 1’s and 2’s, i.e., the set of all
(ordered) p-tuples (n1, . . . , np) such that ni ∈ {1, 2} and n1 + · · ·+ np = k. Though not crucial for
our analysis, we observe that Ck is a set of cardinal given by the k-th Fibonacci number.

Let us introduce the following notation: given n ∈ {1, 2} and m ⩾ 1, J(n)m denotes the
following matrix:

J(n)m =


Am if n = 2,
Bm if n = 1 and the model is C,
Dm if n = 1 and the model is E .

Proposition 14. For the models C and E, one has(∑
n⩾0

#{(0, 0) n→ (k − i, i)}tn
)

0⩽i⩽k

=

∑
(n1,...,np)∈Ck

tpJ(n1)n1+1Fn1+1J(n2)n1+n2+1Fn1+n2+1 · · · J(np)n1+···+np+1Fn1+···+np+1.
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2.4 End of the proof of Theorem 4

The matrix-expressions of the generating functions obtained in Propositions 8, 13 and 14 imme-
diately entail Proposition 5, namely, that the series Q(x, y, 12) in the variables x and y has finite
coefficients:

Proof of Proposition 5. Let S be any step set in Table 1. We can reformulate (1.1) as

QS(x, y, t) =
∑
k⩾0

k∑
i=0

xk−iyi
∑
n⩾0

#S{(0, 0)
n→ (k − i, i)}tn.

Using now Propositions 8, 13 and 14, we obtain that for any Qk = (k − i, i) ∈ Sk, the series∑
n⩾0#S{(0, 0)

n→ Qk}tn has non-negative coefficients and converges uniformly on the closed disk

|t| ⩽ 1
2 , as indeed for any k ⩾ 0,

1

2
<

1

2 cos( π
2+k )

.

Therefore the series QS(x, y,
1
2) is well defined in R[[x, y]].

We can actually say more:

Proposition 15. For any step set S and any Qk ∈ Sk, we have

∑
n⩾0

#S{(0, 0)
n→ Qk}

2n
∈ Q.

Proof. The matrix-expressions obtained in Propositions 8, 13 and 14 entail that
∑

n⩾0#S{(0, 0)
n→

Qk}tn can be computed as the coefficient of a product of matrices involving the Fn in (2.3) and
other matrices with integer coefficients. Being the inverse of a matrix whose coefficients belong
to Q(t), the coefficients of Fn should be in Q(t) as well. As an immediate consequence, all the
coefficients of Fn are rational numbers as soon as t ∈ Q, in particular at t = 1

2 , as claimed in
Proposition 15.

Notice that this statement can be made more precise, using the explicit coefficients of Fn

computed in Proposition 6 for general values of t, and their simplification at t = 1
2 derived

in (2.4). In particular, the latter identity implies that for all k ⩾ 1 and all P,Q ∈ Sk, the
quantity Wk(P,Q, 12) ∈

1
k+2 · N (recall from (2.5) that Wk(P,Q, 12) are the coefficients of Fk).

By Lemmas 10 and 12, the poles t =
(
2 cos

(
π

2+k

))−1
of the series

∑
n⩾0#S{(0, 0)

n→ Qk}tn

have an accumulation point at 1
2 as k → ∞. Accordingly, one cannot evaluate the series Q(x, y, t)

at any point t > 1
2 .

3 On the nature of the series Q(x, y, t) for t ∈
(
0, 1

2

]
In this section, for any fixed step set S in Table 1, we explore the nature of the ordinary generating
function Q(x, y) ≡ QS(x, y, t), for all the values of t ∈

(
0, 12
]
. As we proved in the previous section,

it makes sense to evaluate t from 0 to 1
2 , but one cannot go further on the real line. Recall that to

simplify the notation we will omit writing the dependence in S and t, when the context is clear.
We are going to show that the series Q(x, y) is differentially transcendental over Q(x, y) for

t ∈
(
0, 12
)
and that it is strongly transcendental for t = 1

2 , in the sense that it is transcendental
over the germs of bivariate meromorphic functions at 0, as formalized in the following definition:
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Definition 16. Let f ∈ C[[x]] (resp. C[[x, y]]). We say that f is differentially algebraic over C(x)
(resp. C(x, y)) if there exists an integer n and a non-zero polynomial P with coefficients in C(x)
(resp. C(x, y)) in n+ 2 (resp. n2 + 3) variables such that:

P

(
x, f, . . . ,

dnf

dxn

)
= 0 and P

(
x, y, f,

df

dx
,
df

dy
, . . . ,

d2nf

dyndxn

)
= 0.

We say that f is differentially transcendental over C(x) (resp. C(x, y)) if it is not differentially
algebraic.

Mutatis mutandis, one defines strong differential transcendence, i.e., the differential transcen-
dence of a formal power series over the field of germs of meromorphic functions C({x}) (resp.
C({x, y})), that is the field of functions that are meromorphic in an open, non-specified neighbor-
hood of 0.

The main result of this section is:

Theorem 17. For any model in the list A, B, C, D, E and for any t ∈
(
0, 12
]
, the formal power series

Q(x, 0) (resp. Q(0, y), Q(x, y)) is differentially transcendental over C(x) (resp. C(y), C(x, y)). For
t = 1

2 , the power series Q(x, 0) (resp. Q(0, y), Q(x, y)) is strongly differentially transcendental.

Remark 18. The results of Theorem 17 extend those of in [DHRS20], where the authors consider
only transcendental values of t ∈

(
0, 12
)
. Note that they consider models with weights, whereas we

do not. On the other hand, we consider strong differential transcendence, while [DHRS20] deals
with differential transcendence.

We will treat the five singular models one by one, using difference Galois theory. At the end of
the section, after the proof, we will comment on the fact that for t ∈

(
0, 12
)
one cannot expect to

find strongly differential transcendental generating functions.

Strategy of the proof of Theorem 17. The peculiarity of the five models of Table 1 is that the kernel
curve K(x, y, t) = 0 has genus zero for any t ∈

(
0, 12
]
, which is equivalent to the existence of a

rational parametrization. We will consider the cases t ∈
(
0, 12
)
and t = 1

2 separately, since we did
not find a parameterization with a non-trivial specialization for any value of t. In the proof below,
it will be convenient to set t = v

1+v2
, with v ∈ (0, 1]; this substitution has proven useful in other

related contexts, see e.g. [MR09, Sec. 2.4].
For v ∈ (0, 1) we will find x0(s), x̃0(s), y0(s) ∈ C(s) such that (x0(s), y0(s)) and (x̃0(s), y0(s))

are both parametrizations of K(x, y, v/(v2 + 1)) = 0 and x̃0(s) = x0(v
2 s). Plugging the two

parametrizations in the functional equation (1.5) and taking the difference of the two expressions,
we obtain

v

v2 + 1
·
(
x20Q(x0, 0)− x̃20Q(x̃0, 0)

)
= (x0 − x̃0)y0. (3.1)

Therefore, as an element of C[[s]], the formal power series

G0(s) :=
v

v2 + 1
· (x0(s))2 ·Q(x0(s), 0) (3.2)

satisfies a v2-difference equation of the form G0(v
2 s)−G0(s) = R(s) ∈ C(s). We prove that such an

equation does not have any rational solution and conclude that G0(s) is differentially transcendental
over C(s), thanks to the following result:

Theorem 19 ([Ish98], [Oga14, Thm 2]). Let q ̸= 0 be a complex number, not a root of unity. If
f ∈ C((s)) \ C(s) satisfies the functional equation

f(qs) = Q(s)f(s) +R(s), for some Q(s), R(s) ∈ C(s), Q(s) ̸= 0,

then f is differentially transcendental over C(s).
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Since x0(s) ∈ C(s) for any v ∈ (0, 1), G0(s) is differentially transcendental over C(s) if and
only if Q(x, 0) is differentially transcendental over C(x). Moreover, from (1.5), the differential
transcendence of Q(x, 0) over C(x) and that of Q(0, y) over C(y) are equivalent, since:

x0(s)y0(s)− tx0(s)
2Q(x0(s), 0) = ty0(s)

2Q(0, y0(s)) .

Finally, (1.5) allows to conclude that Q(x, y) is differentially transcendental over C(x, y), using that
x and y are algebraically independent.

Let us now turn to the case v = 1, for which we shall reason in the same way. We find
x1(s), x̃1(s), y1(s) ∈ C(s) such that (x1(s), y1(s)) and (x̃1(s), y1(s)) are both parametrizations of
K(x, y, 12) = 0 and x̃1(s) = x1(τ(s)), where τ is a homography with a single fixed point. Therefore,
the formal power series

G1(s) :=
1

2
· (x1(s))2 ·Q

(
x1(s), 0,

1
2

)
(3.3)

satisfies a difference equation of the form G1(τ(s))−G1(s) = R(s) ∈ C(s). We prove that such an
equation does not have rational solutions and conclude, as for v ∈ (0, 1), thanks to the following
result.

Theorem 20 ([BDVR24, Thm 34 and Cor. 35]). Let τ be an automorphism of C(s), having 0 as
unique fixed point. If G(s) ∈ C((s)) \ C(s) satisfies a functional equation of the form

τ(G(s)) = Q(s)G(s) +R(s), for some Q(s), R(s) ∈ C(s), Q(s) ̸= 0,

then G(s) is differentially transcendental over the field C({s}) of germs of meromorphic functions
at 0.

As in the previous case, one can recover the information on Q(x, 0), Q(0, y) and Q(x, y) from
the strongly differential transcendence of G(s).

We will now detail the proof of the above theorem for the five genus-zero models, one by one.
Model A is a bit easier than the others. Then we consider models B and D, which are essentially
similar. Finally we look at models C and E , which are a bit more complicated.

Proof of Theorem 17 in the case of model A. In this case, for v ∈ (0, 1), we have:

K(x, y) = xy − t
(
y2 + x2y2 + x2

)
;

x0(s) =

(
1− v2

)
s

v (s2 + 1)
and y0(s) =

(
1− v2

)
s

v2s2 + 1
; (3.4)

x̃0(s) =

(
1− v2

)
v s

v4s2 + 1
, with x̃0(s) = x0(v

2s).

Therefore, the formal power series G0(s) in (3.2) satisfies the v2-difference equation:

G0(v
2s)−G0(s) =

(v2 − 1)3

v

s2(v2s2 − 1)

(s2 + 1) (v4s2 + 1) (v2s2 + 1)

=
(v2 − 1)

v

(
1

s2 + 1
− 2

v2s2 + 1
+

1

v4s2 + 1

)
.

By Theorems 19 and 20, we only need to prove that, for any v ∈ (0, 1), the power series G0(s) is
not rational. We set G̃0(s) =

v
2(v2−1)

G0(s)− 1
2(s2+1)

, so that

G̃0(v
2s)− G̃0(s) =

1

s2 + 1
− 1

v2s2 + 1
. (3.5)
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Of course, G0(s) is rational if and only if G̃0(s) is rational. Let us suppose by contradiction
that (3.5) has a rational solution G̃0 ∈ C(s). If G̃0 ∈ C(s) then the left-hand side of (3.5) would
have at least two poles whose quotient is in v2Z. The poles of the right-hand site of (3.5) are
±i,±i/v. If the quotient of two of them is in v2Z, then v is a root of unity. Since v ∈ (0, 1), we have
obtained a contradiction and therefore we can conclude that G0(s) is differentially transcendental
over C(s).

Now we consider the case t = 1
2 , or equivalently the case v = 1. For such value of v the

parametrization (3.4) degenerates, however the kernel curve becomes reducible:

xy − 1

2

(
x2 + y2 + x2y2

)
=

1

2
(ix− iy + xy) (ix− iy − xy) .

The first factor provides the parametrization
(
x, y(x) := x

1+ix

)
of the kernel curve. Notice that the

diagonal symmetry of model A implies that Q(x, 0) = Q(0, x), therefore we deduce from (1.5) that
G1(x) in (3.3) satisfies the functional equation:

G1 (τ(x)) = −G1(x) +
x2

1 + ix
, with τ(x) =

x

1 + ix
. (3.6)

As above, we need to prove that G1(x) cannot be rational. The inhomogeneous term x2

1+ix in (3.6)
has a single pole, which is not a fixed point for x 7→ x

1+ix . As a consequence, if G1(x) was rational,

G1

(
x

1+ix

)
−G1(x) would have at least two poles in its τ -orbit. We have obtained a contradiction,

hence G1(x) is not rational.

Proof of Theorem 17 in the case of model B. We have:

K(x, y) = xy − t
(
y2 + xy2 + x2y + x2

)
;

x0(s) = − (v + 1) (1− v)2 s

v (s− 1) (vs− 1)
and y0(s) = − (v + 1) (1− v)2 s

(s v2 − 1) (vs− 1)
; (3.7)

x̃0(s) = − vs (v + 1) (1− v)2

(s v3 − 1) (s v2 − 1)
, with x̃0(s) = x0(v

2 s).

Therefore, we deduce from (3.1) that the formal power series G0(s) in (3.2) satisfies the v2-difference
equation:

G0(s)−G0(v
2 s) =

−v4 − v3 + 2v2 + v − 1

(vs− 1) v2
+

v2 − 1

(s− 1) v

+
v2 − 1

(s v3 − 1) v
+

−v4 + 2v2 − 1

(vs− 1)2 v2
+

v4 − 2v2 + 1

(s v2 − 1)2 v2
+

v4 − v3 − 2v2 + v + 1

(s v2 − 1) v2
.

If we set

G̃0 := G0 +
v4 − 2v2 + 1

(s− 1)2 v2
+

v4 − v3 − 2v2 + v + 1

(s− 1) v2
+

v2 − 1

(vs− 1) v
,

then the functional equation becomes

G̃0(s)− G̃0(v
2 s) =

−v4 − v3 + 2v2 + v − 1

(vs− 1) v2
+

v2 − 1

(s− 1) v

+
−v4 + 2v2 − 1

(vs− 1)2 v2
+

v2 − 1

(vs− 1) v
+

v4 − 2v2 + 1

(s− 1)2 v2
+

v4 − v3 − 2v2 + v + 1

(s− 1) v2
.
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For any v ∈ (0, 1), the right-hand side of the equation has only one pole per v2-orbit, hence the
functional equation has no rational solution.

For v = 1, a parametrization of K(x, y, 12) is given by:

x1(s) = − s2

s+ 2
and y1(s) = − s2

(s+ 1) (s+ 2)
. (3.8)

Moreover x̃1(s) := − s2

(s+1)(3s+2) and x̃1(s) = x1

(
s

s+1

)
. Therefore, the formal power series G1(s) in

(3.3) satisfies the difference equation:

G1(s)−G1

(
s

s+ 1

)
= s− 16

3
− 16

(s+ 2)2
− 4

3 (3s+ 2)
+

20

s+ 2
+

1

(s+ 1)2
− 1

s+ 1
.

If we set G̃1(s) = G1(s) +
16

(s+2)2
− 20

s+2 , then

G̃1(s)− G̃1

(
s

s+ 1

)
= s− 4

9
+

1

(s+ 1)2
+

16

9 (3s+ 2)
− 16

9 (3s+ 2)2
− 1

s+ 1
.

One verifies that the iterates of 1/(s+1) and of 1/(3s+2) with respect to the homography s 7→ s
s+1

are respectively: {
ns+ 1

(n+ 1)s+ 1
, n ⩾ 0

}
and

{
ns+ 1

(2n+ 3)s+ 2
, n ⩾ 0

}
,

which implies that the poles of the right-hand side of the equation above are not on the same orbit,
and hence that G cannot be a rational function.

Proof of Theorem 17 in the case of model D. We have:

K(x, y) = xy − t
(
y2 + xy2 + x2

)
;

x0(s) =
s (v − 1)2 (v + 1)2

v2 (s+ 1)2
and y0(s) =

s (v − 1)2 (v + 1)2

v (s+ 1) (s v2 + 1)
; (3.9)

x̃0(s) =
s (v − 1)2 (v + 1)2

(s v2 + 1)2
, with x̃0(s) = x0(v

2 s).

Therefore, we deduce from (3.1) that the formal power series G0(s) in (3.2) satisfies the v2-difference
equation:

G0(s)−G0(v
2 s) =

−v6 + 3v4 − 3v2 + 1

(s+ 1)3 v3
+

v4 − 2v2 + 1

(s+ 1) v3
+

v6 − 4v4 + 5v2 − 2

(s+ 1)2 v3

+
−v4 + 2v2 − 1

(s v2 + 1) v
+

−v6 + 3v4 − 3v2 + 1

(s v2 + 1)3 v3
+

2v6 − 5v4 + 4v2 − 1

(s v2 + 1)2 v3
.

If we set

G̃0 := G0 −
−v6 + 3v4 − 3v2 + 1

(s+ 1)3 v3
− v4 − 2v2 + 1

(s+ 1) v3
− v6 − 4v4 + 5v2 − 2

(s+ 1)2 v3
,

then the functional equation becomes

G̃0(s) − G̃0(v
2 s) =

−v6 + 3v4 − 3v2 + 1

(s v2 + 1) v3
+

−2v6 + 6v4 − 6v2 + 2

(s v2 + 1)3 v3
+

3v6 − 9v4 + 9v2 − 3

(s v2 + 1)2 v3
.
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For any v ∈ (0, 1), the right-hand side of the equation has only one pole per v2-orbit, hence the
functional equation has no rational solution.

For v = 1, K(x, y, 12) = 0 can be parameterized by:

x1(s) = − 4s2

(s− 1)2
and y1(s) =

4s2

(s+ 1) (s− 1)
.

Moreover x̃1(s) = − 4s2

(s+1)2
= x1

(
s

2s+1

)
. Therefore, the formal power series G1(s) in (3.3) satisfies

the difference equation:

G1(s)−G1

(
s

2s+ 1

)
= − 8

(1 + s)3
+

8

(1− s)3
+

28

(1 + s)2
− 28

(1− s)2
− 32

1 + s
+

32

1− s
.

If we set G̃1(s) = G1(s) +
8

(s−1)3
+ 28

(s−1)2
+ 32

s−1 , then

G̃1(s)− G̃1

(
s

2s+ 1

)
= 16− 16

(s+ 1)3
+

48

(s+ 1)2
− 48

s+ 1
.

Since the right-hand side has only one pole, G̃1 and G1 cannot be rational functions.

Proof of Theorem 17 in the case of model C. The data of this model are:

K(x, y) = xy − t
(
y2 + xy2 + x2y2 + x2y + x2

)
;

x0(s) =
(v + 1) (v − 1)2 s

(s2 + (v + 1)s+ v2 − v + 1) v
and y0(s) =

(v + 1) (v − 1)2 s

v2s2 + (v2 + v)s+ v2 − v + 1
; (3.10)

x̃0(s) =
vs (v + 1) (v − 1)2

v4s2 + (v3 + v2)s+ v2 − v + 1
, with x̃0(s) = x0(v

2 s).

As in the previous cases, we find the functional equation:

G0(s)−G0(v
2 s) =

s v5 − s v3 + v4 − v3 + v − 1

(s2v4 + s v3 + v2s+ v2 − v + 1) v

+
−s v4 − s v3 − 2v4 + v2s+ 2v3 + vs− 2v + 2

(s2v2 + v2s+ vs+ v2 − v + 1) v
+

v4 + v2s− v3 − s+ v − 1

(s2 + vs+ v2 + s− v + 1) v
.

If we set G̃0(s) = G0(s)− v4+v2s−v3−s+v−1
(s2+vs+v2+s−v+1)v

, then we obtain the functional equation:

G̃0(s)− G̃0(v
2 s) = r(s)− r(vs) , where r(s) =

−s v4 − s v3 − 2v4 + v2s+ 2v3 + vs− 2v + 2

(s2v2 + v2s+ vs+ v2 − v + 1) v
.

To conclude it is enough to check that the denominator p(s) := s2v2 + v2s+ vs+ v2 − v+1 of r(s)
has the property that p(s) and p(v2n+1 s) have no common roots, for any v ∈ (0, 1) and n ∈ Z. Let
us introduce a parameter a and calculate the resultant of p(s) and p(v · a · s) with respect to s:

v8
(
v2 − v + 1

)
(av − 1)2

(
a2v4 − a2v3 + a2v2 + a v3 − 4a v2 + av + v2 − v + 1

)
.

The polynomial above has an obvious double root a = v−1 and vanishes at the following values of

a: i
√
3 v2−i

√
3−v2+4v−1

2(v2−v+1)v
and − i

√
3 v2−i

√
3+v2−4v+1

2(v2−v+1)v
. We need to prove that there is no v ∈ (0, 1) and

no n ∈ Z such that one of the latter is equal to v2n. For the first root, suppose by contradiction
that

i
√
3 v2 − i

√
3− v2 + 4v − 1

2 (v2 − v + 1) v
= v2n.
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This is equivalent to say that for v ∈ (0, 1), we have i
√
3(v2−1) = 2 v2n+1

(
v2 − v + 1

)
+v2−4v+1,

which cannot happen because we have a non-zero purely imaginary number of the left-hand side
and a real number on the right-hand side.

For v = 1, the kernel curve defined by xy− 1
2

(
y2 + xy2 + x2y2 + x2y + x2

)
= 0 is parameterized

by:

x1(s) =
−s2

s2

2 − s+ 2
and y1(s) =

−s2

s2

2 + s+ 2
. (3.11)

We have x̃1(s) =
−s2

3
2s

2 + 3s+ 2
, so that x̃1(s) = x1

(
s

1+s

)
. Therefore, the formal power series G1(s)

in (3.3) satisfies the difference equation:

G1(s)−G1

(
s

s+ 1

)
=

8

3
+

4(3s+ 4)

3(3s2 + 6s+ 4)
− 8

s2 − 2s+ 4
+

4(s− 2)

s2 + 2s+ 4
.

We need to prove that this functional equation has no rational function solutions. If we set s̃ = 1/s
then we obtain:

G1(s̃)−G1 (s̃+ 1) = − 4(s̃+ 1)

4s̃2 + 6s̃+ 3
− 2(2s̃− 1)

4s̃2 − 2s̃+ 1
+

2(4s̃+ 1)

4s̃2 + 2s̃+ 1
.

We define G̃1(s̃) = G1(s̃) + (2(2s̃− 1))/(4s̃2 − 2s̃+ 1), so that:

G̃1(s̃)− G̃1 (s̃+ 1) =
2(4s̃+ 1)

4s̃2 + 2s̃+ 1
− 2(4s̃+ 3)

4s̃2 + 6s̃+ 3
.

The poles of the denominator of the right-hand side are

−3

4
+

i
√
3

4
, −3

4
− i

√
3

4
, −1

4
+

i
√
3

4
, −1

4
− i

√
3

4
,

Since any pair of them does not differ by an integer, the functional equation above cannot have a
rational solution. We conclude that G1(s) is differentially transcendental over C({s}).

Proof of Theorem 17 in the case of model E. We have

K(x, y) = xy − t(y2 + x2y2 + xy2 + x2) ;

x0(s) =
s (v − 1)2 (v + 1)2

v (s2 + 2vs+ v4 − v2 + 1)
and y0(s) =

s (v − 1)2 (v + 1)2

v2s2 + (v3 + v)s+ v4 − v2 + 1
; (3.12)

x̃0(s) =
vs (v − 1)2 (v + 1)2

v4s2 + 2v3s+ v4 − v2 + 1
, with x̃0(s) = x0(v

2 s) .

As in the previous cases, we find the functional equation:

G0(s)−G0(v
2 s) =

v6 + s v3 − 2v4 − vs+ 2v2 − 1

(v4 + s2 + 2vs− v2 + 1) v

+
−s v5 − 2v6 + 4v4 + vs− 4v2 + 2

(s2v2 + s v3 + v4 + vs− v2 + 1) v
+

s v5 + v6 − s v3 − 2v4 + 2v2 − 1

(s2v4 + 2s v3 + v4 − v2 + 1) v
.

If we set G̃0(s) = G0(s)− v6+s v3−2v4−vs+2v2−1
(v4+s2+2vs−v2+1)v

, we obtain the functional equation:

G̃0(s) − G̃0(v
2 s) =

2s v5 + 2v6 − 2s v3 − 4v4 + 4v2 − 2

(s2v4 + 2s v3 + v4 − v2 + 1) v
+

−s v5 − 2v6 + 4v4 + vs− 4v2 + 2

(s2v2 + s v3 + v4 + vs− v2 + 1) v
.
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To conclude, we need to prove that the roots of the denominator of the right-hand side have distinct
v2-orbits, for any v ∈ (0, 1). The roots are:

α1 =
(v2−1)i−v

v2
, α2 =

(1−v2)i−v
v2

, α3 =
√
3(v2−1)i−(v2+1)

2v , α4 =
√
3(1−v2)i−(v2+1)

2v .

Let us suppose by contradiction that there exist n ∈ Z and v ∈ (0, 1), such that α1 = v2n α3, i.e.,
2(v2−1)i−2v2 = v2n+1

(√
3(v2−1)i−(v2+1)

)
. Since v is real we must have (

√
3v2n+1−2)(v2−1) = 0,

which is impossible for any v ∈ (0, 1). Therefore the v2-orbits of α1 and α3 are disjoint for any
v ∈ (0, 1). One can reason in the same way for all the other 5 possible quotients αi/αj , with

4 ⩾ j > i ⩾ 1, to prove that G̃0 (and hence G0) cannot be a rational function, and hence that it is
differentially transcendental over C(s).

For v = 1, the kernel curve defined by xy − 1
2

(
y2 + xy2 + x2y2 + x2

)
= 0 is parameterized by:

x1(s) =
−s2

s2 + 1
and y1(s) =

−s2

s2 + s+ 1
.

We have x̃1(s) = − s2

2s2 + 2s+ 1
, so that x̃1(s) = x1

(
s

1+s

)
. Therefore, the power series G1(s) in

(3.3) satisfies the difference equation:

G1(s)−G1

(
s

s+ 1

)
=

1

2
+

s− 1

s2 + s+ 1
+

1

2(2s2 + 2s+ 1)
− s

s2 + 1
.

We need to prove that this functional equation has no rational solutions. If we set s̃ = 1/s, we get

G1(s̃)−G1 (s̃+ 1) =
2s̃+ 1

s̃2 + s̃+ 1
− s̃

s̃2 + 1
− s̃+ 1

s̃2 + 2s̃+ 2
.

We define G̃1(s̃) = G1(s̃) +
s̃

s̃2+1
, so that:

G̃1(s̃)− G̃1 (s̃+ 1) =
2s̃+ 1

s̃2 + s̃+ 1
− 2(s̃+ 1)

s̃2 + 2s̃+ 2
.

The poles of the denominator of the right-hand side are

−1

2
+

i
√
3

2
, −1

2
− i

√
3

2
, −1 + i , −1− i .

Since any pair of them does not differ by an integer, the functional equation above cannot admit a
rational solution. We conclude that G1(s) is differentially transcendental over C({s}).

Remark 21. The idea of considering a parametrization as an important tool to solve probabilistic
or combinatorial functional equations goes back to [FIM17]. The parametrization (3.4) of the kernel
curve of modelA and the parametrization (3.9) of modelD coincide with the ones used in [DHRS20].
In the case of model B, one can recover the parametrization used in [DHRS20] from parametrization
(3.7) applying the variable change s 7→ s√

v
. The variable change s 7→ s√

v2−v+1
allows to recover the

parametrization in [DHRS20] from (3.10), while the variable change s 7→ s√
v4−v2+1

works for (3.12).

So, up to minor variable changes, for t ∈ (0, 1/2), we essentially use the same parametrization used
in [DHRS20].

The situation is more articulated for v = 1. As far as the models A, C and E are concerned,
we use a specific parametrization valid only for v = 1. For models B and D, a variable change
allows to obtain a parametrization that specialize properly at v = 1. The parametrization (3.7) of
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model B becomes trivial for v = 1. However, we can consider another parametrization that has a
“good” specialization at v = 1, obtained applying a variable change:

x0

(
s

s+ 1− v2

)
= −

s
(
s− v2 + 1

)
v (s+ v + 1)

and y0

(
s

s+ 1− v2

)
= −

s
(
s− v2 + 1

)
(s+ 1) (s+ v + 1)

. (3.13)

Moreover we have:

x̃0

(
s

s+ 1− v2

)
= −

s
(
s− v2 + 1

)
v

(s+ 1) ((v2 + v + 1) s+ v + 1)
,

so that

x̃0

(
s

s+ 1− v2

)
= x0

(
s

s+ 1− v2
◦ v2s

s+ 1

)
.

Also in the case of model D the parametrization (3.9) becomes trivial for v = 1. However, we can
consider another parametrization that has a “good” specialization at v = 1, obtained applying a
variable change:

x0

(
s

v − 1− vs

)
= −(v + 1)2 s (1 + (s− 1) v)

(s− 1)2 v2
and y0

(
s

v − 1− vs

)
=

(v + 1)2 s (1 + (s− 1) v)

(sv + 1) (s− 1) v
.

(3.14)
Moreover we have:

x̃0

(
s

v − 1− vs

)
= −(v + 1)2 s (sv − v + 1)

(sv + 1)2
,

so that

x̃0

(
s

s+ 1− v2

)
= x0

(
s

s+ 1− v2
◦ s v2

s v(v + 1) + 1

)
.

Specializing v = 1 at (3.13) and (3.14), one finds (3.8) and (3.11), respectively.

We would like to discuss the dichotomy in the behavior of Q(x, y) in Theorem 17, with respect
to the values of t. First of all, we notice that we cannot expect solutions of q-difference equations
to be strongly transcendental; in fact, solutions of q-difference equations can be (and one could
even say tend to be) meromorphic in a neighborhood of 0, as the next example shows.

Example 22. For q ∈ C, |q| > 1, the q-exponential series

eq(t) :=
∑
n⩾0

tn∏n
i=1(1− qi)

is an entire function, solution of the functional equation y(qt) = (1 + t)y(t). One derives from
the equation itself that it has a half spiral of simple zeros. Taking the logarithmic derivative with

respect to t d
dt , one proves that the meromorphic function ϵq(t) := t

eq(t)′

eq(t)
over C is solution of:

y(qt) = y(t) +
t

1 + t
.

As we have shown in the proofs above, for t ∈
(
0, 12
)
we find a q-difference equation for the

generating function (after replacing the variable by the uniformizing variable), i.e., a functional
equation with respect to a homography with two fixed points. For t = 1

2 , the two fixed points
coincide, and we get a functional equation with respect to a homography with one fixed point.
One can heuristically argue that the confluence of two special points to one causes an increase in
the complexity of the solutions, i.e., the fact of jumping from a usual differential transcendence
to a strong differential transcendence. In the next section we give a probabilistic interpretation of
Q(x, y) for any t ∈

(
0, 12
]
, which makes the point 1

2 appear to be critical from a probabilistic point
of view as well. This corroborates the change in behavior at this point.
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4 Probabilistic interpretation using Green functions

As explained in our introduction, one of the main messages of the present work is that for all the
models listed in Table 1, the point t = 1

2 is very special for the generating function Q(x, y, t), in
particular because the differential transcendence degenerates to a strong differential transcendence.
One can also make the following observations to reinforce the idea that something special happens
for t = 1/2:

• At t = 1
2 the kernel K(x, y, t) = xy(1− t · χS(x, y)) introduced in (1.3) degenerates, in some

cases even becomes a reducible polynomial;

• As shown in Proposition 15, the coefficients of the series Q(x, y, t) are actually rational num-
bers at t = 1

2 ;

• Strong refinements of the above statement will be obtained later on, see e.g. Theorem 3 (to be
proved in Section 5), where we will prove a connection between the coefficients of Q(x, y, 12)
and (rational) Bernoulli numbers.

In this section we give a probabilistic interpretation of why t = 1
2 is a very special point, using the

classical concept of the Green function for random walks.

4.1 Green function for random walks on segments

Let (X(n))n⩾0 be a classical simple random walk on Z, with uniform jump probabilities to the left
and right nearest neighbors. Let τk define the first exit time of the random walk from the segment
S̃k = {−k, . . . , k}, in bijection with the set Sk introduced in (2.1), i.e.,

τk = inf{n ⩾ 0 : X(n) /∈ Sk}.

By definition (see e.g. [Woe00, Chap. 1]), the Green function for the random walk killed when
exiting the segment Sk is

Gk(P,Q|t) =
∑
n⩾0

PP

(
X(n) = Q, τk > n

)
tn, (4.1)

where P ∈ S̃k and Q ∈ S̃k are arbitrary starting and ending points, respectively, and under PP the
random walk (X(n))n⩾0 starts at P almost surely, i.e., X(0) = P .

It is well known (see again [Woe00, Chap. 1]) that the radius of convergence of Gk(P,Q|t) in
(4.1) as a power series in t is independent of P and Q; it is denoted by 1

ρ , where ρ ∈ (0, 1] is often
called the spectral radius of the random walk.

In the particular case t = 1, the Green function (4.1) admits the following classical interpretation
in terms of a mean number of visits before exiting Sk:

Gk(P,Q) := Gk(P,Q|1) = EP

(∑
n⩾0

1{X(n)=Q,τk>n}

)
,

where 1 denotes the indicator function. Using the above notation, we immediately deduce the
following reformulation of the series Wk(P,Q, t) introduced in (2.2):

Lemma 23. Let k ⩾ 1. For any P,Q ∈ Sk, let P̃ , Q̃ be the corresponding points on S̃k. For any
|t| < 1

2 cos( π
2+k

) , we have

Wk(P,Q, t) = Gk(P̃ , Q̃|2t).

Let us do a series of four remarks.
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• The coefficient 2 in the Green function Gk simply comes from normalising the transition
probabilities of the random walk (X(n))n⩾0 to 1, while in the enumerative series Wk the
weights add up to 2.

• In particular, Wk(P,Q, 12) = Gk(P,Q|1). With this perspective, the case t = 1
2 is rather

special as it corresponds exactly to the Green function of the simple random walk with t = 1.

• Together with the identity (2.10), which expresses the series
∑

n⩾0#A{(0, 0)
n→ Q2k}tn as a

finite sum of termsWk(P,Q, t), we deduce that
∑

n⩾0
#A{(0,0) n→Q2k}

2n is a finite sum of products
of Green functions as above.

• The point 1
2 appears as the smallest upper bound of all radii of convergence of the series in

Lemma 23.

4.2 An interpretation using Cramér’s transform

In this paragraph, we provide a concrete interpretation of the seriesQ(x, y, 12), using Green functions
and the idea of Cramér’s transform. Here we will work directly with the two-dimensional model,
without using the decomposition with walks on segments Sk as in Figure 2.

Given a step set S, it is convenient to introduce the associated random walk (Z(n))n⩾0 with
uniform probability distribution on S, killed when leaving the positive quarter plane. By definition,
and similarly to (4.1), the Green function at (i, j) is

G(i, j|t) =
∑
n⩾0

P(0,0)

(
Z(n) = (i, j), τ > n

)
tn, (4.2)

where τ is the first time the walk goes out of the quadrant.
The most natural value of t in (4.2) is 1, because in this particular case we have an interpretation

of the Green function as the expected number of visits of the random walk at the given site (i, j):

G(i, j|1) = E(0,0)

(∑
n⩾0

1{Z(n)=(i,j)}

)
.

Using the obvious identity (see for instance [BRS14, Eq. (1)])

P(0,0)

(
Z(n) = (i, j), τ > n

)
=

#S{(0, 0)
n→ (i, j)}

#Sn
,

we deduce a direct relation between Green functions and the generating function Q(x, y, t), which
reads

Q(x, y, t) =
∑
i,j⩾0

G(i, j|#St)xiyj . (4.3)

We can first observe that evaluating the above identity at t = 1
#S gives

Q(x, y, 1
#S ) =

∑
i,j⩾0

G(i, j|1)xiyj .

Is it possible to evaluate (4.3) at a value of t > 1
#S ? Ultimately at t = 1

2? (And thus the Green

function at #S
2 .)

To answer these questions, we will use Cramér transform, a classical tool in random walk
theory, recalled in [BRS14, Sec. 2.3] in our combinatorial context. Introduce a new random walk,
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say (W (n))n⩾0, whose step set S is the same as that of (Z(n))n⩾0, but whose distribution is no
longer uniform: instead the probability of moving in direction (i, j) is given by

αiβj

χS(α, β)
,

for some positive quantities α, β (simply take α = β = 1 to get the uniform distribution) and χS
defined in (1.2).

The local probabilities of the random walks (Z(n))n⩾0 and (W (n))n⩾0 are related as follows
(see again [BRS14])

P(0,0)

(
W (n) = (i, j), τ > n

)
= αiβj

(
#S

χS(α, β)

)n

P(0,0)

(
Z(n) = (i, j), τ > n

)
,

and thus, denoting G(α,β) the Green function for the random walk (W (n))n⩾0, one has

G(i, j|t) = α−iβ−jG(α,β)(i, j|
χS(α,β)

#S t). (4.4)

The above identity allows to interpret the Green function G(i, j|t) for a general value of t in terms
of a classical Green function at t = 1, provided in the right-hand side of (4.4) it is possible to adjust

the parameters so as to have χS(α,β)
#S t = 1.

For our purposes, we want to evaluate (4.4) at t = #S
2 , because indeed

[xiyj ]Q(x, y, 12) = G(i, j|#S
2 ) = α−iβ−jG(α,β)(i, j|

χS(α,β)
2 ). (4.5)

Unfortunately, for any given singular model, we cannot find values of the parameters α, β such that
χS(α,β)

2 = 1. Indeed, since S contains the jumps (−1, 1) and (1,−1), we have

χS(α, β) >
α

β
+

β

α
⩾ 2.

As a conclusion, it is possible to interpret [xiyj ]Q(x, y, t) as a classical Green function for any
t ∈

[
1

#S ,
1
2

)
, but not at the limiting point t = 1

2 . However, we can take α = β = ε → 0, and in this

case χS(α, β) → 2. So a possible interpretation of [xiyj ]Q(x, y, 12) is the following:

[xiyj ]Q(x, y, 12) = lim
ε→0

G(ε,ε)(i, j|
χS(ε,ε)

2 )

εi+j
.

4.3 Branching random walks

To give an interpretation of [xiyj ]Q(x, y, 12) as the Green function of a concrete probabilistic model,
we will use branching random walks. While this model is very classical in probability theory, see e.g.
[Shi15], it has been less studied from a combinatorial perspective. See [dPLW19] for a connection
with non-deterministic paths.

Let us briefly describe the model. We introduce an offspring distribution ν on {0, 1, 2, . . .}. The
first particle (called the ancestor) starts at the origin and jumps (according to one given model S,
for instance A); then it immediately splits into a random number of particles, distributed according
to ν. Then each individual of the new generation makes independently one jump from S, and splits
into a random number of new individuals. All individuals exiting the quarter plane are killed. See
Figure 4 for an illustration.

The mean number of visits made by the branching random walk at a fixed point (i, j) starting
from the origin is given by

GBRW
ν (i, j) = E(0,0)

(∑
1{BRW=(i,j)}

)
.
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Figure 4: A path of branching random walk. Each particle jumps according to A
and then splits into a random number of particles, uniformly distributed in {1, 2}.
Individuals exiting the quarter plane are killed.

The reason why we introduced this model is that there is a strong connection between the Green
function of the branching random walk and the t-Green function of one single random walk, as
introduced in (4.2):

GBRW
ν (i, j) = G(i, j|Eν),

with Eν denoting the mean value of the distribution ν. Accordingly,

[xiyj ]Q(x, y, 12) = G(i, j|#S
2 ) = GBRW

ν (i, j),

provided Eν = #S
2 . For example, in the case S = A, we can take ν to be the uniform distribution

over {1, 2}, and get Eν = 3
2 = #S

2 . See Figure 4.
This reformulation has the advantage of giving a clear probabilistic interpretation of the coef-

ficients of Q(x, y, 12); on the other hand, it does not immediately explain why the point t = 1
2 is

critical.

4.4 Weighted models

While the results presented in this paper concern unweighted walks (i.e., each step from the step set
S is taken with weight 1), they can be made more general using the following simple idea. Given
any step set S and positive constants α1, α2 and β, the generating function Q(α1x, α2y, βt) turns
out to be the generating function Qa(x, y, t) of the step set S with weights

as = βα1
s1α2

s2 , (4.6)

for s = (s1, s2) ∈ S. Such families of weights are similar to those used in Section 4.2 to construct
the Cramér transform of the random walk; the only difference is that in (4.6) we have one more
parameter, because we don’t force the sum of the weights to be 1.
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The weights (4.6) are constructed using three parameters; consequently, given any weights
(ws)s∈S on the models A and D (which both have cardinality three), we can find values of α1, α2

and β such that as = ws. For the other models with four or five steps, the weights (4.6) are not
sufficient to cover all possible weights, but allow us to reduce the number of parameters by three.

A consequence of the above remarks and of the equality Q(α1x, α2y, βt) = Qa(x, y, t) of gener-
ating functions is that all transcendence results immediately extend to models weighted according
to (4.6).

5 Explicit expressions and Bernoulli numbers

In the case of the models A, B and D, we can directly get access to the nature of the generating
function Q(x, y, t) via explicit formulas for Q evaluated at t = 1

2 . These formulas are expressed
in terms of the Bernoulli numbers (Bn)n⩾0, classically defined via their exponential generating
function: ∑

n⩾0

Bn
xn

n!
=

x

ex − 1
. (5.1)

We recall that the EGF (5.1) is D-algebraic but that the ordinary generating function
∑

n⩾0Bnx
n

is D-transcendental [BDVR24, Prop. 11], and even strongly D-transcendental [BDVR24, Thm 3].
Note that Bernoulli numbers admit nice closed-form expressions (see for instance [Gou72]), such as

Bn =
n∑

k=0

(−1)k
(
n+ 1

k + 1

)
0n + 1n + · · ·+ kn

k + 1
, (5.2)

therefore Theorems 24, 26 and 28 below provide closed-form expressions forQA(x, 0,
1
2), QB(x, 0,

1
2)

and QD(x, 0,
1
2).

We leave as natural questions for further investigation whether QC(x, 0,
1
2) and QE(x, 0,

1
2) can

equally be expressed in terms of Bernoulli numbers, and for which models S can the generating
function QS(x, 0, q/(1+q2)) be expressed in terms of some q-deformations of the Bernoulli numbers.

5.1 Model A

Theorem 24. In the case of model A, we have:

QA(x, 0,
1
2) = 2 ·

∑
n⩾0

(22n+2 − 1)
(−1)n

n+ 1
B2n+2x

2n. (5.3)

In particular:

(a) QA(x, 0,
1
2) is strongly D-transcendental;

(b) the coefficients sequence (an)n⩾0 = (1, 0, 12 , 0, 1, 0,
17
4 , 0, 31, 0,

691
2 , . . .) of QA(x, 0,

1
2) satisfies

2 an+1 =
n∑

ℓ=1

(
n

ℓ

)
aℓ−1an−ℓ for all n ⩾ 0.

Proof. Since equation (3.6) admits a unique solution in C[[x]], namely x2

2 ·QA(x, 0,
1
2), it is enough

to prove that the power series f(x) :=
∑

n⩾0(2
2n+2 − 1) (−1)n

n+1 B2n+2x
2n+2 also satisfies (3.6).

We introduce T (x) :=
∑

n⩾0 Tnx
2n+1, with Tn = 22n+1(22n+2 − 1) (−1)n

n+1 B2n+2. It follows from

[BDVR24, §2.2.1], and in particular from Eq. (2.7) in loc. cit., that T (x) = x+2x3+16x5+272x7+
7936x9 + · · · satisfies the difference equation

T

(
x

1 + 2 ix

)
+ (1 + 2 ix)T (x) = 2x.
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Since f(2x) = 2xT (x), the ordinary generating function f satisfies the equation

f

(
x

1 + ix

)
+ f (x) =

x2

1 + ix
,

which coincides with (3.6). Then, assertion (a) follows from the strong D-transcendence of
∑

n⩾0Bnx
n

and from the closure properties of D-algebraic power series, while assertion (b) follows from the dif-
ferential equation tan′(x) = 1+tan2(x) satisfied by the tangent function tan(x) =

∑
n⩾0

Tn
(2n+1)!x

2n+1.

Remark 25. The last part of the proof can be used to show that for any r ∈ N, the power series∑
n⩾0

an
(n+r)!x

n is D-algebraic. For instance, FA(x) :=
∑

n⩾0
an

(n+1)!x
n satisfies

x2FA(x)
2 − 4xF ′

A(x)− 4FA(x) + 4 = 0.

In fact, FA(x) =
2
x tan

(
x
2

)
.

5.2 Model D

Theorem 26. In the case of model D, we have:

QD(x, 0,
1
2) = 2

∑
n⩾0

(2n+ 3)B2n+2(−x)n. (5.4)

In particular:

(a) QD(x, 0,
1
2) is strongly D-transcendental;

(b) the coefficients sequence (dn)n⩾0 = (1, 13 ,
1
3 ,

3
5 ,

5
3 ,

691
105 , 35,

3617
15 , . . .) of QD(x, 0,

1
2) satisfies

4(n+ 2)(2n+ 3) dn =
n−1∑
ℓ=0

(
2n+ 4

2ℓ+ 3

)
dℓdn−1−ℓ for all n ⩾ 0.

Proof. Recall that the power series QD(x, y, t) satisfies the functional equation

QD(x, y, t) = 1 + t

(
y +

y

x
+

x

y

)
QD(x, y, t)− t

x

y
QD(x, 0, t)− t

y

x
QD(0, y, t),

therefore the following “kernel equation” holds

x2

2
QD(x, 0,

1
2) +

y2

2
QD(0, y,

1
2) = xy, (5.5)

whenever (x, y) is a point on the “kernel curve” x y2 + x2 + y2 = 2xy.
This kernel curve has genus zero, and it can be rationally parametrized by

x(s) = −s2, y(s) = − s2

s+ 1

and by

x̃(s) = − s2

(s+ 1)2
= x

(
s

s+ 1

)
, y(s) = − s2

s+ 1
.

(Notice that these parametrizations are different from the one used in the proof of Theorem 17.)
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From (5.5) with (x, y) replaced by (x(s), y(s)), respectively by (x̃(s), y(s)), we deduce by sub-

traction that the power series W (x) := x2

2 QD(−x2, 0, 12) is the unique solution in Q[[x]] of the
functional equation

W (x)− 1

(x+ 1)2
·W

(
x

x+ 1

)
=

x3(x+ 2)

(x+ 1)3
. (5.6)

Let us introduce the power series β(x) :=
∑

n⩾0Bnx
n+1 = x− x2

2 + x3

6 − x5

30 + · · · . Since B2k+1 = 0
for k > 0, we have that β′(x) = 1− x+

∑
n⩾1(2n+ 1)B2nx

2n. To prove identity (5.4) it is enough
to show that the power series V (x) := β′(x) + x − 1 also satisfies equation (5.6). Indeed, the fact
that V (x) = W (x) implies that

QD(−x2, 0, 12) =
(
β′(x) + x− 1

)
· 2

x2
= 2 ·

∑
n⩾1

(2n+ 1)B2nx
2n−2,

which is equivalent to (5.4). Finally, the fact that V (x) satisfies (5.6) is a direct consequence of the
functional equation β′(x)− 1

(x+1)2
· β′(x/(x+1)) = 2x/(x+1)3, which is implied by differentiating

the equality β(x) − β(x/(x + 1)) = x2/(x + 1)2, itself equivalent to the first entry in Table 2
in [BDVR24] (see also [AIK14, Eq. (A.7), p. 241]).

Finally, assertion (a) follows from the strong D-transcendence of β(x) and assertion (b) follows
from Euler’s quadratic recurrence (2n+ 1)B2n +

∑n−1
i=1

(
2n
2i

)
B2iB2n−2i = 0 for all n > 1.

Remark 27. The last part of the proof can be used to show that for any r ∈ N, the power series∑
n⩾0

dn
(2n+r)!x

n is D-algebraic. For instance, FD(x) :=
∑

n⩾0
dn

(2n+3)!x
n satisfies

xFD(x)
2 − 4xF ′

D(x)− 6FD(x) + 1 = 0.

In fact, FD(x) =
2−

√
x cot

(√
x
2

)
x .

5.3 Model B

Let (Mn)n⩾0 = (1, 2, 8, 56, 608, . . .) be the sequence of median Genocchi numbers (A005439), im-
plicitly defined in the identity below in terms of Bernoulli numbers.

Theorem 28. For model B we have

QB(x, 0,
1
2) =

∑
n⩾0

Mn

2n
xn = 2 ·

∞∑
n=0

(
−x

2

)n n+1∑
k=0

(
n+ 1

k

)(
2n+k+2 − 1

)
Bn+k+2. (5.7)

Proof. The kernel curve defined by the polynomial K(x, y, 12) = xy − 1
2

(
x2y + xy2 + x2 + y2

)
can

be parametrized by

x(s) = − 2s2

s+ 1
and y(s) = − 2s2

1− s
.

(Notice that, again, the parametrization used below is not the one used in the proof of Theorem 17.)
By plugging this parametrization into the kernel equation

K
(
x, y, 12

)
Q
(
x, y, 12

)
= xy − x2

2
Q
(
x, 0, 12

)
− y2

2
Q
(
0, y, 12

)
and by using the equality Q(x, 0, t) = Q(0, x, t), we obtain that the power series f(s) := Q(s, 0; 12)
satisfies the equation

1

(s+ 1)2
f

(
− 2s2

s+ 1

)
+

1

(1− s)2
f

(
− 2s2

1− s

)
=

2

1− s2
. (5.8)
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Since the above equation (5.8) admits a unique solution in C[[s]], it is enough to prove that

f(s) :=
∑
n⩾0

Mn

2n
sn = 1 + s+ 2s2 + 7s3 + 38s4 + · · ·

satisfies (5.8) as well. We deduce from [DZ94, Cor. 2] that the power series

h(s) = s− s2
∑
n⩾0

Mn(−s)n = s− s2 + 2s3 − 8s4 + · · ·

satisfies the equation

h

(
s2

1 + s

)
+ h

(
s2

1− s

)
= 2s2.

From there, using h(s) = s− s2f(−2s), it follows that f(s) does indeed satisfy (5.8).
Finally, the expression in terms of Bernoulli numbers is a consequence of the identity

Mn−1 = 2(−1)n+1
n∑

k=0

(
n

k

)(
2n+k+1 − 1

)
Bn+k+1 for all n ⩾ 1,

itself a consequence of [DZ94, Cor. 3],

Mn−1 =
1

4n
·

n∑
k=0

(
n

k

)
(2k + 1)E2k for all n ⩾ 1,

where (E2n)n⩾0 = (1, 1, 5, 61, 1385, . . .) (A000364) is the sequence of Euler (“secant”) numbers.

Remark 29. Contrary to (the proofs of) Theorems 24 and 26, we cannot infer from the proof of
Theorem 28 that some exponential version of QB(x, 0,

1
2) is D-algebraic. Similarly, we are unable to

deduce from Eq. (5.7) a nonlinear quadratic recurrence similar to those in part (b) of Theorems 24
and 26. However, from (5.8) we can deduce the following linear recurrence (of unbounded length):

n∑
ℓ=0

(−2)ℓ
(
2n− ℓ+ 1

ℓ+ 1

)
bℓ = 1, for all ℓ ⩾ 0.

By Theorem 5.7, this identity is equivalent to the second identity in [DZ94, Cor. 1].

Remark 30. Contrary the models A and D, the power series QB(x, 0,
1
2) has integer coefficients.

This is a consequence of Theorem 28 and of a result due to Barsky and Dumont [BD81, Thm 4]. The
coefficient sequence (1, 1, 2, 7, 38, 295, 3098, . . .) of QB(x, 0,

1
2) appears to coincide with the so-called

Dellac sequence (A000366). This sequence has several interesting combinatorial interpretations;
for instance Dellac proved in [Del01] that its n-th term counts the number of terms in the resultant
of two degree-n polynomials. Our interpretation in terms of walks for model QB seems to be new.
It would be interesting to have a direct understanding of this new interpretation.

Remark 31. It can be shown that QB(x, 0,−1
2) = −2 ·

∑
n⩾0Bn+1x

n. Indeed, the kernel at
t = −1/2 factors (x+ y)(xy+ x+ y)/2, and the unique power series solution of x2f(x) + (−x/(1+
x))2f(−x/(1 + x)) = 2x2/(x+ 1) is f(x) = −2 ·

∑
n⩾0Bn+1x

n.
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