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We need to show that there exist M > 0 and € > 0, such that for any ¢« > M and any |z| < 1+ ¢ we
have:
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In fact, if holds, then [ADV04, Lemma 2.6] implies that
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is overconvergent. Notice that, in the notation of [ADV04] Proposition 2.7|, we have
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therefore this ends the proof [ADV04], Proposition 2.7|. First of all we shall prove the lemmaﬂ

Lemma 1. If the infinite product [[;2,(1 + wiz?) is convergent for |x| < 1+¢ then for any 0 < &' < e there
exists M such that |p;| < (1+¢€")" for any i > M.

Proof. We denote S,, = [, (1 + p;z"). By definition of convergence of an infinite product lim, S,, # 0.
Moreover the convergence is uniform on any smaller disk, therefore for any 0 < &’ < & we have:
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Since limy, 00 SUP|z <14 [Sn| tends to a constant, we must have |u,| < [(1+4¢€")7" for n >> 0. O

Proof of Formula(l). Let us consider ¢’ and &” such that 0 < ¢’ < & < e. Since the infinite product
[152,(1 + wix') is overconvergent, there exists M > 0, such that |p;]| < (14 &)~ for any i > M.

As far as the term |¢° — 1| is concerned, the properties of the p-adic logarithm (see for instance [DGS94,
I1, Proposition 1.1]) imply that:
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We deduce that '

¢ — 1| = inf(|r[,[ilogq]).
Hence (cf. the radius of convergence of the log for lim sup |i|~1/%)
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!The converse is also true but we don’t need it!



Then for any ¢ > M and |z|] < (1 4+ ¢”) we have:
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which implies the claim, maybe enlarging a bit M. O
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