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Abstract. We prove an ultrametric q-di�erence version of the Maillet-Malgrange
theorem, on the Gevrey nature of formal solutions of nonlinear analytic q-
di�erence equations. Since degq and ordq de�ne two valuations on C(q), we
obtain, in particular, a result on the growth of the degree in q and the or-
der at q of formal solutions of nonlinear q-di�erence equations, when q is a
parameter. We illustrate the main theorem by considering two examples: a
q-deformation of �Painlevé II�, for the nonlinear situation, and a q-di�erence
equation satis�ed by the colored Jones polynomials of the �gure 8 knots, in
the linear case.

We also consider a q-analog of the Maillet-Malgrange theorem, both in the
complex and in the ultrametric setting, under the assumption that |q| = 1 and
a classical diophantine condition.

Introduction

In 1903, E. Maillet [Mai03] proved that a formal power series solution of an
algebraic di�erential equation is Gevrey. B. Malgrange [Mal89] generalized and
made more precise Maillet's statement in the case of an analytic nonlinear di�er-
ential equation. Finally C. Zhang [Zha98] proved a q-di�erence-di�erential ver-
sion of the Maillet-Malgrange theorem. In the meantime a Gevrey theory for lin-
ear q-di�erence-di�erential equations has been largely developed; cf. for instance
[Ram78], [Béz92b], [NM93], [FJ95].

In this paper we prove an analogue of the Maillet-Malgrange theorem for ultra-
metric nonlinear analytic q-di�erence equations, under the assumption |q| 6= 1. It
generalizes to nonlinear q-di�erence equations a theorem of Bézivin and Boutabaa;
cf. [BB92]. The proof follows [Mal89].

The same technique allows to prove a Maillet-Malgrange theorem for q-di�erence
equations when |q| = 1, both in the complex and in the ultrametric setting, under a
classical diophantine hypothesis: this result generalizes the main result of [Béz92a]
and answers a question asked therein. Notice that the problem of nonlinear di�er-
ential equation in the ultrametric setting is treated in [SSa],[SS81],[SSb], where a
p-adic avatar of diophantine conditions on the exponents is also assumed.

One of the reasons that makes the ultrametric statement interesting is the pos-
sible application to the case when q is a parameter (cf. �2 below). For instance,
when q is a parameter, Corollary 5 (cf. below) becomes:
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Theorem 1. Suppose that we are given a nontrivial algebraic nonlinear q-di�erence
equation

F (q, x, y(x), . . . , y(qnx)) = 0 ,

i.e. F (q, x, w0, . . . , wn) ∈ C[q, x, w0, . . . , wn] nonidentically zero, with a formal so-
lution y(x) =

∑
h≥0 yhx

h ∈ C(q) [[x]]. Then there exist nonnegative numbers s, s′

such that

lim sup
h→∞

1
h

(
degq yh − s

h(h− 1)
2

)
< +∞

and

lim sup
h→∞

1
h

(
ordqyh − s′

h(h− 1)
2

)
> −∞ .

We could give a more precise statement in which 1/s and −1/s′ (with the con-
vention 1/0 = +∞) are slopes of the Newton polygon of the linearized q-di�erence
operator of F (q, x, y(x), . . . , y(qnx)) = 0 along y(x) (cf. Theorem 6).

In classical literature on special functions, q is frequently a parameter. Basic
hypergeometric equations are the most classical example in the linear case, while
the q-analogue of Painlevé equations are nonlinear examples, that has been largely
studied in the last years.1 This ultrametric �q-adic� approach to the study of a
family of functional equations depending on a parameter is peculiar to q-di�erence
equations.
Acknowledgement. I would like to thank Changgui Zhang, whose questions are at
the origin of this paper, and Jean-Paul Bézivin for his attentive reading of the
manuscript and his numerous interesting comments.

1. Ultrametric q-analog of the Maillet-Malgrange theorem for

|q| 6= 1

Let Ω be a complete ultrametric valued �eld, equipped with the ultrametric norm
| |, and let q ∈ Ω be an element of norm strictly greater that 1.2

1.1. Digression on the linear case. We denote by Ω{x} the ring of germs of
analytic functions at 0 with coe�cients in Ω, i.e. the convergent elements of Ω [[x]].
To the linear q-di�erence equation

Ly(x) =
n∑

i=0

ai(x)y(qix) = 0 ,

with ai(x) ∈ Ω{x}, we can attach the Newton polygon

(1) Nq(L) = convex envelop

(
n
∪

i=0
{(i, h) : h ≥ ordx=0ai(x)}

)
.

Of course the polygon Nq(L) has a �nite number of �nite sides, with rational slopes,
plus two in�nite vertical sides. We adopt the convention that the right vertical side
has slope +∞ and the left one has slope −∞.

Bézivin and Boutabaa have proved the following result:

1For some examples of formal solutions of Painlevé equations cf. for instance [RGTT01].
2We could have chosen the opposite convention |q| < 1, which leads to analogous statements.
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Theorem 2. ([BB92]) Let g(x) ∈ Ω{x} and y(x) =
∑

h≥0 yhx
h ∈ Ω [[x]] be such

that Ly(x) = g(x). Then either y(x) ∈ Ω{x} or there exists a positive slope r ∈
]0,+∞[ of Nq(L) such that ∑

h≥0

yh

q
h(h−1)

2r

xh ,

is a convergent nonentire series.

1.2. Statement of the main result. Consider an analytic function at 0 of n+ 2
variable, i.e. a power series

F (x,w0, w1, . . . , wn) =
∑

k,k0,...,kn>0

Ak,k0,...,kn
xkwk0

0 · · ·wkn
n ∈ Ω [[x,w0, w1, . . . , wn]] ,

such that

lim sup
k+
Pn

i=0 ki→∞
|Ak,k0,...,kn |

1
k+
Pn

i=0 ki < +∞ .

Remark that we have assumed, with no loss of generality, that F (0, . . . , 0) = 0. We
are interested in studying formal solutions of the nonlinear analytic q-di�erence
equation

(2) F (x, ϕ(x), ϕ(qx), . . . , ϕ(qnx)) = 0 .

To simplify notation for any ϕ ∈ Ω [[x]] we set Φ = (ϕ(x), ϕ(qx), . . . , ϕ(qnx)), and
we denote by σq the usual q-di�erence operator acting on Ω [[x]]:

σq : Ω [[x]] −→ Ω [[x]] ,
ϕ(x) 7−→ ϕ(qx) .

For any formal power series ϕ(x) ∈ Ω [[x]], such that ϕ(0) = 0, let Fϕ be the
linearized q-di�erence operator of F along ϕ:

Fϕ =
n∑

i=0

∂F

∂wi
(x,Φ)σi

q .

The operator Fϕ being linear, we can de�ne its Newton polygon Nq(Fϕ) in the
usual way (cf. equation 1). We want to prove that, for a solution ϕ(x) of (2), the
positive slopes of Nq(Fϕ) are linked to the q-Gevrey order of ϕ(x):

De�nition 3. A formal power series ϕ(x) =
∑

h≥0 ϕhx
h ∈ Ω [[x]] is a q-Gevrey

series (of order s ∈ R) if the series∑
h≥0

ϕh

qs
h(h−1)

2

xh

is convergent.

We can state our main result:

Theorem 4. Let ϕ(x) ∈ xΩ [[x]] be a formal solution of the equation (2) and let r ∈
]0,+∞] be the smallest positive slope of the Newton polygon of Fϕ. If

∂F
∂wn

(x,Φ) 6= 0,
then ϕ(x) is a q-Gevrey series of order 1/r.3

As a consequence we obtain:

Corollary 5. Let ϕ(x) ∈ xΩ [[x]] be a formal solution of equation (2). If F (x,w0, w1, . . . , wn)
is not identically zero, then ϕ(x) is a q-Gevrey series (of some nonspeci�ed order).

3We have implicitly set 1/ +∞ = 0.



4 LUCIA DI VIZIO

1.3. When q is a parameter... Suppose that F (q, x, w0, . . . , wn) ∈ C[q, x, w0, . . . , wn],
where q is a parameter, and that we have a formal solution ϕ(x) =

∑
h≥0 yhx

h ∈
C(q) [[x]].4 Up to equivalence, there are exactly two ultrametric norm over C(q)
such that q has norm di�erent than 1. For any f(q) ∈ C[q] they are de�ned by

(1) |f(q)|q−1 = d− degq f(x);

(2) |f(q)|q = dordqf(q);

where d ∈]0, 1[ is a �xed real number. Of course, | |q and | |q−1 extends to C(q) by
multiplicativity. Notice that |q|q = d < 1 and |q|q−1 = d−1 > 1.

Taking Ω to be the completion of C(q) with respect to | |q (resp. | |q−1), we
immediately see that Theorem 1 is a particular case of Corollary 5 and that Theorem
4 becomes:

Theorem 6. Let
∂F

∂wn
(q, x, y(x), . . . , y(qnx)) 6= 0 .

If r ∈]0,+∞] (resp. r′ ∈ [−∞, 0[) is the smallest positive slope (resp. the largest
negative slope) of Fϕ, then

lim sup
h→∞

1
h

(
degq yh − s

h(h− 1)
2

)
< +∞ , with s = 1/r,

and

lim sup
h→∞

1
h

(
ordqyh − s′

h(h− 1)
2

)
> −∞ , with s′ = −1/r′.

2. Examples

2.1. Colored Jones polynomial of �gure 8 knot. We consider the q-di�erence
equation satis�ed by the generating function of the sequence of invariants of the
�gure 8 knot called the colored Jones polynomials (cf. [Gar04, �3]):

J(q, n) =
n∑

k=0

qnk(q−n−1; q−1)k(q−n+1; q)k ∈ Z[q, q−1] , ∀n ∈ N .

The series J (x) =
∑

n≥0 J(q, n)xn ∈ C(q) [[x]] satis�es the linear q-di�erence equa-
tion[
qσq(q2 + σq)(q5 − σ2

q )(1− σ2
q )

]
y(x)−

x
[
σ−1

q (1 + σq)
(
q4 + σq

(
q3 − 2q4

)
+ σ2

q

(
−q3 + q4 − q5

)
+σ3

q

(
−2q4 + q5

)
+ σ4

qq
4
)
(q5 − q2σ2

q )(1− σq)
]
y(x)+

x2
[
q5(1− σq)(1 + σq)(1− q3σ2

q )
(
q8 + σq(q9 − 2q8)− σ2

q (−q7 + q8 − q9) + q7σ3
q + q8σ4

q

) ]
y(x)−

x3
[
q10σq(1− σq)(1 + q2σq)(1− q5σ2

q )
]
y(x) = 0 .

4The results that follows are actually true when we replace C by any �eld.
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The �nite slopes of the Newton polygon are: −1/2, 0, 1/2. It is clear looking at
the leading term of J(q, n) that J (x) cannot be a converging series for the norms
| |q and | |q−1 . Therefore it follows from Bézivin and Boutabaa theorem that

lim sup
n→0

1
n

(
degq J(q, n)− 2

n(n− 1)
2

)
< +∞

and

lim sup
n→0

1
n

(
ordqJ(q, n) + 2

n(n− 1)
2

)
> −∞ .

Notice that modulo the AJ conjecture (cf. [Gar04, �1.4]), those slopes are the same
as the ones de�ned in [CCG+94].

2.2. A q-deformation of the second Painlevé equation. Let us consider the
nonlinear q-di�erence equation associated to the analytic funtion at (0, 1, 1, 1):5

F (x,w−1, w0, w1) = (w0 + x)(w0w1 − 1)(w0w−1 − 1)− qx2w0 ,

namely

(3) (y(x) + x)(y(x)y(qx)− 1)(y(x)y(q−1x)− 1)− qx2y(x) = 0 .

It is a q-deformation of PII . Let ϕ(x) ∈ C(q) [[x]], with ϕ(0) = 1, be a formal
solution of equation (3). Then

Fϕ =
∑1

i=−1
∂F
∂wi

(x, ϕ(q−1x), ϕ(x), ϕ(qx))σi
q

=
[(
ϕ(x) + x

)(
ϕ(x)ϕ(qx)− 1

)
ϕ(x)

]
σ−1

q

+
[(
ϕ(x)ϕ(qx)− 1

)(
ϕ(x)ϕ(q−1x)− 1

)
+

(
ϕ(x) + x

)
ϕ(qx)

(
ϕ(x)ϕ(q−1x)− 1

)
+

(
ϕ(x) + x

)(
ϕ(x)ϕ(qx)− 1

)
ϕ(q−1x)− qx2

]
σ0

q

+
[
(ϕ(x) + x)ϕ(x)(ϕ(x)ϕ(q−1x)− 1)

]
σq

A formal solution of equation (3) is give by

ϕ(x) = 1Φ1(0;−q; q,−q2x)
1Φ1(0;−q; q,−qx)

= 1 +
q

1 + q
x+ · · · ,

where 1Φ1(0;−q; q, x) is a basic hypergeometric series:

1Φ1(0;−q; q,−qx) =
∑
h≥0

qh(h−1)

(−q; q)h(q; q)h
xh ,

and

(a; q)h = (1− a)(1− aq) . . . (1− aqh−1) .

A direct and straightforward calculation shows that the Newton polygon of Fϕ is
regular singular, meaning that it has only one �nite horizontal slope of length 2,

5This example is studied in [KMN+05, �3.5] and [RGTT01, Eq.(2.55)], where many other examples
can be found.
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plus the two vertical sides. Therefore Theorem 4 implies that the solution ϕ(x) =
1 +

∑
h≥1 ϕhx

h considered above veri�es:

lim sup
h→∞

1
h

degq ϕh < +∞ and lim sup
h→∞

1
h

ordqϕh > −∞ .

In other words, the solution ϕ(x) ∈ C(q) [[x]] is convergent for both the norm | |q
and the norm | |q−1 .

We could have also remarked that 1Φ1(0;−q; q, x) is a solution of the linear
equation

σ−2
q (σq − 1)(σq + 1)y(x) + q2xy(x) = 0 ,

whose Newton polygon has only a horizontal �nite slope. This means that 1Φ1(0;−q; q, x)
is convergent for both | |q and | |q−1 , and hence that ϕ(x) is also convergent.

3. Proofs

3.1. Proof of Theorem 4. The proof follows [Mal89]. It relies on the ultrametric
implicit function theorem; cf. [A'C69], [Ser06], [SS81].

We set ϕ(x) =
∑

h≥1 ϕhx
h. For any k ∈ N, let

1. ϕk(x) =
∑k

h=0 ϕhx
h;

2. ψ(x) be a formal power series such that ϕ(x) = ϕk(x) + xkψ(x);
3. Ψ(x) = (ψ(x), ψ(qx), . . . , ψ(qnx)) and Φk(x) = (ϕk(x), ϕk(qx), . . . , ϕk(qnx)).
Let W = (w0, . . . , wn), Z = (z0, . . . , zn). By taking the Taylor expansion of
F (x,W + Z) at W we obtain:

F (x,W + Z) = F (x,W ) +
n∑

i=0

∂F

∂wi
(x,W )zi +

n∑
i,j=0

Hi,j(x,W,Z)zizj ,

where H(x,W,Z) is an analytic function of 2n + 3 variables in a neighborhood of
zero. Hence we can write:

(4)

0 = F (x,Φ) = F (x,Φk(x)) + xk
n∑

i=0

∂F

∂wi
(x,Φk)qikσi

qψ

+x2k
n∑

i,j=0

Hi,j(x,Φk(x), xkΨ(x))q(i+j)kσi
qψσ

j
qψ .

To �nish the proof we have to distinguish two cases: r < +∞ and r = +∞.

Case 1. r < +∞. We are going to choose k ≥ sup(k1, k2 + l+1), where k1, k2, l are
constructed as follows (cf. �gure below). First of all let (n′, l) ∈ N2 be the point of
Nq(Fϕ) which veri�es the two properties:

1. l is the smallest real number such that (j, l) ∈ Nq(Fϕ) for some j ∈ R;
2. n′ is the greatest real number such that (n′, l) ∈ Nq(Fϕ).
Let us consider the polynomial

L(T ) =
n′∑

i=0

[
1
xl

∂F

∂wi
(x,Φ)

]
x=0

T i .

We chose k1 to be a positive integer such that for any k ≥ k1, the polynomial L(T )
does not vanishes at qk, and k2 ≥ r(n − n′). Notice that for any k ≥ k2 + l, the
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smallest positive slope of Nq(Fϕk
) is equal to r and the point (n′, l) is the �lowest�

point of Nq(Fϕk
) with greater abscissae.

6

-

XXXX �����
�

�
�

�

l

n′ n

6
?k2

r

Nq(Lϕ)

•

Remark that for any k ≥ sup(k1, k2 + l + 1) we have

ordx=0

n∑
i=0

∂F

∂wi
(x,Φk)qikσi

qψ ≥ ordx=0ψ(x) + inf
i=0,...,n

ordx=0
∂F

∂wi
(x,Φk) ≥ l + 1 .

Therefore we can write the linear part of equation (4) in the form

1
xl

n∑
i=0

∂F

∂wi
(x,Φk)qikσi

qψ = L(qkσq)ψ + xL̃(x, σq)ψ ,

where L̃(x, σq) is an analytic functional. Moreover we deduce from equation (4)
that

ordx=0F (x,Φk) ≥ k + l + 1 ,

so that there exists an analytic function M(x,w0, . . . , wn) such that equation (4)
divided by xl+k becomes

(5) L(qkσq)ψ + xL̃(x, σq)ψ + xM(x, xkΨ) = 0 .

Since L(qkσq) is a linear operator with constant coe�cients and L(qh) 6= 0 for
any h ≥ k, equation (5) admits one unique formal solution ψ(x) ∈ xΩ [[x]], whose
coe�cients can be constructed recursively.

In order to conclude, we have to estimate the Gevrey order of ψ(x). Let us
consider the following Banach Ω-vector space:

Hs,m =

∑
h≥1

ϕhx
h ∈ Ω [[x]] : sup

h≥1
|ϕh||q|hm−s

h(h−1)
2 < +∞


equipped with the norm∥∥∥∥∥∥

∑
h≥1

ϕhx
h

∥∥∥∥∥∥
s,m

= sup
h≥1

|ϕh||q|hm−s
h(h−1)

2 .

Since for any positive rational number s and any pair of positive integers k, h we
have

|q|s
k(k−1)

2 |q|s
k(k−1)

2 ≤ |q|s
(k+h)(k+h−1)

2 ,

the analytic functional

A(λ, ψ) = L(qkσq)ψ + λxL̃(λx, σq)ψ + λxM(λx, λkxkΨ)
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is de�ned over Ω×Hs,n′ :

A(λ, ψ) : Ω×Hs,n′ −→ Hs,0 ,

and veri�es

A(0, 0) = 0 and
∂A

∂ψ
(0, 0) = L(qkσq) .

Since L(qkσq) is invertible, the implicit function theorem implies that for any λ in
a neighborhood of 0 there exists ψλ such that A(λ, ψλ) = 0. The formal solution ψ
of equation (5) being unique, we must have ψλ(x) = ψ(λx) for any λ closed to 0,
which ends the proof.

Case 2. r = +∞. We chose the point (n′, l) as in the previous case: since there
are no �nite positive slopes, we have n′ = n. We can de�ne the polynomial L(T ) in
the same way as before. So we choose k1 ∈ N such that L(qk) 6= 0 for any k ≥ k1

and k2 ∈ N such that

inf
i=0,...,n

ordx=0

(
∂F

∂wi
(x,Φk)

)
> l

for any k ≥ k2. We deduce that ordx=0F (x,Φk) ≥ k + l + 1 and hence we are
reduced, by dividing equation (4) by xl+k, to consider the functional

L(qkσq) + λxM(λx, λkxkΨ) = 0 .

The same argument as above also allows us to conclude the proof in this case.

3.2. Proof of Corollary 5. Following [Mal89], we are going to show by induction
on n that Theorem 4 implies Corollary 5. Notice that for n = 0 we are in the
classical case of Puiseux development of a solution of an algebraic equation (cf.
[Mal89]). So let us suppose n ≥ 1.

If there exists a positive integer k such that

(6)
∂kF

∂wk
n

(x,Φ) 6= 0 ,

we conclude by applying Theorem 4 to the q-di�erence equation

∂κ−1F

∂wκ−1
n

(x,Φ) = 0,

where κ is the smallest positive integer verifying equation (6).

We now suppose that for any positive integer k we have ∂kF
∂wk

n
(x,Φ) = 0. By taking

the Taylor expansion of F (x,w0, . . . , wn), we can verify that F (x, ϕ(x), . . . , ϕ(qn−1x), ψ(x)) ≡
0 for any ψ(x) ∈ xΩ [[x]]. In particular, there exists λ ∈ Ω such that F (x,w0, . . . , wn−1, λx)
is not identically zero and F (x, ϕ(x), . . . , ϕ(qn−1x), λx) = 0. So we are reduced to
the case �n− 1�.

4. Complex q-analog of the Maillet-Malgrange theorem for |q| = 1

Let Ω be either the ultrametric �eld de�ned in �1 or the complex �eld C. We
choose q ∈ Ω such that |q| = 1 and q is not a root of unity.

To the linear q-di�erence equation

Ly(x) =
n∑

i=0

ai(x)y(qix) = 0 ,
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with ai(x) = ai,ji
xji + ai,ji+1x

ji+1 + · · · ∈ Ω{x}, we can attach a polynomial

QL(T ) = (T − 1)
n∑

i=0

ai,jiT
i .

We recall the result:

Theorem 7. ( cf. [Béz92b, Thm. 6.1] and [BB92, Thm. 6.1]) Let ϕ(x) ∈ Ω [[x]] be
a formal solution of Ly(x) = 0. We suppose that

(H) There exist two constants c1, c2 > 0, such that for any root u
of QL(T ) and any n >> 0 the following inequality is satis�ed:
|qn − u| ≥ c1n

−c1 .

Then ϕ(x) is convergent.

In the nonlinear case we have the following result that generalizes [Béz92a, �1]:

Theorem 8. Let ϕ(x) ∈ xΩ [[x]] be a formal solution of the q-di�erence equation

(7) F (x, ϕ(x), ϕ(qx), . . . , ϕ(qnx)) = 0 ,

analytic at zero. We make the following assumptions:

(1) ∂F
∂wn

(x,Φ) 6= 0,
(2) the polynomial QFϕ associated to the linear operator Fϕ veri�es the hypoth-

esis (H).
Then ϕ(x) is convergent.

Remark 9. Notice that the second hypothesis is always veri�ed in the following
cases:

• if Ω = C and q and the coe�cients of Q are algebraic numbers (cf. [Béz92a,
2.2]),

• if Ω is an extension of a number �eld K equipped with a p-adic valuation,
and q and the roots of Q(T ) are in K (in this case it is a consequence of
Baker's theorem; cf. for instance [DV02, �8.3])

Proof of Theorem 8. The �rst part of the proof of Theorem 4 is completely formal.
So once again we are reduced to consider equation (5)

L(qkσq)ψ + xL̃(x, σq)ψ + xM(x, xkΨ) = 0 .

The key-point is the choice of k >> 1, so that the Newton polygon of the q-

di�erence operator L(qkσq) + xL̃(x, σq) coincides with the Newton polygon of Fϕ,
up to a vertical shift.

LetH(0, r) be the Banach algebra of analytic functions converging over the closed
disk D(0, r+) of center 0 and radius r > 0, for r small enough, equipped with the
norm ∣∣∣∣∣∣

∑
n≥0

anX
n

∣∣∣∣∣∣
H(0,r)

= sup
n≥0

|an|rn .

It follows from [Béz92b, Thm. 6.1] and [BB92, Thm. 6.1]6 that the operator

L(qkσq) + xL̃(λx, σq) acts on Ω×H(0, r) and hence

A(λ, ψ) : Ω×H(0, r) −→ H(0, r) .

6Notice that [BB92, Thm. 6.1] is formulated only for q-di�erence equations with polynomial
coe�cients, but the same proof as [Béz92b, Thm. 6.1] works in the analytic case.
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The implicit function theorem also allows us to conclude this case. �
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