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Abstract. — We present a p-adic theory of g¢-difference equations over arbitrarily
thin annuli of outer radius 1. After a detailed study of rank one equations, we consider
higher rank equations and prove a local monodromy theorem (a g-analog of Crew’s
quasi-unipotence conjecture). This allows us to define, in this context, a canonical
functor of “confluence” of g-difference equations to differential equations, which turns
out to be an equivalence of categories (in the presence of Frobenius structures).

Résumé (Equations aux g-différences et monodromie p-adique)

Nous présentons une théorie p-adique des équations aux g¢-différences sur des cou-
ronnes arbitrairement minces de rayon extérieur 1. Aprés une étude détaillée des
équations de rang 1, nous nous penchons sur le cas de rang supérieur et prouvons un
théoréme de monodromie locale (un g-analogue de la conjecture de quasi-unipotence
de Crew). Cela nous permet de définir, dans ce contexte, un foncteur canonique
de “confluence” des équations aux g¢-différences vers les équations différentielles, qui
s’avére étre une équivalence de catégories (en présence de structures de Frobenius).
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Introduction

In the context of p-adic differential equations, the expression “local theory” occurs
in two different senses. In the naive sense, it refers to the study of the behaviour of
solutions in a small punctured disk around a given singularity. This theory has been
reasonably well-understood for a long time().

On the other hand, according to some insights of Dwork and Grothendieck, the
geometrically relevant p-adic differential equations are those which admit analytic
solutions in all non-singular open unit disks, and which extend a little inside the
singular disks. They should be understood as objects (cohomological coefficients)
belonging to geometry in characteristic p. It is then consistent with this viewpoint to
call “local theory” the study of the behaviour of solutions in arbitrarily thin annuli
with outer radius 1 contained in singular open unit disks(®).

In this sense, the local theory of p-adic differential equations has been developped
first by Robba (in rank one), then by Christol and Mebkhout (in arbitrary rank), and
has recently reached full maturity with the proof of the so-called local monodromy
theorem (Crew’s quasi-unipotence conjecture) which provides a bridge toward the
theory of p-adic Galois representations.

The objective of this paper is to set up a local theory of p-adic ¢-difference equa-
tions, parallel to the differential theory, and to put a link forward between the two
theories.

(l)although by no means completely understood, cf. for instance the problems raised by Ramero’s
theory [Ra98] in its differential variant

(2)gee the previous paper [A] for more detail and perspective, and for the apparatus of analogies
which motivates the present paper
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In the history of p-adic differential equation theory going from the rank 1 case to
arbitrary rank has been a difficult step. This is due in part to the fact that the study
of rank 1 p-adic differential equations indulges fairly down-to-earth methods (¢f. for
instance [R85], [CC96]). In the first part of the paper we develop an analogous theory
for p-adic g-difference equations of rank 1. The techniques employed are inspired by
the differential case and, due to their explicit and direct nature, show clearly how the
g-difference equations theory is a deformation of the differential one. In other words,
we construct a canonical deformation functor from the category of p-adic differential
equations of rank 1 to the category of p-adic g¢-difference equations, which can be
described explicitly.

The first part is organized as follows. In §1 we recall some basic facts of p-adic
g-difference algebra proved in [DVO03]. In §2 we prove some properties of the g-
exponential function: the greatest part of them plays a role in the sequel. Sections §3
and §4 contain a ¢g-analog of Dwork-Robba’s criterion of solvability and its application
to g-difference equations of rank 1 with meromorphic coefficient. The result in §4 are
used in the next section to show that we can actually reduce the study of rankl g-
difference equations analytic over an arbitrary thin annulus of outer radius 1 to the
study of rank 1 g-difference equations with polynomial coefficient. This reduction
is crucial in the characterization of ¢-difference equations with Frobenius structure
(c¢f. §6). We finish the first part by proving that for a g-difference equation having
a Frobenius structure is equivalent to be a “deformation” of a differential equation
with strong Frobenius structure (¢f. §7). This last result gives immediately the p-adic
monodromy theorem in the rank 1 case and the deformation functor (cf. §8).

There are two appendices, the first one being devoted to the Frobenius structure of
the g-exponential series. In the second one, we give a g-analog of Dwork’s approach
to the p-adic gamma function via the Frobenius structure of so-called exponential
modules.

In the second part, we consider g-difference modules M of arbitrary rank over
the “Robba ring” R of analytic functions on an arbitrarily thin annulus of outer
radius 1. We prove the local monodromy theorem for those g¢-difference modules
which admit a Frobenius structure: there exists a finite étale extension R'/R coming
from characteristic p, such that M ®% R'[log z] becomes a trivial ¢-difference module
(c¢f. §14.2, §14.3 for various equivalent precise statements). We follow K. Kedlaya’s
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approach to the p-adic local monodromy theorem in the differential case, proving
along the way a g-analog of Tsuzuki’s theorem on unit-root objects.

This second part is organized as follows. We first discuss finite étale extensions
R'/R coming from characteristic p, and how the g-difference operator extends to R’
(the lack of an explicit expression for this extended operator leads to many technical
difficulties in the sequel). We then introduce and investigate two notions of Frobenius
structures for g-difference modules: the strong Frobenius structure (analogous to its
differential counterpart), and the confluent weak Frobenius structure (which yields a
sequence of ¢P" -difference modules converging to a differential module with Frobenius
structure).

In §13, we analyse g-difference modules over R with overconvergent (strong) Frobe-
nius structure of slope 0. As in Tsuzuki’s theorem, they arise from finite p-adic
representations of the inertia group of a local field of characteristic p.

We then prove three versions of the theorem of quasi-unipotence for g-difference
modules over R which admit a strong Frobenius structure. We also show that such
g-difference modules also have a confluent weak Frobenius structure. This gives rise
to a canonical functor of “confluence” between such g-difference modules (M, X,),
and differential modules over R which admit a strong Frobenius structure, and this
functor turns out to be an equivalence (§15.1). More precisely, for any such (M, X,),
there is a canonical sequence of qpis—difference structures on the R-module M (for
fixed s and with ¢ — 00, so that q”“ — 1), which converges to a differential structure
on M.

PART 1
RANK 1

1. Generalities on p-adic g-difference equations of rank 1.

1.1. The g-difference algebra of analytic functions over an annulus.—
Let K be a field of characteristic zero, complete with respect to a non archimedean
absolute value | |, with residue field k of characteristic p > 0. We denote by Ok its
ring of integers and we assume that the absolute value is normalized by |p| = p~.
For any interval I C R>o we consider the K-algebra Ag(I) of analytic functions

with coefficients in K on the annulus Cx(I) = {x € K : |z| € I}:

Ax(I) = {Z apz™ 1 ay, € K;ngriloom"mn =0Vpe I} .
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We denote by Mg (I) its field of fractions (the field of meromorphic functions on
Ck(I)), and by Bg(I) the subring of bounded elements of Ak (I). The theory of
Newton polygons shows that every invertible analytic function on C(I) is bounded,
so that Ax(I)* = Br(I)*. We will omit the subscript K when there is no ambiguity.

We fix once for all an element ¢ € K, such that |1 — ¢q| < 1 and that ¢ is not a
root of unity. The algebra A(I) has a natural structure of g-difference algebra. This
means that the homeomorphism

c(I)y — c()
T — qr
induces a K-algebra isomorphism
o, AlI) — A()
f@) — flgz) -
Similarly for M(I) and B(I).

1.2. The g-derivation.— To the operator g, one associates a “twisted derivation”
d, defined by

flgz) — f(2)

4P = =

which satisfies the twisted Leibniz Formula:
(1) dq(f9)(x) = flgz)de(9)(2) + dg(f)(z)g(x) -
For any pair of integers n > ¢ > 1 and any f,g € M(I) the g-derivation d, verifies:

(2) dga™ = [n]qx"_l, where [n], =1+¢q+---+¢" ' = -1,

q—17

dy n n—i ! ! ! n [n]}
(3) mx =, q;c , where [0], = 1, [n], = [n]4[n—1], and (l)q = [y

mn - n mn—j j j
@ G0 =3 (}) G e,

7=0 q
1.3. g-difference equations.— Let us now consider a g-difference equation of rank
1 with coefficients in M(I):
(5) y(gz) = a(@)y(z), a(x) € M(I).
We shall often write (5) in the form
. a(r) —1

6 doy(x) = g(z)y(x), with g(z) = .
(6) qy(z) = g(x)y(z) (z) -1z

For any u € M(I)*, z(x) = u(z)'y(z) is a solution of the g-difference equation

(7) 2(q2) = [u(gz) ' a(2)u(@)] 2(2)
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or equivalently of
© dyr(o) = | 2 g(0) + L 2(0),

We shall say that equations (5) and (7) (or (6) and (8)) are M (I)-equivalent(®).
From (6), one derives the following sequence of equations
dy () (@) = gn(@)y(z),
with g1 (z) = (), gn+1(z) = gn(gz)g1(x)+dggn(x). It is convenient to set go(z) =1
If g(x) is analytic at 0, then ) - g[’;bg?)x” is a formal solution of y(qz) = a(z)y(z).

1.4. Generic points.— In order to apply the technique of generic points, we shall
have to use an auxiliary extension of normed fields 2/ K, with the following properties
(for the construction of such a field see for instance [R000, §3, 2]):

1. the field 2 is complete and algebraically closed;

2. the set of values of 2 is R>q;

3. the residue field of (2 is a transcendental extension of the residue field of K.
For any p € R> the field Q contains an element t,, called a generic point (at distance
p from 0), such that t, is transcendent over K and |¢,| = p, so that the norm induced
over K (t,) C Q is defined by

> aitf.; _ sup; |ai|pt
> bjtf; sup, |bj|pJ
Definition 1.1. — For any p € I, we call generic radius of convergence of y(qzx) =

a(z)y(x) at t, the number

gn(ts)
[n];

We will write simply R, when no confusion is possible.

n—o0

R,(0q — a(z)) = inf (p, lim inf

1/n>

1.5. Properties of the generic radius of convergence.— The following proposi-
tion summarizes some facts about the generic radius of convergence, which are proven
in [DV03].
Proposition 1.2. —
1. (Twisted Taylor expansion) Let dyy(x) = g(x)y(x) be a g-difference equation
with coefficient g(x) € M(I) and let £& € C(I). Suppose that g(z) does not

have any pole in ¢N¢. Then dyy(z) = g(z)y(x) has an analytic solution in a
neighborhood of € if and only if

gn(§)

[n]q

—1/n

R :=liminf > |(g —1)¢].

n—oo

(®)We shall also use a similar terminology for other rings of functions.
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In that case, the unique analytic solution y(z) of y(qx) = a(x)y(x) in the open

disk D(&, R™) wverifying y(§) = 1 coincides with the sum of the series

Z gn(

= Ml

2. Let b(z) = u(gz) a(z)u(z), with u(z) € M(I)*. Then R,(c —a(z)) = R,(c —
b(x)) for any p € I, i.e. the generic radius of convergence is invariant under

M(I)-equivalence.
3. (g-analog of the Dwork-Robba effective bound) If R, > |q — 1|p, then

gn(tp)
[l |~ By

4. (Transfer to an ordinary disk) Let g(x) be analytic over D(&,p™), with €
K and |§| < p, and let R, > |q — 1|p. Then dgy(x) = g(x)y(z) has an analytic
solution over the disk D({, R,). Moreover, the equation dyy(x) = g(x)y(x) has
an analytic solution over the disk D(&,p~) if and only if R, = p.

5. (Transfer to a regular singular disk) Let a(z) € A(]0,1]) and u(z) € K [z]
be a formal power series with coefficients in K such that u(qz) la(z)u(z) € K.
If R, = p, the series u(zx) converges for |z| < p.

?) (#,8)n,q, where (2,8)n,y = (& —&)(x —¢€)--- (x — ¢"1¢).

q

1
< —, foranyn>1.

Corollary 1.3. —  Let y(qz) = a(z)y(z) be a gq-difference equation with a(zx) €
A([0,1]) (resp. A([0,1]) N M([0,1])). Then y(qz) = a(z)y(z) has a solution y(z)
analytic and bounded over C([0,1]) if and only if lirri R, =1 (resp. Ry =1).

p—

Proof. — Let a(z) € A([0,1]). It follows from the statement 4. of the previous
proposition that the existence of a solution y(z) analytic and bounded over C([0,1])
implies R, = p for any p €]0,1[. Hence we conclude that lim,_,; R, = 1.

On the other side, suppose lim,_,; B, = 1. It follows by assertions 4. that the

formal solution
gn(
y(z)=>_ ]

n>0

0

x)m"

q

of y(gz) = a(z)y(z) converges in D(0, R,) for any p €]0, 1[. This proves that y(z) €
A([0,1]). Finally statement 3. implies that

) gn(?) gn(t!p)
[n]; [n];
By letting p tends to 1, one proves that y(x) is bounded.

If a(z) € A([0,1]) N M([0,1]), the generic radius of convergence R; is defined.
Assertion 4. of (1.2) states that y(¢z) = a(z)y(z) has a solution y(z) € A([0, 1]) if
and only if Ry = 1. Moreover the existence of the analytic solution y(z) € A([0, 1])
implies that R, = p for any p €]0, 1], therefore the inequality (9) allows to conclude
that y(z) is bounded. O

L
< &

<
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Usually in the theory of g-difference equations, one assumes that the coefficient a is
invertible®. We shall follow this tradition, and consider mostly g-difference equations
y(gz) = a(x)y(z) with a(z) € A(I)* = B(I)*. Written in the form d,(y) = gy, this
implies that g € B(I). Actually most of the time, we shall have g € B(I) as in the
differential case (the logarithmic differential of any element of A(I) belongs to B(I)),
and even |(g — 1)g|g(r) < 1, |a|pm) = 1.

2. An example: the g-exponential function.

2.1. The g-exponential eq(z).— The power series

n

eq(z) = Z ;L—l

n>0 q
is a g-deformation of the exponential series and satisfies the g-difference equation
doeq =e€q,
that is to say
eq(gz) = (14 (g —1)z)eq(2) .

1
Proposition 2.1. — The series eq(x) has radius of convergence H |[p]qpi e

i>0
Proof. — Every positive integer n can be uniquely written in the form n = p®m + k,

where m, s,k € Z, m and p are coprime and 0 < k < p—1. If ¥ > 0 then |[n],| =
|g”" ™[k, + [p*m],| = 1, in fact |[k],| = 1 and |[p*m],| = |[m] e [p°]4| < 1. Therefore

(3]
|l | = H|[P]q[i]qp| =11

i>0

[p][#]

qpi bl

where the product on the right is actually finite. It follows that

1
lirerLsogp |[n];|1/n = ,»1;[0 [p];:l
) O
Proposition 2.2. — If
(10) dist(ag”?, bg”r) = gélzr; la — g°b| < radius of convergence of eq(x) .
the analytic function izggg, with a,b € K, a # 0 # b, is overconvergent, i.e. it has a

radius of convergence > 1.

(9)This convention is also in use in the higher rank case, where a(z) is a matrix; it allows to define
the dual system.



g-DIFFERENCE EQUATIONS AND p-ADIC LOCAL MONODROMY 9

Remark 2.3. — Notice that ‘;’;‘;((Z:)) , with a,b € K, is overconvergent if and only

if |a — b < |w|, hence the inequality above is actually a g-deformation of the analog
condition in the differential framework.

Proof. — The series i"((‘;;)) is solution of the g-difference equation
14+ (¢g—1)ax
ylez) = 7 - 1)bmy(ﬂv) -
Notice that minyez, [¢*a — b| is realized for o € Z, a > 0, hence, by multiplying
iz((';:f)) by (1, (g — 1)az)a,q, we can assume that min,ez, |a — ¢*b| = |a — b|. Observing

that for any integer n > 1
dl](17 (q - l)bm)mq = (qn - l)b(la (q - l)qu)n—l,q ;

one verifies by induction that the series Zq((‘;;)) is solution of
q

m — (a7 b)",q
O = =,

This proves that
el](ax) _ (a7 b)nvq n
eq(bz) Z v

[

TLZO [n]q

Let r(eq(x)) be the radius of convergence of e,(x). The condition |a — b| < r(eq4(z))
implies that

(@, D) | ™ e "
limsup |—224| = limsu a—-bg")| <1.
mswp | T = e,y e | L e = b

O

2.2. The analytic function logeq(x).— If |e,(x) — 1| < 1, it makes sense to
consider the analytic function Lg(z) = logeq(z). From the g¢-difference equation
satisfied by e,, one derives immediately the equation:

Lq(gz) = Lg(x) +log(1 + (¢ — 1)7),
which can be rewritten in the form

4,Ly(x) = 3 (-1)"(q -~ 1)"

n>0

We find that the analytic function Ly(x) has the well-known expansion (cf. [HL46,
§2], [Q]):

'Z.’"/

n+1"

Lq(.fL') — Z (_1)n—1(q - ]-)n_lmn .

[n]qn

Proposition 2.4. —

1. The series Ly(z) converges for |z| < |¢ — 1|71,
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1
2. If o] < 223 sup (Ipl77, g = 11), then |Ly()] < |al.

Proof. —
1. It is enough to notice that

_ n—1|"=n
lim inf (g-pm—
n—00 [n]gn

liminf |n° loggq —_—.
|q—1| n—00 | | |q—1|

2. Since Ly(z) = 37(14‘2721% ), we have to prove that |z| <

=1 e N
B2 s (7.l - 1) it

sup |———F——2"| <1.

EACEERCE
This follows from the inequalities |p|1ﬁ < |n 4+ 1]*/™ and sup (|p|ﬁ, lg — 1|) <
|[n + 1]q[*/™. O

In the sequel of this section, we assume that K contains the p-th roots of unity. It
then also contain p — 1 distinct non zero roots of the equation 7?7 = —pmr. One picks
1
one of them and denotes it by 7 (Dwork’s constant). Notice that |7| = |p|?-T.

Corollary 2.5. — If |¢ — 1| < |«|, the series ei“p(gfw)) is overconvergent.
Proof. — Let us consider the series
1 _ n—1
Ly(mz —m;—}—z )y liw"x”.
n>2 n]qn

Notice that the assumption |¢ — 1| < |x| implies |[n],| = |n|. Forn=2,...,p—1 and
|z| < |w(g—1)|"2 the following inequality holds:

‘(1 _q)nil n,n

< .
fl,m " ||

On the other hand, for n > p and |z < |¢ — 1|=|x|? < |q¢ — 1|~|x|~"+F we have

‘ (1— q)"’lﬁnwn < ‘ ("

< .
l,m w2 I

We conclude that there exists € > 0 such that for |z| < 1+¢ we have |L,(7rz) — 72| <

||. Hence the series “((m)) = exp (Lq(mx) — wx) is analytic for |z| < 1+ &. O
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2.3. Overconvergent solutions of ordinary g-difference equation at 0.— In
this subsection we are going to use the analytic function L, to construct an overcon-
vergent solution of a linear g-difference equation of rank 1, under suitable hypothesis.

Lemma 2.6. — Let y(qr) = a(x)y(z) be a gq-difference equation such that a(x) is
an analytic function at 0, with a(0) = 1. Then write a(x) as an infinite product
[Tis: (14 pizt). If there exists € > 0 such that

sup 1411 1 eyt < ]

i>1 ¢ — 1]

then the infinite product

Ies ( H_z 1xi>

T
i>1 q

converges to an overconvergent solution of y(qzr) = a(z)y(zx).

Proof. — Since
| ;. sup (|7, [¢" = 1) .
- 1+4e)<|m - for any ¢ > 1
gt =1 I g -1 ’
we have
e "
sup |Lg ( 'l;z )‘ < sup 'Ijz ‘ < |m|.
lz|<1+e ¢ -1 lo|<14e 9" — 1

It follow that

0= Lo (45)

i>1

is an analytic function for |z| < 14 ¢ and that sup |z(z)| < |7|. We conclude that

lz|<14e
pi’
exp z(z) = Heqi ( Z.z_ 1)
i>1 q
is an overconvergent solution of y(qx) = a(z)y(z). O

Proposition 2.7. — Let y(qr) = a(z)y(z) be a q-difference equation such that
a(z) = [Lis1 (1 + pszt) is an overconvergent analytic function at 0. Then there ez-
ists a positive integer M and a positive real number € such that y(qz) = a(z)y(z) is
M([0,1 + ¢[)-equivalent to

M .
y(gz) = [] (1 + miz?) y(x).

i=1
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Proof. — Since a(z) is overconvergent there exists a positive integer M and a real
number ¢ > 0 such that |u;| > (1 +¢)! for any i > M. Let 0 < &’ < e. For any
|z] <1+¢' <1+¢e we have

lim w =0.
imoo |(¢" — 1)
Let us fix an integer M > 0 such that
sup sup M < |n|
i>M |g|<iter (g8 —1)]
and set p
N i
a(x) ig,, (1 + a:’) .
It follows from the previous lemma that there exists u(z) € A([0,1 + €'[) such that
u(gz) = a(x)u(z), i.e. such that %a(x) =TIX, (1 + peat). O

3. Solvability (at the boundary).
Recall that the Robba ring R = R, = Rk, is the ring
R = Ues0A(]l —€,1])

of analytic functions on some thin annulus with the unit circle as outer boundary.

The subring

& = g; = g}—(,w = Ue>OB(]1 -6 ]-D

of bounded functions is endowed with the sup-norm |~ a,z"|gt = sup |a,| (caution:
this is not a Banach ring). If the valuation of K is discrete, this is a Henselian field,

with residue field k((z)).
We introduce the subrings

B=B,=A(0,1) n&ET, H' =H! = Uss0A(l — €,00))

(on which the restriction of | |¢+ is the sup-norm, according to the principle of the
maximum).

In this section, we begin the study of g-difference equations y(gz) = a(x)y(x) with
a(z) € R* = (EH)*.

By iteration of the operator d,, we deduce from the g-difference equation y(gz) =
a(x)y(x) a sequence of equations

dyy(r) = gn(z)y(x),

with g,(z) € €' and go(z) = 1. Since a(z) € B(]1 — ¢, 1]) for some ¢ > 0, it makes
sense to consider R,(o, — a(x)) for p €]1 —¢,1].
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Definition 3.1. — The equation y(qz) = a(z)y(z), with a(z) € £, is said to be
solvable®) (at the outer boundary) if

Il’l—% Ry(oq —a(z)) =1.

Remark 3.2. — It follows immediately from (1.2) that solvability is invariant under
Et-equivalence.

One can define the notion of solvability without using the generic radius of conver-
gence:

~—

gn(z

[n]g

n—oo

Lemma 3.3. — lim R, = inf (l,lim inf
p—1

Proof. — () Let us set

gn(T)

n—oo

Ret = inf (1,lim inf

Notice that for any p €]1 — ¢, 1[, we have

gn (tp)
[n];

) )
Et

R, = liminf ( sup %
q

n—o0 OSSSH

_1
) and Rg+ = lim inf ( sup

n—oo OSSS’n

(tp)

Moreover (cf. [CD94, 2.1]) h,(n) = supg<s<p g’[‘n]! is a continuous function of p
and (@)

: gn\T

lim h,(n) = sup ,

p—1 p( ) 0<s<n [’I’L]; st

hence it is enough to prove the uniform convergence of the sequence hp(n)%.
The proof of [DV02, 4.2.7] actually shows that for any positive integers N > n >
s > 0 such that N = [X¥]n + s, the h,(n)’s verify the inequality

2~

[V],!
(In)eHl= 1 1s),!

3=

+

2~

hp(N)¥ < hy(n)

Hence, letting N — oo, we obtain

Rip < hy(n)* ([l |* Jim [INT,IH)

(5)This terminology is very unsatisfactory (solvable in what?) but has been of constant use in the
theory of p-adic differential equations since Robba’s studies. For want of a better word, we shall
adopt it here.

(6)The continuity of the function R, is proved in [CD94]. The proof that follows uses an argument
of uniform convergence and it is a g-analog of an unpublished proof by F. Baldassarri and L. Di
Vizio.
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It follows from (1.2) that

1 =% . 1L 1 1
1w ! < 1.
R, (|[n]q| J\}l_rgol[N]qlN) < hp(n)= < R,’
which finishes the proof. O

4. A characterization of solvability.

The following characterization of solvability is a g-analog of a result by Dwork and
Robba [DR77, 5.4] and will be used to prove that solvable ¢-difference equations are
El-equivalent to solvable g-difference equations with coefficients in K [1].

Proposition 4.1. — Let /K be the extension introduced in subsection 1.4. The
following assertions are equivalent:
1. The q-difference equation y(qr) = a(z)y(z), a(z) € &, is solvable.
2. There exists a sequence R, (x) € &, such that
Rn(qz)
—a(z

=0.

lim ‘
&

n—oo

3. There exists a sequence R,(x) € 55 such that

. dq(Ry)(z) a(z) —1
lim |22 g(z =0, where g(x) = ———.
Proof. — The equivalence between 2. and 3. is straightforward.

Let us prove that 3. implies 1. We set g:1(z) = g(z) and gny1(z) = dggn(z) +
91(2)gn(gz) and we fix € €]0,1] and n > 0. We claim that if the inequality

dy(Ry) ()
b A VAL <
Ralw) O, =
is satisfied then we have
dy (Rn)(z)
q
=" —gn(z)] <e forany N > 1.
R, (x) ot
Q

We prove our claim by induction. In fact, it follows from proposition 1.2 that
dy (Rn)(2)

B | < IV

£

and hence that |gn(z)|g+ < 1. Therefore recursively one obtains:

|5 (R (@) = 941 (2) o (0) o1
|dy (dY (Rn)(z) — gn(2) R (7)) + gn(g) (dg(Rp)(x) — g1(x) Rn(2)) |€5
sub (|} (Ra) (@) = g0 (2) R @)] oy o 42) (0 () (@) = 91(0) o0y )
£ 1Rn@)ly

IA A
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Let us fix N > 0 and let & < |[N]}|. Then there exists n >> 0, depending on N, such

that
gn () dy'(Rn)(®)  gn(z) dY Ry (x) ol E
MMZ%SW(U%&M) wn%’wwmm%)g”(wyoﬁh

which implies that y(gx) = a(z)y(z) is solvable.
Let us now prove that 1. implies 3. Let us consider the sequence of element of £1:

Bo=1, pi(z) = —g(z), Bny1(qzr) = dyBn(z) + Bi(z)Bn () .

We choose a generic point ¢; € Q such that |¢1] = 1 and we set

ZBN(]x )n.g € ENt] € &, for any n > 1.

Notice that R, (x) verifies the non homogeneous g-difference equation

doBa(a) — 9@ Ba(@) = 3 dyBn(z) + B1(2)Bn (2) (2,0~ 3 M(wﬁl Nelq

[NVT;

= [n +1]qﬂ[n(] )(x t1)n— 1, -

N=0

The following lemma allows to conclude the proof by considering the subsequence
(an,l(x))nezm. O

Bn(x)
[n];

Lemma 4.2. — < |Rn(x)|gé.

Et

Proof. — Consider the polynomial ring £t[2]. We have an embedding of valued K-
algebras (€1, |g1) C (ET[2],] |t ), where | |gi . is defined by

= suplas(z)lys . for any X, ai(x) € E1[2]
Et,z ¢

Let d, , be a g-difference derivation acting on £[2], in the following way

dg,- (Zai(aj ) Zal )ilgz*™" , for any Zai(a:)z" € &Mz

i>0 i>1 i>0

Observe that

Zaz S Zai(w)z
q >0 £t 2 >0

Ez
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and that |Ei20ai(x)zi‘gu = ‘Zizoai(m)t{ e We set R,(z,z) =
Q

)

> Neo B[JJ"\,—(]?(w,z)N,q € E1[2]. Since

dy . 0 for any pair of integers n > N > 0,
= (T, 2) Ny = nn=1)
[n]; (-1)"q™ = ifn=N,
we conclude that
Bn(z) dy . (Ry)
= Y (.’L‘,Z) < |R (Z',Z)' = lR (.’E,t1)| N
il Loy |7 S P e 2R

Remark 4.3. — Notice that if g(z) € K[z] then R,(z) € Q[z].

4.1. Solvability of g-difference equations with constant coefficients.—

Corollary 4.4. — The q-difference equation y(qx) = ay(x), with constant coefficient
a € K, is solvable if and only if a € ¢%».

Proof. — It follows from (4.1) that y(gx) = ay(x) is solvable if and only if a is the limit
in &), of a sequence R, (qz)R,, ()" !, with R, (z) € Q[z]. Therefore if y(¢z) = ay(z) is
solvable, the coefficient a is the limit of a sequence in ¢%, i.e. a € ¢g%». Conversely, if
a = ¢ with a € Z,, then there exists a sequence of integer o, € Z such that a, = a
and hence that |£%.nﬂ —algr — 0. O

Remark 4.5. — By induction on n > 1 (cf. [DV03, 1.2.4]), one can prove that the
solutions of the equation y(gz) = ay(x) are necessarily solutions of the sequence of
equations:

dy (@a-1(a—-g)---(a—g"")
Ty(e) = e —Y(2).
[l (-1 —-1)---(¢" - 1)g = an
Therefore the previous corollary implies that the series
—1MMa—-q)---(a—qg"?
) s -De-g-a=g),

has radius of convergence 1 if and only if a € ¢, generalizing [DV 03, 8.2], where the
radius of convergence of (11) was calculated under the assumption |1 — ¢| < |p|ﬁ
This should allow to drop the assumption |¢ — 1| < |7| in [DV03, §3].

4.2. Solvability of g-difference equations meromorphic at zero.— The next
corollary concerns rank 1 g-difference equations whose coefficient has at worst a pole
at 0 and is analytic in C(]0, 1[).
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Corollary 4.6. — Consider a solvable q-difference equation y(qx) = a(x)y(zx), with
zNa(x) € B for some positive integer N. Let as(z) € K(x) be a rational function
such that all the finite zeros and poles of ax(x) are in C([0,1]), and that a(()) is an
invertible analytic function in B having value 1 at 0. Then the q-difference equations

y(qT) = a0 (2)y(z) and y(qz) = aa(“a)y( ) are both solvable.

Proof. — It follows from (4.1) and its proof that there exists a sequence R,(z) €
&L N Aq(10,1]) such that

lim Bn(gz) _ a(z)] =0.
n—o00 Rn(x) el
Let Gn(z) € Q(z) be a rational function such that 2= (g is an invertible analytic

function over C([0,1[), having value 1 at 0 ,and that all the poles and zeros of G, (z)
Gn(gz)

are in C([0, 1[)U{oo}. Hence the Taylor expansion at 0o of 5= 25" defines an invertible
element of }, and ‘G n(g2) . =1. Then
Q
Rn(qz)
—a(z

(Rn(qx)G (2) <)>Gn( z) , a@) (Gn@w)_am(m)

R, (7)Gn(gr) - ax(z) ) Gn(T) aoo(z) \ Gn(z)

&

(qz) ac(w)

a@) | |[Bal@)Gn(@) al@) \ () . Gul@) (Galea)
1o (@) | (Rncc) )a(m) Go(ar) (Gn(x) ‘“"“(””))

G,
Since (R"(qz)G"(z) — ala) ) 1=(2) ¢ 21 and G (2) (G"(qz) —a (w)) € H' we ob-
Rn(z)Gn(qz)  aoe(z)) a(z) Gn(gqz) (2) *
sf) -

tain the equality
a(z)

‘ Rn(gz)
Rn(z)

By proposition 4.1 we conclude that both y(gz) = ac(z)y(z) and y(gz) = = (w)y( x)
are solvable g-difference equations. O

£

Rn(qz)Gn(z)  a(z)

Ry (2)Gn(gr)  aoo(w)

&l Ghn(z) ~ eo(®)

5. Reduction to the case of g-difference equations with polynomial
coefficient.

n [R85], Robba has shown that any rank one differential equation over &' is
equlvalent to a differential equation with coefficient in K[ (M. His method uses a
kind of additive decomposition of the coefficient (using logarithmic derivatives) and

(7) Actually he considered only differential equation with rational coefficients, but his argument ex-
tends in general.
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cannot be translated into the g-difference context. In this section we prove a g-analog
of Robba’s result using a kind of multiplicative decomposition of the coefficient.

Proposition 5.1. — Any solvable q-difference equation y(qz) = a(x)y(z), with
a(z) € &Y, is Et-equivalent to a solvable q-difference equation of the form

M
(12) yao) = [T (1+5) v@),

zi
i=1
where lg € Zp, M is a positive integer, u; € K and |p;| < |g—1| fori=1,..., M.

Proof. — The proof is divided into several steps.

Step 0. There exist an unique multiplicative decomposition

a(x) = l(@)m(a)
of a(x) in &' such that
SXNeK,A#0;
-N€eZ;
- l(x) is an invertible analytic function in 1 + xB;
- m(z) is invertible function in 1+ +H!.

Proof of Step 0. [CM02, 6.5] and [C81a]. O

Step 1. The q-difference equation y(qx) = a(x)y(z) is H'-equivalent to a g-difference
equation of the form

A uat i
(13) y(gr) = Sl [T (1+5) v,

1=

where \€e K, A\ #0, NN M €Z, M >0, u; € K for anyi=1,...,M and l(x) is an
invertible analytic function in 1 4 zBB.

—

Proof of Step 1. The analytic function m(z) € H!, considered in Step 0, can be
uniquely written as a convergent infinite product

o
i
(14) m(z) = H (1 + x_:) .
i=1
It follows from proposition 2.7 that there exists z(z) € H! such that z(qz) = m(x)z(z)
and hence that %a(x) has the form (13). O

Step 2. The equation (13) is B-equivalent to the solvable g-difference equation
M i
_ T

withA€ K, \#0, NNM € Z, M >0 and |p;| <1 foranyi=1,..., M.
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Proof of Step 2. Let us write [(x) as an infinite convergent product

I(z) = ﬁ (14 Nzt .

=1

Since I(z) does not have any zero in C([0, 1), we have |A;| < 1 for any i > 0. As far as
the p;’s is concerned, it is enough to recall that the analytic function m(z) (cf. (14))
is invertible in H! to conclude that |u;| < 1 for any i = 1,..., M. Hence it follows
from (4.6) that the g-difference equations

oo

(16) y(gz) = [ (1 + Niz?) y(2)

i=1

and
_ A it 1 Hi
y(qﬂf)—x—Nl:[l( +E) y(z)

are both solvable. Since I(z) € B, the equation (16) has a solution u(z) € B (cf. 1.3),
which establish the B-equivalence between (13) and (15). O

Step 3. The solvability of (15) implies that A € ¢%», N = 0 and |u;| < |q — 1| for any
i=1,...,M.
Proof of Step 3. Let b(z) = wiN Hf\il (14 £). Since fsf)l_);
|b(x)|e+ =1 and hence |A| = 1.

Let djy(z) = gn(x)y(z) be defined inductively for any n > 1. Writing explicitly
gn(z) in terms of b(z) (cf. [DV03, 1.2.4]) we obtain

< 1, necessarily

et

(17
qlgt q =0 " .
(=" A"
2 il (g =1 207 |,
s
lg—1]""

This shows that if N # 0 the equation y(gx) = b(z)y(z) is not solvable, in contradic-
tion with the hypothesis. Therefore it is enough to prove that A € Z, assuming that
N =0.

Since y(gz) = b(x)y(z) is solvable, there exists Ryn(z) € Q [z, 1] such that

‘ Ry (qx)
Ry (x)

—blz)] —0,

£
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hence X is a limit of sequence in ¢%. This proves that A € ¢%» and that the equation
y(gz) = b(z)A\~ty(z) is also solvable.

So we are reduced to prove the statement for a solvable g-difference equation of
the form

or equivalently of the form
pi(g—1)" My
Z e H (1 + xT) y(@) -
i>i

Since |pi| < 1, the solvability (¢f. 1.2) implies that |u;| < |¢ — 1| for any
1,...,M.

o o

Step 3 finishes the proof.

6. Frobenius structure in rank 1: existence criterion.
From now on, we assume that the residue field k of K is perfect.

In [CC96, §2] the authors prove that a differential equation of the form

yl(m) — a_1+%+__'+a_m € lK |:l:|
y(x) z 2 ™ x|z

has a strong Frobenius structure if and only if it is solvable and there exists a positive
integer s such that (p* — 1)a; € Z. In this section we prove an analog result for
g-difference equations. Some steps of our proof use methods that can be adapted to
the differential case, simplifying some technical details in [CC96].

Let us consider a Frobenius automorphism 7 of K, i.e. a continuous automorphism
of the field K lifting the Frobenius automorphism of the residue field k. Let s be a
positive integer and let us assume that ¢ is 7°-invariant. Usually one considers the
semilinear endomorphim ¢ = ¢, of £ defined by

. (z x> S e

neEZ nez

An analogous endomorphism ¢ can be defined over the g-difference algebra of analytic
functions over a disk or a annulus, centered at 0 or at co.

Definition 6.1. — We say that a g-difference equation y(gz) = a(z)y(z), with
a(z) € £, has a (strong) Frobenius structure if there exists u(z) € (£1)" such that

(18) Z((qa;)a(x) = a(z)%a(qz)? - - a(¢” ~'z)?

for a suitable choice of s.
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Remark 6.2. — Notice that v(m)"ﬁ"fz)s = v(x)%® for any v(z) € & (here v(zx)7e?
means ¢ o og(v(z))). Let y(x) be a solution of the equation y(gz) = a(z)y(x) in an
extension of £T. If y(¢z) = a(x)y(z) has a Frobenius structure then y(z)? = u(x)y(z)
with u(z) € (£1)" and (18) can be written in the following way:

y(@)?7 = y(z)P7w = y(z)7e%

Lemma 6.3. — If a q-difference equation y(qz) = a(z)y(z), with a(x) € £, has a
Frobenius structure then it is solvable.

Proof. — Let € > 0 be such that a(z) € A(]1—¢,1[) and let 2(x) = >, (T, ) n,qs
with a,, € K, be a solution of y(gz) = a(z)y(z) at the generic point t,, for p €]1—¢, 1].

It follows from the assumption that there exists u(z) € (£1)" such that z(z)? =
u(z)z(z) is a solution of y(qz) = ap:(z)%y(z) at t;s. Hence we obtain

(19) RPP‘ (0g — aps (37)¢) < Ry(oq — a(-r))ps < Pps <1.
Since y(gz) = a(x)y(z) and y(gz) = aps(z)?y(z) are £T-equivalent, we have
ﬁl)i_% Ry(0g — a(z)) = })1_>ml Ry(oq — ap:(2)?) .
This forces y(gx) = a(z)y(z) to be solvable. O
We recall (cf. proof of (5.1), Step 0) that any invertible a(z) € £' can be uniquely

written as a product a(z) = zi}\,l(:t:)m(:t:), with A € K, N € Z,l(z) € (1+zB)" and
m(z) € (1+ 1#")”. The main result of this section is:

Theorem 6.4. — A q-difference equation of rank 1 with coefficient in EY, i.e.
A
ylgz) = _Fl(@)m(2)y(z),
has a Frobenius structure if and only if there exists a positive integer s such that

XN~ e g% and it is solvable.

6.1. Idea of the proof of theorem 6.4.— It follows from (6.3) and (5.1) that it
is enough to prove the statement:

Proposition 6.5. — A q-difference equation
M
—_ o l’l’l
(20) ygo) = [ (1+@- D5 ) v@),
i=1
with ly € Z, and p1,...,pm € K, has a Frobenius structure if and only if there exists

an integer s > 0 such that ly € 1% and it is solvable.

First of all let us remark that:
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Lemma 6.6. — A g-difference equation y(qz) = ¢"y(x), with lo € Z, (cf. (4.4)),
has a Frobenius structure if and only if ly € 1%'

Proof. — The equation y(qz) = ¢"°y(z) is £f-equivalent to y(gz) = ¢"?"y(z) if and
only if (p* — 1)lp € Z. O

Eventually, the proposition 6.5 is a consequence of the following proposition:

Proposition 6.7. — A q-difference equation of the form

M
i
(21) yig) =[] (1+@-D%) v,
i=1
with wy,...,pup € K, has a Frobenius structure if and only if it is solvable.
In fact:

Proof of proposition 6.5 (assuming proposition 6.7). — Suppose that (20) has a
Frobenius structure, which implies that it is solvable. Since iy € Z,, the equation
y(gr) = ¢'oy(z) is solvable. This implies that the equation

M

y(aa) = (1+@- D) y(@)
i=1
is also solvable, and hence that it has a Frobenius structure. Moreover it proves that
also y(gz) = ¢'°y(x) has a Frobenius structure, i.e. that ly € 1% (cf. (6.6)).
On the other hand, if [ € 1% and (20) is solvable, the equation y(qz) = ¢"°y(z)
has a Frobenius structure and y(gz) = Hfil (14 (g —1)4) y(=) is solvable. Then it
follows from (6.7) that (20) has a Frobenius structure. O

6.2. Proof of proposition 6.7.— First we prove a lemma, which is a fundamental
step in the proof of (6.7). It is a g-analog of a particular case of [Mo77, Prop. 1]:

Lemma 6.8. — Let u(qz) = v(x)u(z) be a q-difference equation such that v(z) is an
analytic element over C([0,1]), without zeros and poles in C([0,1]) and u(z) is a non
zero analytic element over C([0,1[). Then u(z) is an analytic element over C([0,1]).

Proof. — One has to show (cf. [Mo77, Th. 4]) that for any a € K, |a| = 1, there
exists an analytic element over D(0,17) U D(a,1”) whose restriction to D(0,17)
coincides with u(z). Let us fix a € K, |a| = 1. It follows from [Mo77, Th. 1] that
there exists g,(x), called the singular factor of u(x) with respect to D(a,17), such
that

1. go(z) is an analytic element over P! \ D(a, 17), without zeros in P! \ D(a,17);

2. there exists an integer m such that lim,_, . (z — a)™g.(z) = 1;

3. ha(z) = ;(&)) is an analytic element over D(0,17) U D(a,17), with no zeros in
D(a,17).
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It follows from our hypothesis on

_ u(gz) _ 94(q2) ha(g)
D= u) T ale) hala)
and the properties of g,(x) and hy(z) that:

1. % is an analytic element over P! \ D(a, 1), without zeros in P! \ D(a,17);
; a(qr) _
2. lim,_, o gga(qz“”) =

qm;
3. %(qf)) is an analytic element without zeros over D(a,17). Since both %

and gg“(—(qf)) are analytic elements over D(0,17), without zeros in D(0,17), the

same is true for %(q;)) This proves that % is an analytic element over

D(0,17) U D(a,17), with no zeros in D(a,17).
We conclude that q*mgg“a(—&z)) is the singular factor of v(z) with respect to D(a,17).

This implies that %&—w)l = ¢™ and hence g,(z) = A\z™, for some A € K and m € Z.
By the definition of singular factor, g,(z) does not have any zero in P! \ D(a,17),
which implies that m = 0. Eventually, u(xz) = Ahy(z), which means that u(z) is the

restriction of an analytic element over D(0,17) U D(a,17), as claimed. O

Now we are ready to prove (6.7). Remark that one implication is a particular case
of (6.3). So let us suppose that (21) is solvable and prove that it has a Frobenius
structure. The proof is divided into steps:

Step 0. It is enough to prove that there exists a solution y(x) € B of the g-difference

equation
M .
(22) y(gz) = H (1+ (g - Dpiz') y(2),

with |p;| <1 foranyi=1,...,M and |g — 1| < |n|, and a Frobenius endomorphism

¢ such that yy(gf))q, is overconvergent.

Proof of Step 0. Notice that the fact that (21) is solvable implies that |u;| < 1 for any
i=1,...,M (cf. (5.1)). Moreover (21) has a solution y(x) analytic and bounded over
the disk C(]1,00]) (cf. (1.3)). We have to prove that there exists a positive integer
s such that % € £, By iteration we can replace ¢ by an integer power of ¢ and
hence suppose that |¢ — 1| < |7|: this doesn’t change the solution y(x), which is still
solution of the iterated equation, and the inequality |u;| < 1 is still verified after a
reduction of the type (5.1, Stepl), since the iterated equation is necessarily solvable.
A variable change of the form z — % allows to conclude. O

Step 1. There exists h > 0 such that y(x)ph is overconvergent and hence algebraic
over the field E of analytic elements with coefficients in K, i.e. the completion of the
field of rational functions K (x) with respect to the norm induced by £%.
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Proof of Step 1. The solution y(x) can be written as a product of g-exponentials:
M .
y(z) = Heqi (ﬂx’) .
i1 []g
The analytic function
M .
logy(z) =) Ly (ﬂx’>
im1 [l

converges for

P

. [i]q . ‘
z|< inf |——%1—| = inf |—F+—
21 i=1,..,M ‘ (g% — 1)p; i=1,..,M | (g — 1) p;
Therefore there exists € > 0 such that logy(z) is analytic and bounded over the disk
|| < 14+&. We deduce that there exists and integer h > 0 such that |p" logy(z)| < ||
for any |z|] < 1 + €, and hence, taking the exponential of logy(x)ph, that y(w)”h
converges for |z| <1 +e. O

y(x)
y(x)?
Proof of Step 2. It follows from Step 1. that the g-difference algebra E[y(z)] is
a finite extension of E. Since y(qz)! = a(z)'y(z)? for any i € N, the g-difference
module E[y(z)] = &% ,Ey(z)?, with d = deg E[y(z)]/E, is semisimple. Moreover the
Frobenius ¢; stabilizes E[y(z)] as a subalgebra of B (¢f. [C86, Th. 5.2]). It follows
that E¢s(y(x)), s € N, is a finite family of sub-g-difference modules of rank 1 of
E[y(z)], and hence that there exists s € N such that E¢,(y(z)) = Ey(z) (cf. [C81b,

€ k.

Step 2. There exists s > 0 such that

10.1] and [CC96, proof of th. 2.3.1]). O
Step 3. y’"‘(f))(t is an analytic element over C([0,1]).
Proof of Step 3. The analytic element yy((;)qs over C([0, 1[) is solution of the g-difference
equation:
u(qr) i 1+ (g — Dpzt
g :U(x),withv(m):H P g st —— € K(z).
u(;c) i=1 Hj:o (1 + (q - 1)/‘2 qZJ;I;p z)

Since |u;| < 1, v(z) is an analytic element over C([0,1]), without zeros and poles in
C([0,1]). We deduce that u(z) is an analytic element over C([0,1]) from lemma 6.8.
o

Step 4. yy((f)zs is overconvergent.

Proof of Step 4. This statement is proved in the second part for g-difference system
of any rank (¢f. 13.3). We will give here a simplified proof under the assumption
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|1 —g| < |n|P" M. This implies that there exists > |7|~* such that

M .
_ 1+ (g — Dz’
U(x) - H ps—1 1 _ 1 TS ij psz’)
i1 im0 A+ (@—Dpl' ¢z

is analytic for |z| < 7. Let dju(z) = gn(x)u(z) for any n > 1, with g;(z) =
We have

v(z)—1
(g-1)z*

sup [g1(z)[ < 1.
|z|<n

Therefore the recursive relation gn41(2) = gn(gx)g1(2) + dggn(x) implies that

gnir (@)] < —
sup |gni1(z)] < —.
lel<n "

In particular |gn41(0)] <n~". Since u(z) =143, 9209 yn e conclude that u(z)

[nlg

converges for |z| < n|n|, with n|7| > 1. The same is true for yy(;w))qb since u(z) and
y(x)

V() coincide up to a non zero constant factor. O

6.3. Remark.— Notice that the Step 1 above combined with (5.1) proves following
statement:

Corollary 6.9. — Let y(qx) = a(x)y(z) o g-difference equation with Frobenius
structure. Than there exists a mon negative integer h and a solution y(z) of
y(qz) = a(z)y(z) in o finite extension of E such that y(z)?" € £

In the next sections we will show that the solution y(z) is actually in a non ramified
extension of £f, which is a much stronger statement.

7. g-deformation of differential equations with strong Frobenius
structure.

In the previous section we have given a naive definition of the (strong) Frobenius
structure for g-difference equations of rank 1. In the higher rank case we are going to
consider another Frobenius structure that we call congluent weak Frobenius structure.
Proposition 7.3 below establishes the equivalence between the two definitions for g-
difference equations of rank 1: this is not true in the higher rank situation.

Definition 7.1. — We say that y(qzr) = a(z)y(xz) has confluent weak Frobenius
structure if there exists a sequence of ¢P"" -difference equations y(¢?"" z) = an(x)y(z),
with ¢"" = q and a¢(z) = a(z), such that

1. for any n > 1 the equations

s(n—1) s(n—1)

y(¢@® 7)) =ana(2)y(z) and y(¢" x) = an(z)

are £1-equivalent via u,(z) € (€1)7;
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an(z) —
(" -1z

2. the sequences and u,(z) converge in £F.

n(z) —1
Remark 7.2. — In the notation of the previous definition, let % — g(z)
q —_—

and un(z) = u(z). Then the differential equation %(m) = g(x)y(x) has a strong
Frobenius structure:

=p°z? g(2)”.

In other words, there exists a discrete family of difference equations

an(z) =1

d, pon =
ey () @ -1z

y()

with an action of the Frobenius, which “tends” to the differential equation 9% (z) =

dz
g(z)y(z), having a strong Frobenius structure.

Proposition 7.3. — For a q-difference equation y(qz) = a(z)y(z), with a(z) €
(E)*, it is equivalent to have a strong Frobenius structure or a confluent weak Frobe-
nius structure.

Proof. — Let us suppose that y(qz) = a(z)y(x) has a Frobenius structure. Then the
sequence of iterated difference equations

P -1

y(¢®" ) = an(2)y(x), with a,(z) = H a(q'z).
i=0

satisfies condition 1. Since y(qz) = a(z)y(z) is solvable, the equation y(¢P" =) =
an(z)y(zx) is solvable for any n > 1, hence

an(z) — 1

<1.
(" -1z

ET

This prove that a,(z) — 1 when n — oo. Moreover it follows from (6.9) that
y(qr) = a(z)y(z) admits a solution y(x) such that y(m)ph € &, for some h € Zx.
Since
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we obtain
h
2 (v dpe (90"
T o
n—oo  y(z)
- an(z) — 1
= Jm | G o e 1:[ (an(z) = ¢)
i
— p lim @1
n—00 (ql’ — ].).CE
which proves that (;‘%ﬁ% has a limit g(z) in £'. The existence of the sequence

un(z) and its limit, as well as the strong Frobenius structure of s—z(x) = g(z)y(x), is
a consequence of the fact that j—g(x) = g(z)y(z) and y(x) = a(x)y(z) have the same
solution in some finite extension of &*.

Suppose we have a sequence of equations satisfying 1. and 2. Then clearly g—g (z) =
g(x)y(x) has a strong Frobenius structure, hence it is solvable.

We claim that any equation y, (¢ %) = a,(x)yn(x) is solvable. We set

k k d*y
@hyenyn(2) = WS () (@) and T2 (2) = gu(a)y(a)

Then for any n >> 1 we have |l (z)|gt = |g1(x)|e+ and |¢P"" — 1| < |7|, which means

that |[—I’:]Z!ﬂ|gf = |g—kk(!£l|g‘r. It follows from lemma, 3.3 that y,(¢?" %) = an (2)yn(z) is
Lpon

solvable for any n >> 1. We deduce that y,(¢?" z) = an(z)yn(z) is solvable for any
n > 0 from the inequality (19), describing the action of the Frobenius on the generic
radius of convergence.

For any n > 0 consider the decomposition of a,(x) (c¢f. (5.1), Step 0):

An
an(z) = Wln(m)mn(m)a

with A, € K, Ny € Z, In(z) € (14 2B)* and my(z) € (1+ 2H1)*, and the analogous
decomposition of u,(z):
AI

un(@) = Sl @ (@)

By performing a gauge transformation we can assume that N}, = 0 for any n. More-
over since yn(¢?" ) = an(x)yn(x) is solvable for any n > 0, we have necessarily
N, =0 and )\, € ¢%» for any n > 0 (c¢f. the proof of (5.1)). Moreover condition 1.
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and the uniqueness of the above decompositions imply that

(A = At
G )

{ ”Tln(w) =1, 1(x), for any n > 1.
mly (g "V a) ¢

\ m! (z) mn(m) = mnfl(m) )

s(n—1)

The first equality means that y(¢?" """ z) = AZ"y(z) and y(qP z) = Apo1y(T)
are Ef-equivalent. Since ¢"° = ¢ and X\, € ¢%», A, is T*-invariant. Hence we have
An = An—1 = Ao The unicity of the decomposition above shows that A¢ is the
exponent of the limit differential equation %(w) = g(z)y(z) and hence that \, = g'°,
with (p" — 1)ly € Z, for some positive integer n. We conclude from theorem 6.4 that
y(qz) = a(x)y(z) has a strong Frobenius structure. O

8. The group of isomorphism classes of ¢-difference equations of rank 1
admitting a Frobenius structure.

We know that a solvable differential equation (resp. a differential equation with
Frobenius structure) of rank one y' = gy defined over £ has a solution of the form
z%u(z) (resp. v(z)), where a € Zp and u(z) (resp. v(z)) is an element of some finite
unramified extension ()" of £1(®) (¢f. [Cr87], [T98b], [Co01]). The same is true
for g-difference equations:

Proposition 8.1. — Lety(qx) = a(z)y(x), with a(z) € ET, be a solvable q-difference
equation (resp. a q-difference equation with Frobenius structure). Then y(gx) =
a(z)y(x) has a solution of the form x*u(z) (resp. v(z)), where a € Zjp and u(x)
(resp. v(x)) is an element of a finite unramified extension of £1.

Proof. — We know from (5.1), (6.7) and (6.9) that y(gz) = a(x)y(x) has a solution
of the form z%u(z), where a € Z, and u(z) is an element of an extension of £f,
solution of a g-difference equation with Frobenius structure. Moreover we know that
the Frobenius structure of y(gz) = a(x)y(x) forces a € pSZA for some positive integer
s, which amounts to saying that o € Z, N Q. It follows from (7.3) that u(z) is
solution of a differential equation over £ with strong Frobenius structure, hence that

u(z) (resp. v = z%u) is an element of a finite unramified extension of £*. O

The Ef-equivalence classes of differential equations of rank one y'(z) = g(z)y(=)
form a group with respect to addition of the coefficient g(z), and equivalence classes

(®Following [S68], we call unramified extension of valued fields an extension of valued field such
that the ramification index is equal to 1 and the extension of the residue fields is separable.
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of equations with Frobenius structure form a subgroup, which we denote by d—eq‘(gf).

Note that, for such equations, the space K.y € ()’ defines a character of the abso-
lute Galois group Gy((z)), which depends only on the class of the equation, and this
provides a homomorphism

d—eq) — Xi(Gr(ay)

to the group of K-rational characters of Gy((,))- If the residue field & is algebraically
closed, this is a bijection; an inverse associates to the character x the y-eigenspace in
any big enough finite unramified extension (£')’ of £ (this is an £f-line), endowed
with the natural derivation.

In the same vein, the £f-equivalence classes of g-difference equations of rank one
y(gz) = a(z)y(z) form a group with respect to multiplication of the coefficient a(z).
Equations with strong Frobenius structure form a subgroup, which we denote by o,-
quf). Similarly, the space K.y € (E!) defines a character of the absolute Galois
group Gy (z)), which depends only on the class of the equation, and this provides a
homomorphism

oq—eq) — Xi(Gi(y)

to the character group of Gy((,))- If the residue field k is algebraically closed, this
is a bijection; an inverse associates to the character y the xy~!-eigenspace in any big
enough finite unramified extension (£7)" of £ (this is an £7-line), endowed with the
natural og-action.

On the other hand, proposition 7.3 associates by “confluence” to any element of
aq—qu) an element of d—quﬁ’), and it is easy to see that they correspond to the same
character of Gy((,))- One thus arrives at the following

Theorem 8.2. — Let us assume that k is algebraically closed. There are canonical
group isomorphisms

oq — eqé‘f) = Xr(Gr((a))) = d— eqéq?) ,

the composite being given by “confluence”.

Remark 8.3. — The group of tame characters of Gy ((,)) is canonically isomorphic
to (Z,NQ)/Z. For any a € Z, N Q, the corresponding object of d — eq‘(gf) (resp.

oq— qu’) ) is represented by d/dx + a/x (resp. dg + [a]q/x) and depends only on the

class of @ mod Z.
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APPENDICES TO PART 1.

9. Frobenius structure of dyy(z) = way(x).

9.1. g-analog of the Dwork exponential.— Recall that the “Dwork exponential”
0(x) = exp(mr — waP) expresses the Frobenius structure of the differential equation
y' = mwy, and has radius of convergence > 1.

In the same way one can define an element 7, such that |m,| is the radius of
convergence of e,(z)(?). Consider the g-difference equation satisfied by e, (7,z):

(23) y(gz) = a(z)y(z) with a(z) = (1+ (¢ — V)my7).

Tt is defined over Ef /o and it has a Frobenius structure (c¢f. proposition 6.7). Equation
(23) can be iterated in the following way:

y(@” ©) = ape (2)y(2) with ae () = a(z)a(gz) -+~ alg” ~'a).

Then the series e, (m,7)? = e, (w;sm”s) is solution of the ¢-difference equation
(24) y(qz) = ap: (2)%y(2).

The fact that (23) has a Frobenius structure means that (23) and (24) are 51’ Ja
equivalent, 7.e. that

eq(mqm) _  eq(myz) )"

=T e (e,)
eq(myx)? eq(ﬂ'g zP*)

Since 7 is a Frobenius automorphism such that 7 fixes g, the definition of 7, implies

that |77 — 74| < |my|. Therefore the existence of a strong Frobenius structure for (23)

is equivalent to the overconvergence of

eq(mq)
eq(mgxP’) '

(9)The choice of such an element is not canonical. A possible choice would be the following: let n
be the smaller positive integer such that [¢°" — 1| < |x|; then one can choose 7, such that

2" = (1)) (=llgr)”" e (Bl ) T -

q

In other words we have chosen 7 _,» = 7 and we have set recursively wppi = —[p]
q

a i pit1 for any

q”*

i=0,...,n — 1. This is a good choice, in fact if |¢°?" — 1| < || then [p],»~ | = |p| and hence

1
LI

-1

Imal =TI |,
-1

= 12 |[pl,y

= I |Ip],y

This proves that |mq| is equal to the radius of convergence of eq(z) (cf. (2.1)).

JR S 1
pt+l n4+1

|pm|»

p'ij |7l'| pn1+1 i
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A reasonable analog of Dwork’s exponential §(x) (from the viewpoint of strong Frobe-
nius structures(!9)) would be the following series

eq(mqy)

eq(mqa?)
Unfortunately we are not able to prove that this series is overconvergent, unless |1 —

q| < || In fact if |1 — g| < || its overconvergence is a immediate consequence of the
overconvergence of the Dwork’s exponential 6(z) and (2.5).

9.2. g-analog of Artin-Hasse exponential series.— One possible g-analog of
the Dwork exponential, from the viewpoint of confluent weak Frobenius structures is
the modified series
eq(x — e(I(ﬂ-qx) .
€Eqp (7qu .'Ep)

If |g — 1| < 7 the overconvegence of 0,(x) immediately follows from the overconver-
gence of 8(z) and (2.5). To prove the overconvergence of 8,(z) under more general
hypothesis one could try to construct an analog of the Artin-Hasse series, but our
proof, which is quite similar to the one in the differential case, works only under

restrictive assumptions. Anyway we are going to sketch it.

Proposition 9.1. — Suppose that there exists ¢ € Qp such that ¢° = q. Let

Ey(z) = geqpi (%) = eq(T)egr (;—i) €r? (#j[pﬂq)

Then E,(x) is analytic and bounded by 1 on the disk D(0,17).

Sketch of the proof. —
Step 1. We deduce from the formula

ez([plgz) = eq(z)eq(qx) - - - e (')
that )
Ey(2)E,(qz)--- E,(¢" @) _
XS = e(plea) € 1+ [PlgeOrc o]
The hypothesis ¢ € Q, is used here to prove that % is a p-adic integer. Such an

estimate seems to be difficult when |g — 1| > |«|.
Step 2.(g-analog of the Dieudonné’s theorem) One proves that for any f(z) € 1+
zK [z] we have

f(@)f(q)--- f(@ ')
f(@P)

f(z) €14+ Ok [z] & € 1+ [plgz0k [=] .

(19not from the viewpoint of confluent weak Frobenius structures, c¢f. §9.2, next appendix, and
12.12
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One conclude the proof remembering that ¢" = g, since ¢ € @Q,, and hence that
E7 (2P) = Ey(aP). O

Corollary 9.2. — The series

eq(m)

co(m@)eq (—ma") = =

s overconvergent.

To prove the corollary one follows the proof in the differential case. One has to take
into account that ¢ € Q, implies |[n],| = n for any integer n. Moreover |pm — [p]y7| <

|| implies that ey (771’%) eqr (—maP) ™! is overconvergent (cf. corollary 2.2).

10. p-adic g-exponential and Koblitz’Gamma function.

In this appendix, we leave our local framework and outline some global aspects
of g-difference equations of rank one with overconvergent Frobenius structure. More
precisely, we sketch a g-analog of part of Dwork’s paper [D83], in which he related
Morita’s p-adic Gamma function I', to the Frobenius structure of his exponential
modules.

We shall recover in this way a function I', ; which is a p-adic analog of Jackson’s I';
function as well as a g-analog of Morita’s I', function, and which had been previously
introduced by N. Koblitz [Ko80][Ko82b] using Morita’s approach(!!).

10.1. Dwork’s operator v.— In this appendix, the singular disk is the unit disk at
infinity, so that the relevant ring of overconvergent functions is ’HJ{ /o = Ye>0 A([0,1+
€[). We work over K = Q,(w) and with 7 = id for simplicity.

Following Dwork, let us introduce the operator 1 defined by

Y (Z ana:") = Z apnz™.

This is a left inverse of the Frobenius operator induced by ¢ : z — 2P. It acts on H!
and intertwines §, = xd,; and zdg up to multiplication by [p]:

[p]q(sqﬂp = qu :

More generally, for any a € Z,, 1 sends the space z*H' to zH! where b is the so-
called successor of a € Zy, i.e. the unique p-adic integer b such that ppb—a € ZN[0, p[.

(11)in fact, one of us defined T'p 4 using g-exponential modules - & la Dwork -, and was told afterwards
by F. Sullivan that this function had been defined earlier - a la Morita - by Koblitz
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10.2. g-Exponential modules.— The simplest examples of Dwork’s “exponential
modules” are of the form x“e”%{ = They lack strong Frobenius structure (except
when a is a rational number) but have a weak Frobenius structure: if b denotes the
successor of a, wae”’HI /o is isomorphic to the Frobenius inverse image of :I:be”’HI P
(due to the overconvergence of Dwork’s exponential).

A similar phenomenon occurs in the g-difference case. Proposition 2.1 suggests to

replace €™ by eq(m ) for some constant 7, with the following property: defining the

P .

sequence (m8") by T yn+1 = — 5> We assume that |m,n | = |r| for n big enough(?).
qP
Then proposition 2.1 shows that e, (mx) has radius of convergence 1.
However, we shall have to assume that |¢ — 1| < p~'/?~! in order to ensure that
the series
0 ( — el](ﬂ-qx)
() = —0207
€qr (7i'qp .CL'p)

is overconvergent. The equation 78 = —[p],m» is irrelevant at this point but will be
used in the sequel.
We set
fo,a = 2€q(mq)
and consider the ’HI /w—module fq,a’HI Jz equipped with the natural action of 6, = zd,.

A simple computation shows that &, fq,o = (¢°7qz + [alq) f,6- Let us write the classes
modulo Im §, under braces. So

fq,a/HI/z
60 (faattl)s)

from which one deduces that this cokernel has dimension 1 over K and is generated

by {fq,a}-

If b is the successor of a, then

{fq,a-‘rl} = _q_a'/'rq_l[a]q{fq,a} in

fo,0(T) _ eq(my)
forp(2P)  ege(myaP)

is overconvergent, which expresses the fact that fq,a’HI /e is isomorphic to the Frobe-
nius inverse image of fqp,b”HI /o The same argument as in the differential case shows

T T
1/z — fqpvaI/:c

D(faa-f) = For o0 (7704 (2) f).

that 1 extends to a mapping fy o H by the following formula

(12)1¢ is easy to see that such a mq exists at least after replacing K by a finite extension. On the other
hand, there does not seem to be a “uniform”, canonical choice for such 7wy, and one can actually
show that the sequence (7 ,n) never converges.
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10.3. T, q.— Since ¢ intertwines 6, and d,» up to a factor [p],, it passes to the
cohomology:

: fq,a.,HJ{/w R fq”,bHJ{/w
b (Frattl)e) O (Fwrsl),)

and one can define an element I', ;(a) € K* by

Y{foa} = ng_arp,q(a){fqpvb} -

One then computes:

° ¢{fq,0} = FP,Q(O){fqP,O} = {fqp,0¢(‘9q(a’))} = {fqP,O}-

e If @ is a unit, b is a successor of a 4+ 1, and one has
Lpqla+1){ferp}

= 7r:;kpb—H"p{fq,a-i-l} = _qiawgfpb[a]qw{fq,a} = —q *[a]¢Tp,q(@){for,}

= [—alTpe(@){fer b}

e If a is divisible by p, then a = pb and b + 1 is a successor of a + 1, whence:
Lpgla+1){ferpt1}

= Wr}ipzp{fq,a-i-l] = _”;pqia[a]qw{fq,a} = _W;pqia[a]qrp,q(a){fql’,b}

= _Fp,q(a){qu’,b-i-l} )
where
—p
Tl = 1
[b]qP

by assumption.

Therefore, as a function of a € Z,, ', ;(a) satisfies the functional equations of Koblitz’
function of the same name:
r 1 —a if a is a unit,
Lpg0) =1, Traled D) Jld

Ipq(a) -1 if |a|p, < 1.
In order to check that I', 4(a) is Koblitz’ function, it remains to prove its continuity.
In fact, we shall prove the so-called “Boyarsky principle” for g-exponential modules
fW?{J{/z, i.e. the analyticity of ', , on each disk D(—k, |p|t), k=0,1,...,p—1.

Let us expand 6,(z) = )" epz™. For every a € Z,N D(—k,17), one has

Y{fag}
= ”(I;I‘p,q(a){fqp,b} = {fqp,b¢($_k0q(m))} = {3 épntkfor btn}

—mpb—n(n—1)p

= {EemH_k(—l)"q 2 W(;;zn[b]qp[b"r ].]qp [b+n— ].]qpfqp’b}
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hence

p —ntetk)—nG-1p _ . . la+k a+k a+k
Tpola) = Zepn_,_k(—l) q 2 T k [—] [ + 1] [ +n— 1]
P lpl P o p

which is analytic in D(—k, |p|*), since |1 — gq| < |«|, as follows from the expansion

[ = ~1+ 3 (;) (¢ —1)™ L.

m>0

qP

It would be interesting to extend this approach “a la Boyarsky to other g-difference
modules with p-adic parameters, notably to Koblitz’ p-adic hypergeometric g-
difference equations [Ko82b].

PART II
HIGHER RANK.

11. Preliminaries: unramified extensions of 7.

In this part, it will be essential to deal not only with £ but also with its unramified
extensions as well. Whereas any such extension is of the form 6’;, for some new variable
z', the g-difference operator d, and Frobenius fail to act on z' as simply as on z. Thus
the relatively down-to-earth methods of part I do not apply to 5;,. In this preliminary
section, we give some tools to handle with this issue.

11.1. Topologies.— Let K be a complete non-archimedean field of characteristic
0, with residue field k of characteristic p > 0. We keep the notation of part I for rings
of analytic functions. For any interval I, the ring B(I) of bounded analytic functions
on the annulus C(I) is endowed with the topology given by the sup-norm ||7, for
which it is complete. It is also endowed with a coarser topology (strictly coarser if T
is not closed): the Frechet topology defined by the norms | |; for all closed J C I. Its
Frechet completion is A(I).

Similarly, the topology of the Robba ring R is the finest for which the injections
A(]1 —€,1]) = R, are continuous, cf. e.g. [Cr98, 4], and the induced topology on &'
is coarser than the topology defined by the p-adic norm | | = | |g+ 3.

The truncation v,>o0 in positive degrees is continuous, both as an operator R —
zA([0,1]) and as an operator £ — zB([0, 1]).

If K is discretely valued and J is closed, A(J) is a Banach space, and the Banach
norm coincides with the sup-norm on C(J) if the endpoints of J lie in y/|K*| ([Cr98,
4.2)).

(13)in [Ke03], R is denoted by F’;g,(ﬁ?,)n and ET by I‘Eé(nz))[]—lj]
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11.2. Unramified extensions and absolute values.— We assume in the rest of
this section that & is perfect and that K is discretely valued. Then & 1 » is the field of
fractions of the henselian ring OE}( with residue field k((z)). Any ﬁnlte unramified

extension of 5}(@ is then of the form £, _,, for a finite unramified extension K'/K

')
and a new variable &' algebraic over SL,Z [Ma95].

Among the finite étale extensions of the Robba ring Rk, those of the form
Ri'e = RK,e ®gt Sk,yz, play a distinguished role in the local theory of p-adic
differential equations (as was first emphasized in the work of R. Crew [Cr98]). We
shall see that they play a similar role in the local theory of p-adic g-difference equa-
tions. The most suitable way to deal with all these extensions is to embed them (up
to isomorphism) in a fixed canonical “big Robba ring” ﬁ,, as was done by K. Kedlaya
[Ke03](14 (the field of constants of R is K := K Qv W (k)).

For any element y € Rk, and any r €]0,1[, one defines |y| =, (also written,
abusively, |y|.) to be the sup-norm of y on the circle |z| = r if y € A([r,1]),
otherwise. Similarly for R+ . Note that if y € 5}(,95, lyl» = |y| for any r close
enough to 1.

The drawback of this notion is its dependence on the choice of 2’. Kedlaya has
shown how to bypass it by defining (partially deﬁned) canonical absolute values | |r,can
on R(1%). He proves that for any y € Rk’
coincides with the naive absolute value |y|,/|—, [Ke03, 3.7].

On the other hand, let 7 denotes a Frobenius endomorphism of K. It extends
uniquely to K. Let us fix a positive integer s and consider the endomorphism ¢, = ¢
of Ri given by ¢(3 anz™) = 3 7°(as)z?’™. Then ¢ extends canonically to a
r#-semilinear endomorphism of R, and one has the formula [Y®]1/0% can = |Ylr,can
[Ke03, following prop. 3.11]. Hence for r close enough to 1,

|y¢||w’|=r1/P5 = |y||z’|:r-

11.3. Good coordinates.— Because ] is henselian, ¢ lifts uniquely to any finite
unramified extension of £. By definition ¢(z) = zP. For a finite unramified extension
of £} with tame residual extension of degree say n, one can take z' = z'/™ so that
again ¢(z') = (z')?. However, in the case of a wild totally ramified residual extension
(say of degree p™), it is not possible to choose z’ such that ¢(z') = (z')?, although
¢(z') = (2")? mod p.

In order to get some control on the Frobenius action in the course of computations,
it is important to choose z' carefully. For this purpose, one can use so-called Katz-
Gabber extensions. According to Katz-Gabber [Ka86, 1.4.2], one can choose z' in
such a way that z' is algebraic of degree p™ over k(x) and such that the extension

(14) denoted by F’;S,(”éz,)n or I‘“chon in loc. cit.

(15)those attached to his partial valuations w,, ogr=1
ogp
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k(z,2')/k(x) defines (via z) a finite covering fi : Cx — P}, unramified above P' \ 0
and totally ramified at ' = x = 0. We denote by f : Cx — P!\ 0 the restriction
of fi, above P!\ 0. Extending k if necessary, we assume that one of points, say Py,
of Cy, with z' = oo is k-rational.

Let f: C — P}, be a lifting of this finite covering, with C' projective and flat
over Og(1®. We denote again by the letter = (resp. z') a lifting of the first (resp.
second) coordinate to C' (we refer to such a coordinate ' as a “good coordinate” for
this finite extension of £).

We denote by f : C — P!\ 0 the restriction of f above P'\0. The finite covering
fx : Cx — PL \ 0 is unramified above the disk D([1, 00]).

Let Of(C) denote the (p-adic) weak completion of the affine algebra O(C). Via
f*, this an étale extension of O,;. It is known that O1(C) is henselian (cf. e.g.
[E02, th. 3]), from which it follows that the endomorphism ¢ of Sl, preserves Of(C).
On the other hand, Ok[[1]] and Ok[[Z]] are both ¢-equivariantly isomorphic to the
completion of O(C) at P.

We now fix an element ¢ € K* (not a root of unity) satisfying |¢| = 1, and fixed
under 7°. The homothety z — ¢z extends uniquely to an automorphism of each
of the topological K-algebras 5;[.,5;,,723;,723;:,7%, and also of O1(C) (the latter ring
being henselian). We denote all these extensions somewhat abusively by the symbol
oq4. Of course, in general o4(2') is not proportional to z'.

The assumption 7°(q) = g ensures that o, and ¢ generate a twisted polynomial

ring K[og, ¢] of endomorphisms of any of the previous rings:

s
oup=¢o] =¢ogps.

12. g-difference modules and Frobenius structures.
12.1. o-modules.— Let R be a commutative integral Q-algebra and let o be an

injective endomorphism of R.

Definition 12.1. — A o-module, or o-difference module over R is a free R-module
M of finite rank equipped with an R-linear isomorphism

Y:0,M:=M®g, R— M.

The o-modules over R form a category in an obvious way!”), which is linear over
the fixed ring of R under o.

(18)for a conceptual proof of the existence of such a lifting, cf. e.g. [Cr98, 8.3]; here, it suffices to
lift to characteristic 0 an equation relating x and z’
(1M and even a monoidal symmetric rigid category
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In terms of a basis (m;)i=1,...,, of M, the datum of ¥ is equivalent to the datum
of an invertible matrix, which it is convenient to define as the inverse A € GL,(R) of
the matrix of ¥. With this convention, the o-difference matrix system

oY) =AY

is equivalent to condition that ). Yi;m; is fixed by ¥ .
If (m}) is another basis, with m/ = 37 (H~")m;, then the inverse A’ of the matrix
of ¥ in this new basis is HCAH 1.

Remark 12.2. — o-modules can also be understood in terms of non-commutative
connections, cf. [AO1].

In the sequel, we consider the case where R is £ or R, or (if k is perfect and K
is discretely valued) one of their finite extensions S;, , Rz - In such cases, we consider
o-modules as topological modules. When o = o4, the notion of o-module amounts to
that of ¢g-difference module over R, our main object of study. When o = ¢, we denote

the isomorphism defining the structure of ¢-module by
(I):¢*M:=M®R,¢ R— M.

This example is studied at length in [Ke03].

Remark 12.3. — If K is discretely valued, £ is a field and R is a Bézout ring:
every finitely generated ideal is principal (as was remarked by several authors (cf.
e.g. [Cr98, 4.9]), this follows from Lazard’s theory of principal parts). Any Bézout
ring R is integrally closed and coherent, and any finitely generated R-module is a
direct of its torsion submodule and of a free module, ¢f. e.g. [Cr98, 4.9]. Thus, in
that case, one could replace “free” by “locally free” in the definition of g-modules.

If R is Bézout, and the subring of o,-constants is a field K, then the category of
og-modules is tannakian over K.

12.2. Strong Frobenius structure.— We assume that ¢ is fixed under the 7°.
We shall be interested in situations where the given module M is at the same time a
og-module and a ¢-module.

Definition 12.4. — A strong Frobenius structure on a g-difference module (M,X,)
over R is the datum of a structure of ¢-module ® on M, ¥, and ® being subject to
the following “integrability condition”:

D ES JOAL



g-DIFFERENCE EQUATIONS AND p-ADIC LOCAL MONODROMY 39

to be understood in the sense that the following diagram commutes

$uT ps =6, 37

Gu e M = 0y M e
0q,+® l l 0]
og M >a y M

We also say that (M, X,, ®) is a o,-¢-module over R.

If ¥, and & are represented by the matrices A;' and F~! respectively in a given
basis (m;) of M, the integrability condition translates into

Foeq4, = A?Ps F, where A := Ag” qus_l - Ay

Remark 12.5. — Let us consider the g-difference system Y?¢ = AY attached to
(M,%,,(m;)). Then Y¢ = FY satisfies the ¢/?"-difference system with matrix
A%, which can be turned, after p® iteration, into the g-difference system (Y¢)% =
ApY?.

We denote by o,-Mody (resp. o,-M odg-?)) the category of o,—modules over R
endowed with a specified (resp. an unspecified) strong Frobenius structure. If R is
Bézout and if the subring of o4-constants is a field K, then o4-M odgf) is tannakian
over K while o,-M odﬁ is tannakian over the field K of elements of K fixed under

T5.

For any ring homomorphism R — R’ compatible with o, 7(!8), any for any replace-
ment of ¢ by some power ¢, there is an obvious functor between the corresponding
categories of g-difference modules with strong Frobenius structures

Example 12.6. — g-Exponential. In the case of a g-difference module of rank y =
1, identified, after the choice of a basis, with a difference equation y(gx) = a(z)y(z)
with a(z) € R*, the strong Frobenius structure is unique if it exists and is given by
y® /y provided it belongs to R (otherwise, there is no strong Frobenius structure).
This is the case of the g-difference equation satisfied by e,;(my) as in appendix 9.

Ezxample 12.7. — g-Logarithm. The equation dg¢,(x) = %, or equivalently
ly(qz) = Ly(x) +q—1.

has the obvious solution (“g-logarithm”)

(ls)satisfying the usual relation o4 ¢ = ¢0'gs
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One has

Consider the linear system of order 2

(25) oY (z) = G 2) Y(z),

having (Zq;v:;) as solution. Then ( Z(_x)l(ﬁ) = (DZ 6;(3115)) is a solution of
(26) oY (z) = G ?)p V().

Since

o) = (0 ) ()
ply(x) 0 p°) \Ly(x)
we conclude that (25) and (26) are £t-equivalent.

The differential Galois group is obviously the additive group G,, and one has a
canonical fully faithful ®-functor

Repr G, — aq—Mod%’Z

which sends the standard two-dimensional representation to the g-difference module
attached to £;.

Ezxzample 12.8. — ¢-Difference modules arising from Galois representa-
tions. Let us assume that k is perfect and K is discretely valued. Let k'((z'))
be a finite Galois extension of k((z)), and let E}(,’z, be the corresponding finite Galois
unramified extension of 5}(@- Then 5}{,@, has a canonical structure of o4-¢-module
over Ek’z, given by the canonical extension of o, and ¢ to £ 1,

We denote by d-M od% (resp. d-M odg?)) the category of differential modules (free)
over R endowed with a specified (resp. an unspecified) strong Frobenius structure. If
R is Bézout and if the subring of o4-constants is a field K, then d-M odgf) is tannakian
over K while d-M od% is tannakian over the field K, of elements of K fixed under 7°.

Let G'y((z)) be the absolute Galois group of k((x)). There are well-known ®-functors

Dg : Repk, G((z)) — d—MOd%m,

D((i¢) : Repg Gk((w)) — d—MOd%:z,
given by
V= (V@ R ,qr) Frio»
for suitable Rk, (depending on V'), cf. [T98b] (here Gy(,)) is considered as a
constant profinite group-scheme, and representations are understood in the algebraic
sense, i.e. as representations of a group scheme; in particular, representations of
Gi((2)) in this sense have finite image).
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This carries over to the g-difference case. For any V' € Repk Gj((x)) of dimension y,
there is a finite unramified extension E}L{,J, (say in R) such that (V ®x E}L(,,z,)G’“((m))
(resp. (V ®k Rk )9 @) is a E}L{’w—module (resp. Rk -module) M of rank p.
This module inherits a natural g-difference structure and strong Frobenius structure
from E}L{,’E, (resp. R ). If K =K' (e.g. if k is algebraically closed), one recovers
V from M by the following recipe “4 la Fontaine”: V = (M ® E}L(,,m,)zq (resp.
= V(M) = (M @R, )%

Proposition 12.9. — There is a canonical fully faithful K,-linear ®-functor
D¢ : Repk, Gi(w)) — 0g-Mod_,
and a canonical fully faithful K-linear ®-functor
D : Repk Gi((ay) — 0q-Modsy)
given by
Vi— (V@ Rir ) CF@)
for suitable Rk o (depending on V).

The fact that the functor is fully faithful is seen as usual using internal Hom; it
reduces to the fact that Df,f) (VGx=n) is the largest trivial subobject of Df,f) (V).

Remark 12.10. — Combining the last two examples, one finds a canonical fully
faithful K-linear ®-functor

ng:) : RepK (Gk((z)) X Ga) — Uq—MOdggz

given by
Vi D((,f)(V) = (VQ Rk »[log x])Gk((m))

for suitable Rk 4.

12.3. Confluent weak Frobenius structure.— Let us remark that if M is a
qp('+1)s—difference module, then ¢, M has a natural structure of ¢? *-difference module
(in a given basis they are “given by” matrices quis and A?p“ respectively).

On the other hand, q”is — 1 when ¢ — 00, and the phenomenon of confluence may
occur in this way, in the p-adic setting.

Combining these two remarks suggests to introduce another type of Frobenius
structure, which seems to have no counterpart in the differential case: a sequence
of Frobenius predecessors (¢P" -difference modules) which for i — co converge to a
strong Frobenius structure on the limit differential module. More precisely:
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Definition 12.11. — A confluent weak Frobenius structure on a g-difference module
(M,X,) over R is a sequence (M; = (M, Eqpis ))i>o of q?" -difference structures on M,
and isomorphisms

@i : puMiy1 — M;

of q”is—difference modules, such that

1) the operators A pis = (qpisl_l) (Eqpis — Id) converge to a derivation A, on M,

2) ®; converges to a strong Frobenius ®, for the differential module (M, Ay).

In terms of associated matrices, this amounts to the data of a sequence of matrices
F;, A i € GLy, (R), i > 0, related by the following relations:

is

Fo 4 . = A%

i qP qp(i-H)s

Fia

and such that the sequences (F;) and (G; := (qpi - 1)’1(qui —1I)) both converge in
M,,(R) to some limits Fi, and G respectively (F; represents the “quotient” Y;2, ¥; ™"
where Y; is a fundamental solution of the system 0 pis Y, = quis Y3).

We denote by o4-Modg, "9 the category of o,—modules over R endowed with a
specified confluent weak Frobenius structure.

We denote by o,-M od%?nf(d’) the analogous category where one leaves the mor-
phisms ®; unspecified: objects consist of a sequence (M, Eqpis ))izo of qpis—difference
structures on M converging to a differential module structure on M, these data being
part of an unspecified confluent weak Frobenius structure.

If R is Bézout and if the subring of o,-constants is a field K, then o,-M od;?“f(qs)
is tannakian over K while o,-Mode™ ¢ is tannakian over K.

One has a canonical ®-functors “limit differential module”:

Lim¢, : o,-Mody™ ¢ — d-Mody, (M,3,,(M;, ®;)) — (Ms, As,, ®),

Lim® : o, -Mod™ ) —s d-Mod'?, (M,S,,(M;,)) — (Ma, As),

Ezample 12.12. — ¢-Exponential. We assume that 77 = 7 and that |¢ — 1| <
p~'/P=1. Let us consider the g-difference module (M = R, %,) of rank y = 1 attached
to g-difference system dyy = my (with solution eq(7z)); explicitely, ¥,(1) = (1 + (¢ —
1)7z)~t.

Then corollary 2.5 shows that (X,i) together with (®;,®i(1) =
€y (m;”i) /eqp(i+1) (77:17”i+1)) form a confluent weak Frobenius structure with
limit differential module (R, A =z + z).
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P

Example 12.13. — ¢-Logarithm. The sequence of matrices Aq - =

(1 0) , F; = I, defines a confluent weak Frobenius structure for the g-logarithm (in

11
: (@=Dp"ly 0 : :
this case Y; = is ). One has a canonical fully faithful ®-functor
(¢-1)Zllogz 1

RepxG, — oq—Modsgznf ¢)

which sends the standard two-dimensional representation to the g-difference module
attached to £;.

Example 12.14. — ¢-Difference modules which arise from Galois represen-
tations. Let us assume that k is perfect and K is discretely valued. Let k'((z')) be a
finite Galois extension of k((z)), let 5}(,’95, be the corresponding finite Galois unram-

ified extension of é’j{w, and let Rk, be the corresponding finite étale extension of
RK,z-

Remark 12.15. — (E}L(,,z, ,04) has a canonical structure of confluent weak Frobenius
structure, given by Eqpis = afl’” and ®; = ¢. One has 6qpis = ﬁ(afl’” —Id) —

xd/dz on 5;(,;0’ and we are about to see that the same holds on 5}('@'-

We may assume that K’ = K. Let w be a uniformizer of Ok, and let us write
ordg (¢ —1) = n; (n; = oo with ). Then 0}1’” is identity on the henselian ring
O /@™, hence also on its étale extension O+ /w™ . This means that all § ,:. extend
to Ok-linear endomorphisms of (’)gll. The formula 8 ,pis (ab) — ad pis (b) — 6,12 (a)b =
(qp“ —1)8,5i (a)0 pis (b) shows that 6 ,:: induces a derivation of (’)S;,/w"". Since its

restriction to O, /@™ is zd/dz, it is zd/dz. Therefore § ,:c — zd/dz on 51,.

Remark 12.16. — For r close enough to 1, one has |0, (2')||z/|=r = |04(2")|r,can =
v’ for every r' € [r,1], hence §,(Ay ([r,r']) C (A ([r,r']). Arguing as above, one
shows that 6 .. — zd/dz on Ay ([r,r']). Similarly, 6, — zd/dz on R}(,,w,, and
RTK,J, has a canonical structure of confluent weak Frobenius structure, given by
St = o?" and ®; = ¢.

One can then play the game of (12.8) with confluent weak Frobenius structures
instead of strong Frobenius structures, and get:

Proposition 12.17. — There is a canonical fully faithful K¢-linear ®-functor
Dg‘;nf(p : Resz Gk((z)) — Uq—MOd%?:fd),
and a canonical fully faithful K-linear ®-functor

foi"“u’) : Repk Gi((z)) — aq—Modngnf‘p)
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given by
Vi— (V@ Rk g)rien
for suitable Rk o (depending on V).

Remark 12.18. — Combining the last two examples, one finds a canonical fully
faithful K-linear ®-functor

Dg(;onf@ : Repgk (Gk((z)) X Ga) — Uq—MOdgg:nf¢)
given by
Vs DEMO(V) 1= (V @ Rt llog ] oo
for suitable R+ .7, as well as a canonical fully faithful K,-linear ®-functor
Dg‘;nf(b : Resz (Gk((z)) X Ga) — Uq—MOd%):f(ﬁ.
Composing the former with the limit functor Lime® , one gets the ®-functor
D((f) : Repk (Gr((z)) X Go) — d—Modggz.

This is easily checked on the regular representation of a finite Galois quotient G of
Gr((z)), for which (V ® Rk ,)9*(=) is nothing but the Galois extension R'/R in R
with Galois group G.

12.4. Solvability at the outer boundary.— We generalize definition 3.1 to the
higher rank case. As in §1.4, let ¢, be a generic point of absolute value r €]|q — 1], 1]
in some complete extension Q2 of K. For any p €]|lq—1|,7], let Aq(tr, p) be the ring of
analytic functions in the Q-disk |z —t,| < p. This is a g-difference ring in a canonical
way, and the canonical embedding Ag ([r,1[) <= Aq(t-, p) is compatible with o,.

Let 7' be in Jjg — 1], 1].

Definition 12.19. — A g-difference module M over Ag([r',1[) is solvable (at the
outer boundary) if there is a function

r e],,,l) 1['—) p(r) €]|q - ].|,’f']

such that lim, 1 p(r) =1 and M ® 4, (jr,1[) Aa(tr, p(r)) has a basis of elements fixed
under X,.

Since any g-difference module M over £} or R, is “defined over Ak ([r, 1[)” for some
r close enough to 1, this provides a definition of solvability (at the outer boundary)
for such modules. We say that a g-difference module M over some finite unramified
extension El, (resp. Rgy) is solvable if the underlying g-difference module over £}
(resp. Ry) is.

Let us choose a basis of M and denote by A, the inverse of the matrix of ¥, in
this basis. Let us define a sequence of matrices

1
Gq’o = I’ Gq71 = qf

1 (Ag = 1), Gympr = 2.dg(Gym) + G4 (G — mg-g~™.I).
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Then g-difference system Y% = A,Y then gives rise to the sequence of systems
z"d)'Y = GymY.

For the solution around ¢, normalized by Y (¢,), one has the twisted Taylor expansion
(cf. (1.2), [DV02, 4], [DV03, 3])

Y(z) = Z t;mw (z,tr)g,m-

= [mlg

From this formula, denoting by |m,| < 1 the limit of |[m];|1/ ™ the following lemma
follows immediately.

Lemma 12.20. — M is solvable if and only if

lim sup lim sup |Gg,m| /™ < |-
r—1 m

Proposition 12.21. — Any q-difference module M over Ri: 5 with a strong Frobe-
nius structure is solvable.

Indeed, the strong Frobenius structure M induces a strong Frobenius structure on
the underlying g-difference module over Rk ;, hence we may assume that Rk o =
Rk,.. Dwork’s well-known argument applies (if M is defined over Ak ([r?,1[) and
M ® 4, (jre1]) Aa(tre, pP) has a basis of elements fixed under Xy, and if 7 and p are
close enough to 1, then ¢.M is defined over Ak ([r,1[) andg.M ® 4, (r,1p) A(tr,p)
has a basis of elements fixed under ;).

Proposition 12.22. — For any solvable q-difference module over resp. Ry o (resp.
b o), im0 (8g)7 =T in GL(M).

Proof. — Let us first consider the case of Rk ;. This is a problem about the under-
lying g-difference module over R ,, hence we may assume that Rk ,» = Rk . Let
us take a basis of M, and consider matrices A, and G|, as before, and the sequence
Agn = A% ... A% A. We have to show that lim;eo AP = I in GL,(R). The
relation between the iterates of o, and of d; are given by the formula (¢f. [DV02,
1.1.11], [DV03, 1.2))

n

n - m gm
=3 (m) (g — 1" gmem=D/2gm .

m=0 q
It implies the following relation

n

n m_  m{(m—
Ap = Z (m) (q—1)mg™ 1)/2Gq,m

m=0 q
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Let us now take n = p?, and let i tend to co. Let us cut the previous sum into two
pieces D, /2 + 2,5 ,i2 and write, for any fixed r close enough to 1,

P’ P’
m) m
P’ P’
( ) lg — 1|™ |Gg,m|, tends to 0 because the factors ( )
m m

i
tend uniformly to 0. The quantity sup,,> i/ (p) lg — 1™ |Gg,ml, tends to O
= m

lg = 1" 1Ggml,, sup
m>pi/2

|Agn | = max ( sup lg— 1™ |G‘Iam|r> .
m<pi/? q

The quantity sup,,, <pi/2

q q

because the factors |[Gg,m|- tend uniformly to O due to the solvability condition.

Let us now assume that M is defined over 5}(@- In order to get lim;_, A{f =1Iin

GL, (M), one needs some uniformity in r in the previous estimates. This is provided
by the effective bound & la Dwork-Robba [DV03, 5]: for p(r) as in (12.19),

[m], ) (iﬁlelr) (p(’“_r)>m,
[l

[Im{
- sup |G n) ,
[Imy’ ) <| o]

which is valid for any r close enough to 1, and gives
at the limit » = 1 by solvability (at the outer bnoundary). O

|Gq,m|T < ( sup

m<.<mB=—D<m

|Ggm| < ( sup

m) <ooo<mB=-1)<m

13. “Unit-root” ¢-difference modules.

In this section, we study unit-root g-difference modules over R, that is o,-¢-
modules M over R for which there exists a Ogi-lattice M in M such that ® induces
an isomorphism ¢, M = M.

We prove the g-analog of Tsuzuki’s theorem (in the differential case): after passing
to a finite separable extension of k((z)) and to the corresponding finite étale extension
of R, M admits a basis of vectors fixed by ¥, and ® simultaneously.

We follow Christol’s approach [C01] of that theorem, which is more analytic than
Tsuzuki’s proof. The fact that what follows looks more involved than [CO01] is not
due to pecularities of the g-difference theory, but to the fact that we had to fill two
gaps in Christol’s paper(?).

(19)the first gap lies in [CO1, prop. 13] where two different computations are made in B([0, 1[) and
S;r Ju respectively, and are subsequently compared in the “intersection B([0,1[) N S;r /m”, which is
meaningless. The second gap occurs at the end of the proof (th. 17), where one is supposed to redo

the argument of prop. 13 over a finite unramified extension SI I of SI = But the argument of prop.

13 makes strong use of the explicit form & — xP of Frobenius, and breaks down for SI Jat
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13.1. Overconvergence of solutions.— We start with a complete non-
archimedean field of characteristic 0, with residue field k& of characteristic p > 0.
We don’t assume K discretely valued nor k perfect, but we assume that K contains
the p-th roots of unity (so that Dwork’s constant 7 belongs to K), and we fix ¢ € K
such that |¢ — 1| < |x|.

Let a and 7 be real numbers such that 0 < o < 1 < 7. Define
log a
¥ = Ploga+loglpl
so that

1— log r _ logr
o plosnp plogn

takes the value 1 at r = 7, and
a<mte f>1.
Notice that 8 < p.

Lemma 13.1. — LetY € GL,(B([0,1])) be such that
Y —Ii <a and G:=2.d,Y.Y ™" € M,(Op(o,qp)-
Then there exists Y' € GL,(B([0,1])) such that
Y'—I; <a and G :=zd,Y'Y'™ '€ M, (Og(10,51)

and such that
Y'(2?).Y ' € GL,(B([0,7])).

Proof. — (The proof is entirely parallel to that given in [CO1, Lemma 1] in the
differential case.) There are three steps.
Step 1. Tt is straightforward to check that the matrix G,,, defined inductively by

Go =1, Gpy1 = 2.dy(Gp) + G (gz)(G(z) —mg.q~™.I)

satisfies
z"d)'Y = GpY.

From these formulas, taking into account the fact that the operator [%9]—! does not
q

increase the sup-norm on B([0,1]) (¢f. [DV02, 4.2.1], [DV03, 2.1]), one derives the
following estimates:
a7 !
|Gml1 < [m]q.m(Y -0 < |[m]q| @, |Gml|, <1.

Since logr — log |G| is a convex function, one obtains by interpolation
1— log~r
|Gl < (|lmly| ) ™7

for every r between 1 and 7. In particular, |G|, < 1 and lim,, |G|, = 0if r < 7.
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Step 2. We shall see that

yP=z
satisfies that conditions of the lemma. Since the m-th Taylor coefficient of Y’ is
nothing but the pm-th Taylor coefficient of Y, it is clear that |Y' — I|; < a.
Moreover, considering the g-analog of the Taylor expansion, one finds
1 1

ViY@t = L YY) = 14 G [ Y Do d™)

[
¢p=1 p ¢r=1 [m]q

Since |¢ — 1| < m, the coefficient of G, is in Ok, and it easily follows that H :=
Y'(z?).Y ' € GL,(B([0,7])).
Step 3. One has

oG (aP) = (z.dg) (Y (27))Y (a?) ™! = wd, H.H ™" (qz) + HGH " (qz)

which lies in GL,(Op(jo,np), hence G’ € M, (B([0,77[)) and |G’ |pp < |pg| ™t = |p|~*.
On the other hand, |G'|; = |d,Y".(Y') " !|1 < a. By log-convex interpolation, one
finds

logr

_logr _ logwr
‘G'|TSa1 plognp plogn

for every r between 1 and 7”. In particular, |G'|,s < 1 by the choice of 8, whence
the lemma. 0

Assume moreover that a < |r| and let n be a non-negative integer such that
n?" .|| > 1. Then the real number 7' := (%" .|7|)P"" lies in the interval ]1,n][.

Proposition 13.2. — Under the assumption of the lemma, one has Y €
GLH(OB([O,W'D)'

Proof. — (¢f. [CO1, Prop. 3].) One has |"7_m([(,;n_'ﬁ])|n < |ﬁg|’7_m < (|mm)—™.
If n = 0, this is < (5')~™, and by the g-analog of the Taylor expansion of Y, one
concludes that Y € GL,(Op((o,)-

One then argue by induction on n. By the previous lemma, there is Y’ which
satisfies our assumptions with n replaced by n — 1 and 7 replaced by 7°. By
induction, Y’ € GL,(Op(o,uy)ep)- Hence Y'(zP) € GL,(Op(o,yp), and since
H € GLN(OB([O,W[)) C GLH(OB([O,U’D)7 one concludes that Y = H™Y'(zP) €
GLM(OB([O,T/’[)) as well. O

Corollary 13.3. — Let Y € GL,(B(]1,00])) be such that |Y — I| < |n| and
YY1 e M,(HL). ThenY € GL,(H}).

Indeed, the assumption implies (zd,Y).Y ' € M,(H}). In fact, since actually
YV € GLy(Op(1,00)), (2dgY).Y ™ € M,(O,1). After change of variable z — 1/z,
and for 7 close enough to 1, one is in the situation of the previous proposition.
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13.2. g-analog of Tsuzuki’s theorem: the case when F is close to I.—
We assume that K is endowed with a Frobenius automorphism 7 and that k is alge-
braically closed. We fix a positive integer s and consider the Frobenius ¢ : Y apz™ —
S 7% (an)zP ™ on EF. We assume that ¢"" = q.

Lemma 13.4. — For any Fy € GL,(Ok) such that |[Fo — I| < 1, there exists Hy €
GL,(Ok) such that H FoHy' =1 and |Ho—1I| = |Hy' - 1| < |Fp - 1|

For s = 1, this is part of [C01, Lemma 12]. The same proof works for any s > 0.
Lemma 13.5. — For any F € GL,(E}) such that |F — I| < 1, there exists H €

GL,(Okl[z]]) C GL,(O,y) such that H*FH™' € GL,(M})) and |H—1I|=|H™' -
1N<iF-1

Proof. — For s = 1, this is part of [C01, Lemma 8]. The proof for any s > 0 is similar.
One starts by noticing that the endomorphism id — ¢ of zK[[z]] has an inverse: ¢ =
317 ¢", and that this inverse stabilizes the subring ,>0 £. Let U be closed subspace
of M, (Ok|[z]]) consisting of matrices H satisfying |H —I| = |[H-! —I| < |F - 1|,
and let us consider the following endomorphism f of :

f(H) = H+ (1 oy,>0)(HFH™)
which can also be written as
f(H) =T+ (¢ oyp>0)(H*FH™' + H — H?).

Let us check that f is a contraction; one has f(H) — f(H') = (¢ oy,>0)(H?(FH 1 -
1) — () (P — 1) + H — H') = (0 yyo0)((H® — (H)P)(FH — 1)) —
(H"F(H'")"Y(H—-H'\H '+ H - H')), and it is clear that the norm of both terms
in the difference is < |[H — H'|. Thus f has a fixed point H, and since 1) is invertible,
Ye>o (H? FH™') as wanted. O

Proposition 13.6. — Let F € GL,(&}) satisfy |F — I| < ||, and let Ay, Agpe €
GL,(R,) be such that

Foidg=A?.F, Ap = A7 A
Then Aq € GLu(Og1) and there exists Y € GL,(OE}) such that
Y% =AY, Y?=FY.

Proof. — Using the two previous lemmas, one reduces to the case when F €
GL,(Oyt) and F(0) = I (still with |[F — I| < |x|). Let us define a sequence of
matrices Yy, € GL,(O,1) by

Yy = F~Y(F9)~L o (F97) L,



50 YVES ANDRE & LUCIA DI VIZIO

As above, let us set, for any positive integer n, Ay = qu"_l -+ A,. From the
relation Ag’ps = F91 4,F~', one derives by induction on n the following relation in
GL,(R;):

AL =P ApF
Applying this to the powers of p®, one then computes

e e N O e e N

qP

m

ms .

We now use the fact (12.21, 12.22) that the sequence A <, hence also Af;m , tends to
Iin GL,(R;), and derive that A; € GL,(H}). Indeed, since v,>0Y,, = v,>0Y? =
0, vo>04, = V! ('yw>o(A?:ns))Y,;1; one has 7x>o(Ag’:m) — vp>ol = 0, whence
Yp>0A4, = 0, and it follows that A, € GL,(H}).

By (12.21), (12.22) again, |A%. — I|er = 0, hence (Vi)' 4,Y;, tends to T
also in GL,(B(]1,<]). But Yy has a limit Y in GL,(Op(1,]), hence Y7eY ! =
A, € GL,(B(]1,00]). Applying (13.3), one concludes that Y € GL,(#H}), and that
YoV~ = A,. Since Y € GL,(Op(1,x0]), the entries of A; and Y actually lie in Oyt

On the other hand, it is obvious that Y = FY in GL,(Op(j1,))), hence also in
GL, (M),

O

Corollary 13.7. — Let (M,%,) be a g-difference module over R, with a strong
Frobenius structure ®. Let us assume that there is a basis of M in which the Frobenius
matriz F has entries in ' and satisfies |F — I| < |n|. Then there is a basis of M
which is fized under both ¥, and ®.

13.3. Going up in finite unramified extensions of £T.— We now assume in
addition that K is discretely valued (and again that k is algebraically closed). Hence
K is a finite extension of the field of fractions of the Witt ring W (k).

We are now looking for generalizations of the previous results when 5}(@ is replaced
by a finite unramified extension 5}(@ (z' being a good coordinate as in §11.3). The
difficulty lies of course in the fact that one cannot assume that o, (z') is proportional
to z', not that ¢(z') = (z')P.

We use again the notations f : C - P, \0, etc... of §11.3. Let d be the degree
of f. Let us first generalize corollary 13.3.

Proposition 13.8. — Let Y' € GL,(By (]1,0]) be such that |Y' — I| < |m| and
(Y9 (Y") "t € M,(OY(C)k). ThenY' € GL,(O'(C)k).

Proof. — We first notice that it is sufficient to prove that Y’ € GL,(OT(C)[+]) for
some h € H} of norm 1: the fact that A} := (Y”)%(Y”)~! has no pole at h = 0 will
imply that Y’ has no pole as well at h = 0. After such a localization, we may assume
that OT(C)[#] is a free Oyt [+]-module of rank d.
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In the second place, we notice that A} € M,(O'(C)). Let us endow the free
Ot (C)[+]-module of rank p, say M’ = @!=% OT(C)[L]m}, with the o,-linear endo-
morphism X, defined by the matrix (4})~" in the basis (m;). Via f, M’ gives rise
to an “underlying” g-difference module M over O,1 [+]. We endow it with the basis
(m;) constructed via (m}) and a fixed basis of OT(C)[}] over 0,1 []. Tn this basis,
the g-difference system has a solution Y € GL,4(B;(]1, oc])) with Y (0) = I. Let w be
a uniformizing parameter for Ok, and let n be such that |7| = |w|*~!. The condition
|Y' — I| < |n| translates into: the image of the vectors m} in M'/w™ are fixed under
¥4. Since 0, = id mod w™, this implies that the image of the vectors m; in M/w"
are fixed under ¥,. Hence |Y — I| < |r|, and by (13.3),Y € GL”d(OHL[%]), which

implies that Y’ € GL,(OT(C)[£]). O

Let us now generalize lemma, 13.5:

Lemma 138.9. — For any F' € GL,(EL) such that |[F' — I| < 1, there exists H €
GL,(Ok[[="]]) C GL“(OSTI) such that H*F'H' € GL,(0O'(O)k) and |H —I| =
|H 1 —I| < |F' -1

Proof. — One can even require that H*F'H~! € GL,, (’Hl,). The proof is almost
the same as in (13.5), except that one has to deal with two Frobenius endomorphisms
at the same time: ¢, and ¢' which raises to z' to the power p*. One introduces the
inverse ¢’ = Y 7°(¢')" of id — ¢, and the space U’ analogous to U with z' in place of
z. One checks that the formula

FH) = H + ( 0 ygryso) (HOF'HY)

(with @, not ¢'!) defines an endomorphism of &’. One checks as in (13.5) that f is a
contraction by writing f(H) in the form f(H) = I + (¢ 0 y(zry>o)(H*(F'H™' = I) +
H+ (H?—H?")) and using the fact that |[H?® — (H')? — HY + (H")*'| < |H—-H'|. O

At last, let us generalize proposition 13.6:
Proposition 13.10. — Let F' € GLN(SI,) satisfy |F' —I| < |r|, and let Ay, Al,. €
GL,(Ry) be such that
(F)edy = (A T, AL = (A0 A
Then Ay € GLu(Ogt ) there exists Y' € GLu(Ogt ) such that
(Y7 = A)Y', (Y =FY"

Proof. — Using (13.8) and (13.9) in the place of (13.3) and (13.5) respectively, the
argument is the same as in (13.6), except that one cannot apply directly the truncation
operator 7y,>o since o, does not commute with 7,,>0. We are in the situation where
F', hence Yy, is in GL,(O(C)k), and where ((Y,,)7¢)*AY,, = (A;Pms)q’m — Iin
GL, (R4 ), and we have to derive that A} € GL,(OT(C)k).
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We first notice that (’)IrK is a free H!-module of rank d (it comes form a locally
free A([r, oo])-module of rank d (r < 1), which is automatically free since A([r, 00]) is
principal).

Let us endow the free O1(C) g-module of rank p, say M' = ®:=% O1(C) xgm}, with
a ¢-linear endomorphism ® defined by the matrix (F')~! in the basis (m;), and endow
M ®E;, with the o4-linear endomorphism ¥, defined by the matrix (A})~" in the same
basis. Via f, M’ gives rise to an “underlying” ¢-difference module M over H!, and
M &€&} becomes a oy-¢-module over £f. We endow M with the basis (m;) constructed

!

via (m}) and a fixed basis of O}( over HI, and we denote by A, and F respectively
the inverse matrices of £, and ® in this basis. Then the argument of (13.6) applies

and shows that A, € GL,(#}), which implies that A} € GL,(O"(C)k). O

13.4. g-analog of Tsuzuki’s theorem: the general case.— In this section K is
a complete discrete valuation field of characteristic 0, with algebraically closed residue
field k of characteristic p. We assume that 7 € K, that |¢ — 1| < |n|. K is endowed
with a Frobenius 7, and we assume that, for a given s > 0, 7°(q) = ¢.

As before, ¢ is the 7°-linear endomorphism of £ (or R) which sends z to .

Theorem 13.11. — Let (M,%,) be a g-difference module over R, with a strong
Frobenius structure ®. Let us assume that there is a Ogi-lattice M in M such that
® induces an isomorphism

PM =3 M.

Then there is a finite unramified extension 51, of & and a basis of M ®o,, Ogi
which is fized under both ¥, and ®. o7
In particular, (M ®gr, Ra,X,) is a trivial ¢-difference module.

This follows from the previous proposition and the following lemma, of N. Tsuzuki
[T98b, 5.2.2] (cf. also [CO1, Lemma 16)):

Lemma 13.12. — For any F € GL,(Og1), there exists a finite unramified extension
&l and H € GL, (Ot ) such that [H*FH™' — I| < |n]|.

T

This is proven in [T98b, 5.1.1], [CO1, lemme 16] for s = 1, but the proof works
for any s > 0.

14. Quasi-unipotence

In this section K is assumed to be complete, discretely valued, of characteristic 0,
with residue field k perfect of characteristic p > 0. K is endowed with a Frobenius 7.
As before, ¢ is the 7°-linear endomorphism of £t (or R) which sends z to z?".

We shall prove the quasi-unipotence of g-difference modules over R which admit a
strong Frobenius structure, using Kedlaya’s structure theorem for ¢-modules over R.
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Another path toward quasi-unipotence seems possible, through the structure theo-
rem of [A02 ] for tannakian categories with a Hasse-Arf filtration. However, this
would require a g-analog of Christol-Mebkhout theory of exponents and analytic
slopes(29),

14.1. Kedlaya’s filtration.— We shall rely on the following theorem [Ke03, 6.10]:

Theorem 14.1. — Let (M,®) be a ¢-module over R. Then there exists a unique
finite ascending filtration (M;) by saturated ¢-modules such that

i) the quotients M; /M1 have a single ®-slope s;,

%) j ¥ s; is increasing,

iii) each quotient M;/M;i1 comes from a unique ¢-module (N;,®) over ', and
N; ®gt € has a unique slope in the sense of Dieudonné-Manin, which is s;.

Here, £ is the usual notation for the p-adic completion of &Y. “M; saturated”
means as usual that M/M; is torsion-free over R, which implies that it is free, since
it is also finitely presented and R is a Bézout ring. Notice that My = N1 Q¢+ R.

The definition of ®-slopes(2!) involves the “big Robba ring” R (cf. §11.2), whose
precise definition will not matter here. A ¢-module L over R is said to have a single
slope s if there exists a basis of eigenvectors for ® in L ®% R with eigenvalues in some
finite extension of Ok of valuation equal to s.

We shall also the following result:

Proposition 14.2. — Let (M, ®) be a p-module over R. Then up to replacing k((x))
by a finite separable extension (and R by the corresponding etale extension) and K
by a finite extension,

i) there exists a basis m of M in which the inverse matrizx F of ® can be written
as F = DU, where D is a diagonal matriz with diagonal entries D; in K and of
non-decreasing valuations, and with U € GL,(O¢t), U —I| < 1,

ii) the ®-slopes of N := @ EYmy; coincide with the slopes of N ®g+ £ in the sense of
Dieudonné-Manin,

iii) N contains Ny (in the notation of §14.1),

iv) the valuations of D; are equal for i < tkN, and strictly less than the valuations of
D; for i > rkN,

v) N is the direct sum of N1 and Ni := ®;>rkn Etmg,

vi) one may choose moreover m in such a way that N = Di<rkN Sfm,', so that U may

(20)it seems likely that the Christol-Mebkhout arguments carries over to the g-difference case, but
we haven’t checked all the details

(2D called special slopes in [Ke03]; we call them ®-slopes here in order to prevent any confusion with
the (analytic) slopes & la Christol-Mebkhout, whose definition does not make use of any Frobenius
structure, and which will appear in the sequel
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be written in block form as
X Y
v= (0 Z> ’
where X € GLwn(O¢t), Z € GL,—n(Ogt), and Y has entries in (’)}.

Proof. — Multiplying F' by some constant and replacing K by a finite extension, one
may assume that the ®-slopes belong to the value group of O.

For i) and ii), see [Ke03, 6.9], where it is shown that the Dieudonné-Manin slopes
of N ®¢+ £ are the valuations of the D;’s.

The construction and characterization of N7 in [Ke03, 6.10] also shows #ii). On
the other hand, setting & = K ®z, W(k((x))), it is shown in [Ke03, 5.9] that ® can
be put into diagonal form D by some change of basis via a matrix V € GL,(Op)
(applied to m), with |V — I| < 1. Points iv),v) and v) follow easily. O

14.2. The local monodromy theorem.— We assume that |¢ — 1| < |=| and that
m(q) = ¢.

Theorem 14.3. — Any q-difference module (M,%,) over R which admits a strong
Frobenius structure is quasi-unipotent: after replacing k((x)) by a finite separable
extension (and R by the corresponding étale extension), it admits a filtration by sat-
urated g-difference submodules, with trivial quotients(?2).

Proof. — Multiplying F' by some constant and replacing K by a finite extension, one
may assume that the ®-slopes belong to the value group of O, and that the least
P-slope is 0.

We may freely replace k((z)) by a finite separable extension and extend the dis-
cretely valued field K, so that we may assume that we are in the situation of the
previous proposition, that 7 € K and that k is algebraically closed.

We shall prove that M; is stable under ¥,. Applying (13.11), one deduces that it
is trivialized, as a g¢-difference module, in some finite extension of R coming from a
finite separable extension of k((x)). The same will be true for the M; by induction,
whence the quasi-unipotence of (M, %,).

We rely of course on the integrability condition F71A4, = Ag’; F, in the basis
provided by (14.2) vi). We write A, A »s in block form

— Pq Qq _ Pqps Qq?s

q q
We have to show that R, = 0.
The lower left corner of the integrability condition gives rise to the equation

R, = (2°)'D"RY,. (D)X,

(22) a5 ¢-difference modules, i.e. they admit a basis of which is fixed under ¥q
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where D' (resp. D") is the diagonal matrix with diagonal entries D;, i < rkM; (resp.
i > rkMy).

Let us fix 7 sufficiently close to 1 (so that our g-difference module with Frobenius
structure is defined over A([r,1[)). Then the canonical absolute values | [.1/v¢ .4, are
defined for each of the matrices entering the last displayed equation. Moreover

|(Z0[1)_1D”|r1/1’s ,can'|(D’)_1X|7‘1/P5 ,can < 17

and |prs 7170° can = |[Rgp*|lrcan- Thus |Ryl,a/es con < |[Ryes lr.can- Now we may
replace ¢ by a large power, i.e. s is replaced by a large multiple. When s — 00, we
know that A+ — I'in R (by (12.21), (12.22)), hence |R ¢ |r,can — 0. We conclude
that R, = 0. O

14.3. Logarithmic variant.—

Theorem 14.4. — For any q-difference module (M,%,) over R, which admits a
strong Frobenius structure, there is a finite étale extension R, /R, coming from a
finite separable extension k'((z"))/k((z)), such that M ®x, Ru[logz] has a basis
fized by X.

This follows from the previous theorem and the following lemma:
Lemma 14.5. — d, : Ry[logz] — Ry [logz] is surjective.

Proof. — Tt is easy to see that §; = zd; = (¢ — 1)(04 — id) induces a K-linear
isomorphism R, /K — R, /K. Note that &,(z"logFz) is a polynomial of degree
< kin log z, with coefficients in K[z, 1/z]. From there, using the twisted Leibniz rule,
it is not difficult to conclude by induction on the degree of log that J, : R [logz] —
R:[logz] is surjective.

Let us now turn to Rk . [logz]. We may assume that K = K'. Again, by
induction on the degree of log, one reduces the statement to the surjectivity of d, :
Rxl/K —)RZI/K

Recall (¢f. (12.16)) that for r close enough to 1, and for every r' € [r,1], one
has 6q(Az ([r,7'])) C (A ([r,7'])), hence it is enough to show that d, = zd, :
Ae([r,r')) /K — Ay ([r,7'])/ K is surjective (the advantage is that Ay ([r,7'])/K
is a Banach space). We may also assume that x € By ([r, 1[)*.

Actually, since

8,(f) =9 8 f = (1) 77"+ +9),

it is enough to show that & ,is : Aer ([r,7'])/ K — Ag ([, 7'])/ K is surjective for some
i. But, according to remark 12.16, 4, ,i: — zd/dx when i — co. Since zd/dz is a con-
tinuous injective endomorphism of the K-Banach space A, ([r,r'])/ K, the surjectivity
of § ,is for i big enough will follow from the surjectivity of zd/dz : Ay ([r,r'])/ K —
Ay ([r,r'])/K. Since zd/dz is a multiple of z'd/dz' by a unit in A([r,7'])), we are
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reduced to the surjectivity of z'd/dz’' : Ay ([r,r'])/K — Ay ([r,7'])/K, which is
straightforward. O

As in the differential case (¢f. [A02]), theorem 14.4 can be expressed in the
following “tannakian way”:

Theorem 14.6. — Let us assume that k is algebraically closed. Then the canonical
®-functor

Dg‘z) : Repr (Gr((a)) X Ga) — oq—Mod%)z

is an equivalence of categories. In fact, there is a canonical quasi-inverse Vg(j) ) and a

canonical isomorphism D((,‘Z) ) Vg(f) ~ Jd.

This quasi-inverse is given by V,(f) (M) := (M ®rR'[log z])¥* for R’ big enough (in
R), and the isomorphism M 3 Dgf) Vg(f) (M) is induced by the canonical isomorphism

(M @r R'[log z])™ ©x R'[logz] — M @x R'[log z).

Proof. — We know that this functor is fully faithful, and its essential surjectivity is
ensured by (14.4). The rest is formal and left to the reader. O

Remark 14.7. — This functor actually comes from a fully faithful ®-functor
RepK (Gk((z)) X Ga) — O'Q—Mod‘(;g),
but the latter is not essentially surjective. For instance

Eﬁtd (R, R) = ExtRepGa (K, K) = K,

q—ModE,f)

while Ext (E1,&1) is a K-space of infinite dimension.
q

-Mod'?

Corollary 14.8. — There is a canonical K-linear fully faithful ®-functor
aq-MOd%) — Uq—Mod%mf(d’)

given by Df:,(;"f(d)) o V,,(f) (23),

Is it an equivalence of categories? This is likely. One way to tackle the question
would be to prove directly the essential surjectivity of D,(,qunf 2 along the above lines;
the major technical problem in this direction is to control the variation of Kedlaya’s
filtration attached to the confluent sequence of ¢g¢" -difference modules when i — .

(23)using tacitly the canonical isomorphism D((,?;) o Va(f) >~ Jd
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15. Applications.

15.1. Confluence.— We assume again that k is algebraically closed. We call “p-
adic confluence functor” the composed ®-functor

Conf : 0,-Mods)) — 0,-Mod™™ ' — d-Mods?,

where the first functor is Df,‘;“f G Va(f) and the second Limgﬁ).

Theorem 15.1. — One has Conf o Dg‘ﬁ) = Dy’). In particular, Conf is an equiva-
lence.

Proof. — This is clear from remark 12.18, and from the fact that Dgf) and Dfid’) are
equivalences, by the quasi-unipotence theorems. O

Remark 15.2. — Tt is clear that the restriction of these functors to rank one objects
gives rise to the group isomorphisms of (8.2).

15.2. Analytic slopes and exponents.— Let 7’ be in ]J|¢g — 1|,1[, and X be a
non negative real number. By analogy with the differential case (¢f. [CMO02]), we
introduce the following

Definition 15.3. — A g-difference module M over Ak ([r', 1]) has (analytic) slopes
< X if there is a function

r €]r’, 1[— p(r) €]rit, 7]
such that M ® 4, ([r,1) Aa(tr, p(r)) has a basis of elements fixed under %,.

Tt is clear that this implies solvability in the sense of (12.19).

Since any g¢-difference module M over R, is “defined over Ag([r,1[)” for some r
close enough to 1, this provides a definition of “having slopes < A” for such mod-
ules. This property is stable by passage to subquotients, dual, tensor products and
extensions. One checks exactly as in the differential case that for n prime to p, the
base-change by z — z” of M is a ¢'/™-difference module of slopes < n\.

It is likely that the Christol-Mebkhout theory of slope filtrations carries over to
the g-difference case, but we haven’t checked all details.

We now assume for simplicity that the residue field k is algebraically closed.

Example 15.4. — g¢-difference equations of rank 1 with Frobenius struc-
ture. We have seen in (7.3) that any g¢-difference equation over R with Frobenius
structure has a non-zero solution in some finite unramified extension 5;, of &1, and
that y'/y € £I. Thus the group isomorphism o, — eqé‘f) = d- eqéf) from (8.2)
preserves the property of “having slopes < \”.

In particular, ¢g-difference equations of rank 1 with Frobenius structure and slope
slope 0 (i.e. slope < 0) correspond to tame characters of Gy (,)) (via (8.2)), hence
are of the form d; — [a],/z with a € Z, N Q.
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Theorem 15.5. — Any M € 04-M od%) with slope 0 has a filtration with graded
pieces of rank one.

Proof. — By quasi-unipotence, we may assume, after taking subquotients, that M
corresponds to a representation V' of G ((;)) with finite image G' (which is the semi-
direct product of a cyclic group of order prime to p by a p-group, c¢f. [S68]). Rep-
resentations of G then correspond to ¢-difference modules in the tannakian category
generated by M, which have slope 0. By base-change by x — z™ for suitable n prime
to p, we may assume that G is a p-group, é.e. that with are in the purely wild case.
By the previous example, there is no one-dimensional representation of G which cor-
responds to a g-difference module of slope 0. Since G is a p-group, we conclude that
it is trivial. O

It follows from that M is an iterated extension of g¢-difference modules of type
Rldq]/(dg +[ailq), i =1,...,u =rkM, with o; € Z,NQ well defined mod. Z and up
to permutation. Let us call these p-adic numbers (mod. Z and up to permutation)
the ezponents of M. Taking into account remark 8.3, we have:

Proposition 15.6. — The functor Conf preserves objects of (analytic) slope 0 and
their exponents.
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