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Rationality and potential : Abstract

A 1894 theorem by Émile Borel asserts that power series with integral
coefficients that define a meromorphic function on a disk of radius > 1 is the
Taylor expansion of a rational function. It has been extended in various
directions (Pólya, Dwork, Bertrandias and Robinson) to encompass more
complicated shapes than open disks, number fields, and several absolute
values. We extend to algebraic curves of arbitrary genus the theorem of Cantor
that considers Taylor expansions “at several points”.
Our proof runs in two steps. The first step is an algebraicity criterion, which is
proved using a method of diophantine approximation. The second step relies on
the Hodge index theorem in Arakelov geometry, following an earlier work by
Bost and myself.
(Joint work with Camille Noûs) “Potentiel et rationalité”, arXiv:2305.17210
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The starting point: a theorem of Émile Borel

Theorem (Émile Borel (1894), “Sur une application d’un théorème de
M. Hadamard”)

Let 𝑓 ∈ 𝐙[[T]] be a power series with integer coefficients.
Assume that 𝑓 is the Taylor expansion of a meromorphic function ϕ defined on a
disk D(0, R) with R > 1.
Then 𝑓 is the Taylor expansion of a rational function in 𝐐(T).

Equivalently : the coefficients of 𝑓 satisfy a linear recurrence relation with
integer coefficients.
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Borel’s theorem: proof

Ingredients of the proof

• Criterium for rationality: vanishing of Hankel determinants
• Consider a “denominator” P ∈ 𝐂[T] of ϕ on a closed disk D(0, 𝑟) with 𝑟 > 1. By
linear combinations, one replaces most columns of the determinants by
coefficients of Pϕ.

• By the Cauchy estimates, these coefficients are small, and the other are not
too large.

• By the Hadamard theorem, the determinants are small.
• Since these determinants are integers, they ultimately vanish.
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Borel’s theorem: generalizations and applications

• Pólya (1928), “Über gewisse notwendige Determinantenkriterien für die
Fortsetzbarkeit einer Potenzreihe”
∘ replaces disks by more general open sets, and radius by transfinite diameter
(after inversion)

∘ application to the meromorphic continuation of lacunary power series
• Dwork (1960), “On the rationality of the zeta function of an algebraic
variety”

• Bertrandias (1963), “Diamètre transfini dans un corps valué. Application au
prolongement analytique”

• Cantor (1980), “On an extension of the definition of transfinite diameter
and some applications”
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Borel’s theorem: generalizations and applications

• Pólya (1928), “Über gewisse notwendige Determinantenkriterien für die
Fortsetzbarkeit einer Potenzreihe”

• Dwork (1960), “On the rationality of the zeta function of an algebraic
variety”
∘ also considers the 𝑝-adic behavior of 𝑓: two radii R𝑝 and R∞, with condition
R𝑝R∞ > 1

∘ in his application to the Weil conjecture, R𝑝 = +∞, R∞ > 0
• Bertrandias (1963), “Diamètre transfini dans un corps valué. Application au
prolongement analytique”

• Cantor (1980), “On an extension of the definition of transfinite diameter
and some applications”

5

https://eudml.org/doc/159279
https://eudml.org/doc/159279
https://www.jstor.org/stable/2372974?origin=crossref
https://www.jstor.org/stable/2372974?origin=crossref
http://www.numdam.org/item/SDPP_1963-1964__5__A3_0/
http://www.numdam.org/item/SDPP_1963-1964__5__A3_0/
http://doi.org/10.1515/crll.1980.316.160
http://doi.org/10.1515/crll.1980.316.160


Borel’s theorem: generalizations and applications

• Pólya (1928), “Über gewisse notwendige Determinantenkriterien für die
Fortsetzbarkeit einer Potenzreihe”

• Dwork (1960), “On the rationality of the zeta function of an algebraic
variety”

• Bertrandias (1963), “Diamètre transfini dans un corps valué. Application au
prolongement analytique”
∘ number fields, 𝑝-adic transfinite diameters, several places
∘ Bézivin & Robba (1989), “A new 𝑝-adic method for proving irrationality and
transcendence results” — new proof of the Lindemann-Weierstrass theorem by
way of “Pólya operators”

• Cantor (1980), “On an extension of the definition of transfinite diameter
and some applications”
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Borel’s theorem: generalizations and applications

• Pólya (1928), “Über gewisse notwendige Determinantenkriterien für die
Fortsetzbarkeit einer Potenzreihe”

• Dwork (1960), “On the rationality of the zeta function of an algebraic
variety”

• Bertrandias (1963), “Diamètre transfini dans un corps valué. Application au
prolongement analytique”

• Cantor (1980), “On an extension of the definition of transfinite diameter
and some applications”
∘ introduces expansions at several points
∘ the “product of radii > 1” condition is replaced by “the value of some game is
strictly positive”
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Formal functions on curves

Let X be a projective, connected, smooth curve over a number field F.
We fix a finite family (𝑝𝑖) of rational points on F and formal functions 𝑓𝑖 ∈ ÔX,𝑝𝑖.

For X = 𝐏1 and the point 𝑝 = ∞, 𝑓 corresponds to a power series in F[[T−1]].

We have to assume some adelic setup:

• The 𝑓𝑖 come from a formal function on an integral model X along sections P𝑖
extending 𝑝𝑖;

• For all places 𝑣 of F, there is a meromorphic function ϕ𝑣 on an open
subset Ω𝑣 of the analytic curve X𝑣 containing the points 𝑝𝑖 with formal
expansion 𝑓𝑖 at 𝑝𝑖.

• For almost all nonarchimedean places 𝑣, Ω𝑣 is the open subset of X𝑣
consisting of points which have the same reduction as the P𝑖 mod. 𝑣.
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Potential theory on Riemann surfaces

Let M be a connected compact Riemann surface
K a compact subset of M with nonempty interior, Ω = M K
For 𝑝 ∈ Ω, the Green function 𝑔K,𝑝 ∶ Ω {𝑝} → 𝐑 is characterized by the
properties:

• It is harmonic;
• If 𝑡 is a local parameter at 𝑝, 𝑔K,𝑝(𝑧) + log |𝑡(𝑧)| has a limit at 𝑝.
• It tends to 0 at ∂(K) (“almost surely”).

It solves the Laplace equation Δ𝑔K,𝑝 = δ𝑝 on Ω with Dirichlet condition at infinity.

References:

• Rumely (1989), Capacity theory on algebraic curves
• Bost (1999), “Potential theory and Lefschetz theorems for arithmetic
surfaces”
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Potential theory on non archimedean curves

Let M be a connected proper analytic curve over a nonarchimedean field
K a nonempty affinoid in M, Ω = M K
For 𝑝 ∈ Ω, there is an analogous Green function 𝑔K,𝑝 ∶ Ω {𝑝} → 𝐑 which is
characterized by the properties:

• It is harmonic (in the sense of non archimedean potential theory);
• If 𝑡 is a local parameter at 𝑝, 𝑔K,𝑝(𝑧) + log |𝑡(𝑧)| has a limit at 𝑝.
• It tends to 0 at ∂(K).

References:

• Rumely (1989), Capacity theory on algebraic curves
• Thuillier (2005), Théorie du potentiel sur les courbes en géométrie non
archimédienne. Applications à la théorie d’Arakelov
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Potential theory — Lemniscates

Both in complex and non archimedean potential theory, lemniscates provide
important and relevant examples.

𝑓 is a rational function with a pole of order 𝑑 ≥ 1 at the point 𝑝, and no other
pole.
K = {𝑧 ; |𝑓(𝑧)| ≤ 1}
𝑔K,𝑝(𝑧) = 1

𝑑 log |𝑓(𝑧)|

In the nonarchimedean case, an important class of compact sets is given by
affinoid domains, and a theorem of Rumely (1989) guarantees that they can be
viewed as lemniscates provided their complement is connected.
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A matrix

We go back to the framework over number fields and fix a local parameter 𝑡𝑖 at
each 𝑝𝑖.
For every place 𝑣 of F, we obtain Green functions 𝑔Ω𝑣,⋅ on the open set Ω𝑣 of the
analytic curve X𝑣, relative to the points 𝑝𝑖 and the domains K𝑣 = X𝑣 Ω𝑣.
We get local I × I-matrices 𝐺𝑣 = (𝐺𝑣𝑖,𝑗):

𝐺𝑣𝑖,𝑗 = {
𝑔K𝑣,𝑝𝑖(𝑝𝑗) for 𝑖 ≠ 𝑗
lim𝑧→𝑝𝑖 𝑔K𝑣,𝑝𝑖(𝑧) + log |𝑡𝑖(𝑧)|𝑣 for 𝑖 = 𝑗

and a global I × I matrix 𝐺 = ∑𝑣 𝐺𝑣.
These matrices are symmetric.
The matrix 𝐺 does not depend on the choice of the 𝑡𝑖 (product formula).
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Value of a matrix

The value of the matrix 𝐺 (von Neumann, 1928) is defined by:

val(𝐺) = sup
𝑥∈ΔI

inf
𝑦∈ΔI

⟨𝑥, 𝐺𝑦⟩,

with ΔI is the simplex {∑ 𝑥𝑖 = 1} in 𝐑I+.
In game theory, 𝐺𝑖,𝑗 is the expected gain of Isaac playing move 𝑖 while Jacob
responds with move 𝑗.
For 𝑥 ∈ ΔI and 𝑦 ∈ ΔI, ⟨𝑥, 𝐺𝑦⟩ is the expected gain of Isaac if he plays move 𝑖 with
probability 𝑥𝑖 and Jacob plays move 𝑗 with probability 𝑦𝑗, so that the definition
of val(𝐺) says that Isaac wishes to maximize his gain in front of any strategy of
Jacob.
Von Neumann’s equilibrium theorem says that

val(𝐺) = inf
𝑦∈ΔI

sup
𝑥∈ΔI

⟨𝑥, 𝐺𝑦⟩,

confirming this interpretation.
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Rationality

Theorem
If the value

val(𝐺) = sup
𝑥∈ΔI

inf
𝑦∈ΔI

⟨𝑥, 𝐺𝑦⟩,

of the matrix 𝐺 is strictly positive, then the 𝑓𝑖 are Taylor expansions of a rational
function on M.

Generalizes the theorems of Borel,… Cantor when X = 𝐏1, and of Bost & C-L
(2009, “Analytic Curves in Algebraic Varieties over Number Fields”) when there is
a single point.

If the Ω𝑣 are enlarged, the Green functions increase (maximum principle), so the
matrix 𝐺 increases coefficientwise, and hence val(G) increases. Knowing that the
functions 𝑓𝑖 exist on larger domains makes them more likely to come from a
rational function.
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Two steps

The proof follows the method used to prove the case of a single point (Bost &
C-L, 2009, “Analytic Curves in Algebraic Varieties over Number Fields”).

1. One first proves that the 𝑓𝑖 are algebraic.
The method is a diophantine technique (“polynomial method”) involving
Bost’s slope method. It is inspired by the approaches by Chudnovski and
André Grothendieck’s 𝑝-curvature conjecture, and its nonlinear version by
Bost.

2. One then proves that the 𝑓𝑖 are rational.
This is an application of the arithmetic Hodge index theorem on the finite
covering of X defined by the 𝑓𝑖.
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Algebraicity

One considers the surface Y = X × 𝐏1 and the formal graphs of the formal
functions 𝑓𝑖 — formal subschemes ̂C𝑖 at points 𝑜𝑖 = (𝑝𝑖, 𝑓𝑖(𝑝𝑖)) of Y.
The question is reformulated as the algebraicity of these formal subschemes,
and its proof applies in the more general context of formal/analytic germs of
curves in a projective variety.

Proposition

The Zariski closure in Y of the union ⋃ ̂C𝑖 has dimension 1.

Technique of diophantine approximation.
We replace Y by the Zariski closure, let 𝑑 = dim(Y).
The goal is to prove 𝑑 = 1.
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Algebraicity — diophantine approximation

Let R be the ring of integers of the number field F.
Fix an ample line bundle L on Y (plus integral model and hermitian metrics) and
consider E𝑛 = Γ(Y,L𝑛) for large 𝑛: projective R-module with norms at
archimedean places.
Numerical invariants:

• rank(E𝑛) ≈ 𝑛𝑑 (Hilbert-Samuel)
• generated by elements of norms ≪ 𝑐𝑛

• “arithmetic degree” ≫ −𝑐𝑛𝑑+1

We have to replace the norms by canonical hermitian norms (John ellipsoids).
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Algebraicity — evaluation

The polynomial method “evaluates” the elements of E𝑛 at the points 𝑝𝑖, one at a
time.
Filtration (𝐹𝑘E𝑛) of E𝑛: at step 𝑘, one adds a vanishing condition at a point 𝑝𝑖𝑘 at
order one more than what was required before.
Zariski density: this is an exhaustive filtration
We will need to choose the “evaluation speeds” of 𝑝𝑖: ω𝑖(𝑘) = Card{𝑚 < 𝑘 ; 𝑖𝑚 = 𝑖}.
(Herblot, 2011, Sur le théorème de Schneider Lang)

Evaluation morphisms: ϕ𝑘𝑛 ∶ 𝐹𝑘−1E𝑛/𝐹𝑘E𝑛 ↪ T∗Ĉ𝑖𝑘
ω𝑖𝑘(𝑘) ⊗ L𝑛(𝑜𝑖𝑘).

Inequalities

d̂eg(𝐹𝑘−1E𝑛/𝐹𝑘E𝑛) ≤ (−ω𝑖𝑘(𝑘)d̂eg(TĈ𝑖𝑘) + 𝑛ℎL(𝑜𝑖𝑘) + ℎ(ϕ
𝑘
𝑛)) ⋅ rank(𝐹𝑘−1E𝑛/𝐹𝑘E𝑛).
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Algebraicity — estimates and conclusion

• Using a variant of the Schwarz lemma, ℎ(ϕ𝑘𝑛) can be controlled by the Green
functions

• The definition of val(𝐺) furnishes a point 𝑥 ∈ ΔI such that ∑𝑖 𝑥𝑖𝐺𝑖𝑗 ≥ val(𝐺) for
all 𝑗. We can choose the evaluation speeds so that ω𝑖(𝑘) − 𝑘𝑥𝑖 remains
bounded when 𝑘 varies; more precisely:

∑
𝑖
ω𝑖(𝑘)𝐺𝑖𝑗 ≥ 𝑘 val(𝐺) − 𝑐

for all 𝑘.
• Ranks: rank(𝐹𝑘−1E𝑛/𝐹𝑘E𝑛) ≤ 1, one has rank(E𝑘𝑛) ≥ rank(E𝑛) − 𝑘,
• Sum manipulations lead to 𝑛2𝑑 ≪ 𝑛𝑑+1, hence 𝑑 = 1.
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Rationality

Once we know that the formal functions 𝑓𝑖 are algebraic, the normalization X′
of Y in X × 𝐏1 is a smooth curve with a finite morphism π∶ X′ → X.
It suffices to prove that π is an isomorphism.
The formal functions 𝑓𝑖 furnish a formal lift of π on the union of the formal
neighborhoods of the points 𝑝𝑖.
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Rationality: geometric analogue

Proposition

Let 𝑓∶ S′ → S be a generically finite morphism of projective smooth connected
surfaces over a field 𝑘. Let D and D′ be effective divisors on S and S′.
Assume that 𝑓 induces an isomorphism on formal neighborhoods: ̂𝑓 ∶ ̂SD

∼−→ Ŝ′D.
If D is big and nef, then 𝑓 is birational.

Observe that 𝑓∗D is big and nef.
As a consequence of the Hodge index theorem (Ramanujam, 1972), it is connected.
We can write 𝑓∗D = D′ + D″, where D″ is effective and disjoint from D′.
Consequently, D″ = 0.
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Rationality: Ramanujam’s connectedness criterion

Proposition (Ramanujam (1972), “Remarks on the Kodaira vanishing theorem”)

Let X be a projective smooth surface over a field 𝑘 and let D be an effective
divisor on X which is big and nef. Then D is connected.

Write D = A + B where A and B are effective and non zero divisors. We shall prove
that A ⋅ B > 0. Assume otherwise.
Since D = A + B is nef, one has D ⋅ A ≥ 0, hence A ⋅ A ≥ −A ⋅ B; similarly, B ⋅ B ≥ −A ⋅ B.
Consequently, (A ⋅ A)(B ⋅ B) ≥ (A ⋅ B)2.
Using that D ⋅ D > 0, we see that A and B are not collinear in the Picard group.
The Hodge index theorem implies that the quadratic form on ⟨A, B⟩ is
nondegenerate, and has at most one + sign, and it has one because
D ⋅ D = (A + B) ⋅ (A + B) > 0. Consequently, the determinant

  | A⋅A A⋅BA⋅B B⋅B | < 0,

that is, (A ⋅ B)2 < (A ⋅ A)(B ⋅ B). This is the desired contradiction.
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Rationality: conclusion

Arakelov geometry allows to formulate a similar statement as the preceding
geometric proposition.
The most basic statement involves a generically finite morphism of arithmetic
surfaces, divisors equiped with hermitian metrics given by potential theory, and
the arithmetic Hodge index theorem, as in (Bost, 1999). An analogue of
Ramanujam’s connectedness criterion is proved there (Lemma 2).
As shown in (Bost & C-L, 2019), this framework can be expanded using metrics at
all places and gives precisely the result needed to conclude the proof of the
theorem.
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