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Algebraic solutions of linear differential equations
Let K be a number field, write ∂ = d/dx and consider

L = ∂n + an−1(x)∂
n−1 + · · ·+ a1(x)∂ + a0(x),

with ai (x) ∈ K(x).

Ricatti equation
There is a nonlinear differential equation R(u) = 0 of order n− 1 such that
y is a non-zero solution of L(y) = 0 if and only if u = y ′/y is a solution of
R(u) = 0.

Basis of algebraic solutions
If L is irreducible, then L(y) = 0 has a full basis of algebraic solutions if
and only if R(u) = 0 has an algebraic solution η which is the logarithmic
derivative of an algebraic function y :

y ′ = ηy .

References : Boulanger, Painlevé (1898).
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Algebraic solutions of linear differential equations

Question
When does L(y) = 0 have a full basis of algebraic solutions ?

This question reduces to the following 3 problems that can be solved in a
finite number of steps.

1- Reduction to the irreducible case (Singer 1979)
Is L irreducible ?

2- Algebraic solution of the Ricatti equation (Singer 1979)
Does R(u) = 0 have an algebraic solution η ?

3- Abel’s problem (Risch 1969, Baldassari-Dwork 1979)
Let η be an algebraic function. Does y ′ = ηy admit a non-trivial algebraic
solution ?
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Abel’s problem y ′ = ηy : examples
Moderate growth of an algebraic function at ∞
There is N ∈ Z≥0 and an angular sector S at ∞ such that y is
holomorphic on S and lim

x→∞
x−Ny(x) = 0.

η = 1
y(x) = exp(x) is transcendental.

η = x

y(x) = exp(x2/2) is transcendental.

η = 1/(1 − x)

y(x) = 1/(1 − x) is algebraic.

η = 1/(1 − x)2

y(x) = exp(
√

1 − x − 1) is transcendental.
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Analytic observation : Puiseux expansions
The Newton (1676) Puiseux (1850) theorem

If y is an algebraic function and δ ∈ P1, then y admits a convergent
puiseux expansion in a slit disk of center δ :
• y(x) =

∑∞
n=r an(x − δ)n/d if δ is finite.

• y(x) =
∑∞

n=r anx
−n/d if δ is infinite.

where an ∈ C, r ∈ Z and d ∈ Z>0.

Application with δ = 0 :

y(x) =
∞∑
n=r

anx
n/d = x r/d

∞∑
n=0

an+rx
n/d ,

y ′(x) =
∞∑
n=r

n

d
anx

n/d−1 = x r/d−1
∞∑
n=0

n + r

d
an+rx

n/d ,

y ′(x)

y(x)
=

∞∑
n=0

cnx
n/d−1 : a specific expansion.
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Abel’s problem : the rational case

• If η is an algebraic function and y ′ = ηy has a non-trivial algebraic
solution, then the Newton-Puiseux theorem applied to y ′/y in each
δ ∈ P1 shows that

η(x) =
k∑

i=1

βi
x − αi

,

with αi , βi ∈ C.
• A solution is y(x) =

∏k
i=1(x − αi )

βi . The Newton-Puiseux theorem
applied to y gives that y is algebraic if and only if βi ∈ Q for all i .

Abel’s problem for rational fractions
Let η(x) be a rational fraction. Then y ′ = ηy admits a non-trivial algebraic
solution if and only if η(x) =

∑k
i=1

βi
x−αi

, with αi ∈ C and βi ∈ Q for all i .
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An algebraic characterization
Let η be an algebraic function over K(x) and y a non-trivial solution of
y ′ = ηy .

Then y is algebraic over K(x) if and only if there is m ∈ Z>0 such that
mη = ν ′/ν with ν ∈ K(x , η).

Hint : if part : y = cν1/m ; only if part : differentiate the minimal equation
of y over K(x , η).

• If y is algebraic, then its minimal equation over K(x , η) is ym + µ = 0
for some µ ∈ K(x , η).

• Hence y ∈ K(x , η) ⇐⇒ m = 1.
• Rational case : m is the least common denominator of the βi ’s.

Baldassari-Dwork algorithm (1979)
Determine in a finite number of steps whether m exists or not by geometric
considerations on the curve associated with η.
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Generalized hypergeometric series
Let α = (α1, . . . , αr ) ∈ Qr , β = (β1, . . . , βs) ∈ (Q \ Z≤0)

s and consider

Fα,β(x) =
∞∑
n=0

(α1)n · · · (αr )n
(β1)n · · · (βs)n

xn,

where (a)n = a(a+ 1) · · · (a+ n − 1) if n ≥ 1 and (a)0 = 1 denotes the
Pocchammer symbol.

F(α1),(1)(x) = (1 − x)−α1 is algebraic.

F( 1
2 ,

1
2 ),(1,1)

(x) =
2
π

∫ x

0

dt√
(1 − t2)(1 − xt2)

is transcendental.

For a suitable choice of α, β and C ∈ Q (Rodriguez Villegas 2007)

Fα,β(Cx) =
∞∑
n=0

(30n)!n!
(15n)!(10n)!(6n)!

xn is algebraic of degree 483 840.
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Factorial hypergeometric series

We say that a hypergeometric series Fα,β is factorial if there is C ∈ Q∗ and
positive integers e1, . . . , eu, f1, . . . , fv such that

Fα,β(Cx) =
∞∑
n=0

(e1n)! · · · (eun)!
(f1n)! · · · (fvn)!

xn.

A combinatorial criterion

Fα,β is factorial if and only if
(X − e i2πα1) · · · (X − e i2παr )

(X − e i2πβ1) · · · (X − e i2πβs )
∈ Q(X ).

F( 1
2 ,

1
2 ),(1,1)

(16x) =
2
π

∫ 16x

0

dt√
(1 − t2)(1 − 16xt2)

=
∞∑
n=0

(2n)!2

n!4
xn.
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Golyshev’s predictions
According to Zagier (2018), Golyshev made the following prediction using
the theory of motives.

Golyshev’s predictions
If xη(x) is an algebraic factorial hypergeometric function, then
• y ′ = ηy has a non-trivial algebraic solution,
• We have even more : y ∈ Q(x , η).

In other words, if Fe,f (x) =
∑∞

n=0 Qe,f (n)x
n is algebraic, with

Qe,f (n) =
(e1n)! · · · (eun)!
(f1n)! · · · (fvn)!

,

then

ye,f (x) = exp

∫
Fe,f (x)

x
dx = x exp

( ∞∑
n=1

Qe,f (n)

n
xn

)
is also algebraic and ye,f ∈ Q(x ,Fe,f ).
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Golyshev’s predictions

By ad hoc explicit computations, Zagier (2018) proved the first part of
Golyshev’s predictions when Qe,f (n) is one of(

en

fn

)
,

(6n)!n!
(3n)!(2n)!2

or
(10n)!n!

(5n)!(4n)!(2n)!
,

with e ≥ f ≥ 1.

Abel’s problem for hypergeometric series (D., Rivoal, 2022)
Let xη(x) be an algebraic hypergeometric function. The following
assertions are equivalent.
• y ′ = ηy has a non-trivial algebraic solution.
• xη(x) is factorial.
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Gauss congruences
We write Z(p) for the localization of Z at the prime p : the ring of rational
numbers a/b with b not divisible by p.

We say that (an)n∈Z ∈ QZ satisfies Gauss congruences for the prime p if

∀n ∈ Z, anp − an ∈ npZ(p).

• An equivalent congruence :
∀s ∈ Z≥0, ∀m ∈ Z, amps+1 − amps ∈ ps+1Z(p).

• If (an)n≥0 ∈ ZN, then it satisfies Gauss congruences for all p if and
only if

∀n ∈ Z≥0,
∑

d |n µ(n/d)ad ≡ 0 mod n,
where µ is the Möbius function.

• The latter congruence was proved by Gauss (1863) for an = rn, r
prime, and later for r ∈ Z by Kantor, Weyr, Lucas, Grandi, Pellet,
Thué (1880-1883 independently).
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An arithmetic characterization

We say that (an)n∈Z has the Gauss property if it satisfies Gauss
congruences for all large enough prime p.

Rational Puiseux expansion
Let η be an algebraic function over C(x) and δ ∈ C. Write

η(x) =
∑∞

n=r pn(x − δ)n/d .

We say that this Puiseux expansion is rational if pn ∈ Q for all n.

Abel’s problem for rational Puiseux expansions (D., Rivoal, 2022)
Let η be an algebraic function over C(x) which has a rational Puiseux
expansion at δ ∈ C with coefficients (pn)n∈Z. Then the following assertions
are equivalent.
• y ′ = ηy has a non-trivial algebraic solution.
• (pn−1)n∈Z has the Gauss property.
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An arithmetic characterization : remarks

η(x) =
∑∞

n=r pn(x − δ)n/d , (pn ∈ Q, δ ∈ C).

Non-zero algebraic sol. to y ′ = ηy ⇐⇒ (pn−1)n∈Z has the G.P.

• A characterization at δ = ∞ exists.
• The case δ = 0 is sufficient since η(x) = η(x + δ) is algebraic and

leads to an equivalent problem of Abel.
• When d = 1, prime numbers p for which (pn−1)n∈Z satisfies Gauss

congruences can be guessed from the Eisenstein constant of y .
• Useful to prove algebraicity via congruences, e.g. Golyshev’s prediction.
• Useful to prove Gauss congruences via algebraicity :

η(x) =
r

1 − rx
and y(x) =

1
1 − rx

∈ Z[[x ]]

yield Gauss congruences for all p for (rn)n≥0, r ∈ Z.
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Application to the hypergeometric case

A hypergeometric series Fα,β is globally bounded if it has a positive radius
of convergence and if there is C ∈ Q∗ such that Fα,β(Cx) ∈ Z[[x ]].

Gauss congruences for hypergeometric series (D., Rivoal, 2022)
Let Fα,β be a globally bounded hypergeometric series. Then the following
assertions are equivalent.
• The sequence of coefficients of Fα,β has the Gauss property.
• Fα,β is factorial.

In addition, if C ∈ Q∗ is such that Fα,β(Cx) = Fe,f (x), then Fe,f satisfies
Gauss congruences for all prime p.

Every algebraic Fα,β is globally bounded, but this criterion also applies to
transcendental hypergeometric functions. Hence the first part of Golyshev’s
predictions follows from this criterion.
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The hypergeometric case : sketch of the proof
Assume that Fα,β is globally bounded, write

Qα,β(n) =
(α1)n · · · (αr )n
(β1)n · · · (βr )n

and d the least common denominator of the rational numbers αi and βj .

An almost Gauss congruence for p > d

For all s ∈ Z≥0 and m ∈ Z, we have

Qα,β(mps+1)−Q⟨kα⟩,⟨kβ⟩(mps) ∈ ps+1Z(p),

with kp ≡ 1 mod d and ⟨x⟩ = {x} if x /∈ Z, ⟨x⟩ = 1 otherwise.

α = (1/3, 1/3), β = (1/2, 1) and p = 11
We have d = 6 and p ≡ 5 mod 6 so k = 5 :

Q( 1
3 ,

1
3 ),(

1
2 ,1)

(mps+1)−Q( 2
3 ,

2
3 ),(

1
2 ,1)

(mps) ∈ ps+1Z(p).
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The hypergeometric case : sketch of the proof

An almost Gauss congruence for p > d

For all s ∈ Z≥0 and m ∈ Z, we have

Qα,β(mps+1)−Q⟨kα⟩,⟨kβ⟩(mps) ∈ ps+1Z(p),

with kp ≡ 1 mod d and ⟨x⟩ = {x} if x /∈ Z, ⟨x⟩ = 1 otherwise.

Those congruences give the equivalence of the following assertions.
• Qα,β has the Gauss property.
• α = ⟨kα⟩ and β = ⟨kβ⟩ for all k coprime to d .
• Fα,β is factorial.
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Step 1 (δ = 0) : d = 1 and pn ∈ Z

η(x) =
∞∑

n=−1

pnx
n and y(x) = xp−1 exp

( ∞∑
n=1

pn−1

n
xn

)
.

Chudnovsky and Chudnovsky (1985)
Let y(x) ∈ Q[[x ]] be such that y(λx) ∈ Z[[x ]] for some λ ∈ Q∗. If y ′/y is
algebraic over Q(x), then y is algebraic over Q(x).

For simplicity we assume that p−1 ≥ 0 so that y(x) ∈ Q[[x ]]. Since
y ′/y = η is algebraic we have to show that the following assertions are
equivalent.
• There is λ ∈ Q∗ such that y(λx) ∈ Z[[x ]].
• (pn−1)n≥0 has the Gauss property.
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Step 1 : d = 1 and pn ∈ Z

(pn−1)n≥0 ∈ ZN =⇒ ∀p prime, y(p2x) ∈ Z(p)[[x ]].

Hence we have the equivalent assertions :
• There is λ ∈ Q∗ such that y(λx) ∈ Z[[x ]].
• y(x) ∈ Z(p)[[x ]] for all large enough prime p.

Dieudonné (1957), Dwork (1958)
Let s(x) ∈ xQ[[x ]] and p be a prime number. Then the following assertions
are equivalent.
• es(x) ∈ Z(p)[[x ]].
• s(xp)− ps(x) ∈ pxZ(p)[[x ]].

y(x) = xp−1 exp

( ∞∑
n=1

pn−1

n
xn

)
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Step 1 : d = 1 and pn ∈ Z

Dieudonné (1957), Dwork (1958)
Let s(x) ∈ xQ[[x ]] and p be a prime number. Then the following assertions
are equivalent.
• es(x) ∈ Z(p)[[x ]].
• s(xp)− ps(x) ∈ pxZ(p)[[x ]].

By the Dieudonné-Dwork lemma, the following assertions are equivalent.

• exp

( ∞∑
n=1

pn−1

n
xn

)
∈ Z(p)[[x ]].

• (pn−1)n≥1 satisfies Gauss congruences for the prime p.
This proves Step 1. □
This result generalizes itself twice !
• Step 2 : d = 1 and pn ∈ Q.
• Step 3 : d ≥ 1 and pn ∈ Q.
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Thank you for your attention !
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