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Introduction Partitions and their generating functions

Integer partitions

Definition

A partition λ of a positive integer n is a finite non-increasing sequence of
positive integers (λ1, . . . , λm) such that λ1 + · · ·+ λm = n. The integers
λ1, . . . , λm are called the parts of the partition λ.

Example

There are 5 partitions of 4: (4), (3, 1), (2, 2), (2, 1, 1) and (1, 1, 1, 1).
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Introduction Partitions and their generating functions

Generating functions

Notation : (a; q)n =
∏n−1

k=0(1− aqk), n ∈ N ∪ {∞}.

Let Q(n, k) be the number of partitions of n into k distinct parts. Then

1 +
∑
n≥1

∑
k≥1

Q(n, k)zkqn = (1 + zq)(1 + zq2)(1 + zq3)(1 + zq4) · · ·

= (−zq; q)∞.

Let p(n, k) be the number of partitions of n into k parts. Then

1 +
∑
n≥1

∑
k≥1

p(n, k)zkqn =
∏
n≥1

(
1 + zqn + z2q2n + · · ·

)
=

1

(zq; q)∞
.
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Introduction Partitions and their generating functions

Generating functions

More generally:

The generating function for partitions into distinct parts congruent to
k mod N is

(−zqk ; qN)∞.

The generating function for partitions into parts congruent to k
mod N is

1

(zqk ; qN)∞
.
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Introduction Partition identities

Partition identities

Partition identities

For all n, the number of partitions of n satisfying some conditions equals
the number of partitions of n satisfying some other conditions.

The simplest example of partition identity (Euler 1748)

For all n, the number of partitions of n into distinct parts
equals the number of partitions of n into odd parts.

Example n = 4: (4), (3, 1) into distinct parts,
(3, 1), (1, 1, 1, 1) into odd parts.

Euler’s theorem is easy to prove with generating functions (see next slide).
But in general, partition identities are neither easy to guess nor easy to
prove.
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Introduction Partition identities

Euler’s identity

Theorem (Euler 1748)

For all n, the number of partitions of n into distinct parts equals the
number of partitions of n into odd parts.

Proof.

∏
n≥1

(1 + qn) =
∏
n≥1

(1 + qn)(1− qn)

1− qn

=
∏
n≥1

1− q2n

1− qn

=
∏
n≥1

1

1− q2n−1
.
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Introduction Motivation and goals

Where do partition identities come from?
Combinatorics

Representation theory of affine Lie algebras (often more complicated
identities): Lepowsky–Wilson 1984, Capparelli 1992, Meurman–Primc
1999, Siladić 2002, Nandi 2014, D.–Konan 2020-2023+
A few examples from other fields:

▶ commutative algebra and algebraic geometry: Bruschek–Mourtada–
Schepers 2011, Afsharijoo 2020, El Manssour–Pogudin 2021

▶ mathematical physics: Andrews–Baxter 1981, 1984

In representation theory, partition identities come from giving two different
expressions for

ch(V ) =
∑
µ

dim(Vµ)e
µ,

the character of a Lie algebra representation V =
⊕

µ Vµ (which is a
vector space). Here the µ’s are so-called roots and can be written as linear
combinations of simple roots α0, . . . , αn.
The principal specialisation (e−αi 7→ q for all i) gives an infinite product.
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Introduction Motivation and goals

The Rogers–Ramanujan identities

Theorem (Rogers 1894, Rogers–Ramanujan 1919)
∞∑
n=0

qn
2

(q; q)n
=

1

(q; q5)∞(q4; q5)∞
,

For every positive integer n, the number of partitions of n such that the
difference between two consecutive parts is at least 2 is equal to the
number of partitions of n into parts congruent to 1 or 4 modulo 5.

∞∑
n=0

qn
2+n

(q; q)n
=

1

(q2; q5)∞(q3; q5)∞
,

For every positive integer n, the number of partitions of n such that the
difference between two consecutive parts is at least 2 and the smallest part
is > 1 is equal to the number of partitions of n into parts congruent to 2
or 3 modulo 5.
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Introduction Motivation and goals

Representation theoretic interpretation

Lepowsky and Wilson 1984: representation theoretic interpretation

(−q; q)∞

∞∑
n=0

qn
2

(q; q)n
= (−q; q)∞

1

(q; q5)∞(q4; q5)∞

Obtained by giving two different formulations for the principal
specialisation of e−(Λ0+2Λ1)chL(Λ0 + 2Λ1), where L(Λ0 + 2Λ1) is the

irreducible highest weight A
(1)
1 -module of level 3 with highest weight

Λ0 + 2Λ1.

RHS: principal specialisation of the character formula

LHS: comes from the construction of a basis of L(Λ0 + 2Λ1)
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(−q; q)∞
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n=0

qn
2

(q; q)n
= (−q; q)∞

1

(q; q5)∞(q4; q5)∞

LHS: comes from the construction of a basis of L(Λ0 + 2Λ1).

Very rough idea:

Start with a spanning set of L(Λ0 + 2Λ1): here, monomials of the
form Z f1

1 . . .Z fs
s for s, f1, . . . , fs ∈ N≥0.

Using Lie theory, reduce this spanning set: here, one should remove
all monomials containing Z 2

j or ZjZj+1 for any j .

Show that the obtained set is a basis of the representation (difficult).

Jehanne Dousse (UniGE) q-difference equations for partitions 27 February 2024 9 / 35



Introduction Motivation and goals

Goals

Prove partition identities

▶ for the sake of combinatorics
▶ to prove that conjectured bases of representations are indeed bases

(using an approach similar to Lepowsky and Wilson’s, other partition
identities have been conjectured)

▶ to compute asymptotics

Refine partition identities (i.e. add more variables to the generating
functions, or colours on the parts of the partitions)

▶ to have more precise combinatorial information (and be able to do
some particular type of proofs, see later)

▶ it can give clues about what a bijection could be
▶ sometimes, the colours/new variables also have a representation

theoretic meaning (D.–Konan 2020)

There are several ways to do this, but here we focus on those involving
functional equations and computer algebra.
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Preliminary step: obtaining a system of recurrences Without colours

Schur’s theorem

Theorem (Schur 1926)

For any positive integer n, let A(n) denote the number of partitions of n
into distinct parts congruent to 1 or 2 modulo 3 and B(n) denote the
number of partitions (λ1, . . . , λm) of n such that

λi − λi+1 ≥

{
3 if λi+1 ≡ 1, 2 mod 3,

4 if λi+1 ≡ 0 mod 3.

Then A(n) = B(n).

Example

The partitions counted by A(10) are (10), (8, 2), (7, 2, 1) and (5, 4, 1).
The partitions counted by B(10) are (10), (9, 1), (8, 2) and (7, 3).
There are 4 partitions in both cases.
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Preliminary step: obtaining a system of recurrences Without colours

Andrews’ idea (1968)

Let Bk(n) be the number of partitions with difference conditions
(difference at least 3 between consecutive parts, no consecutive multiples
of 3) such that the largest part is at most k , and define

Gk(q) :=
∑
n∈N

Bk(n)q
n.

By a combinatorial reasoning based on removing the first part of the
partitions, one can prove the recurrences:

G3m+1(q) = G3m(q) + q3m+1G3m−2(q),

G3m+2(q) = G3m+1(q) + q3m+2G3m−1(q),

G3m+3(q) = G3m+2(q) + q3m+3G3m−1(q).

Goal: show that limk→∞ Gk(q) = (−q; q3)∞(−q2; q3)∞.
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Andrews’ idea (1968)
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n∈N
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n.
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Preliminary step: obtaining a system of recurrences With colours (refinement)
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Preliminary step: obtaining a system of recurrences With colours (refinement)

Schur’s theorem (coloured version)
Consider integers in three colours ab < a < b, with

1a < 1b < 2ab < 2a < 2b < 3ab < 3a < 3b < · · · .

Theorem (Schur 1926, Alladi–Gordon 1993)

For any positive integer n, let A(n, i , j) denote the number of partitions of
n into i distinct parts coloured a and j distinct parts coloured b.
Let B(n, i , j) denote the number of partitions λ1 + · · ·+ λm of n, with i
parts coloured a or ab and j parts coloured b or ab such that

λi − λi+1 ≥

{
2 if color(λi ) = ab or color(λi ) < color(λi+1),

1 otherwise,

Then for all n, i , j , A(n, i , j) = B(n, i , j).

kab 7→ 3k − 3, ka 7→ 3k − 2, kb 7→ 3k − 1 recovers Schur’s original
theorem.

Jehanne Dousse (UniGE) q-difference equations for partitions 27 February 2024 13 / 35



Preliminary step: obtaining a system of recurrences With colours (refinement)

Goal

Define
Gkc (q, a, b) :=

∑
n,i ,j∈N

Bkc (n, i , j)q
naibj ,

where Bkc (n, i , j) is the number of partitions counted by B(n, i , j) such
that the largest part is at most kc , c ∈ {a, b, ab}.
We know that ∑

n,i ,j∈N
A(n, i , j)qnaibj = (−aq; q)∞(−bq; q)∞.

Goal: show that for c ∈ {a, b, ab},

lim
k→∞

Gkc (q, a, b) =
∑

n,i ,j∈N
B(n, i , j)qnaibj = (−aq; q)∞(−bq; q)∞.
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Preliminary step: obtaining a system of recurrences With colours (refinement)

Obtaining recurrence equations

Reminder:

λi − λi+1 ≥

{
2 if color(λi ) = ab or color(λi ) < color(λi+1),

1 otherwise,

1a < 1b < 2ab < 2a < 2b < 3ab < 3a < 3b < · · · .

We obtain the recurrences:

Gka(q; a, b) = Gkab(q; a, b) + aqkG(k−1)a(q; a, b),

Gkb(q; a, b) = Gka(q; a, b) + bqkG(k−1)b(q; a, b),

Gkab(q; a, b) = G(k−1)b(q; a, b) + abqkG(k−2)b(q; a, b),

and we look at small cases by hand to find initial conditions for k = 1, 2, 3.
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Preliminary step: obtaining a system of recurrences With colours (refinement)

All of this is automatic!

D. 2017

When the difference conditions are between consecutive parts and depend
either on congruence conditions on the parts or on the parts’ colours, then
the recurrences for the Gk ’s can be computed automatically.

Idea: encoding the difference conditions in a matrix and reading the
recurrences from it.

Implemented in Mathematica by Jakob Ablinger and Ali Uncu in their
package qFunctions (2021).
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Preliminary step: obtaining a system of recurrences With colours (refinement)

Example (Primc’s identity)
Partitions in four colours a, b, c , d , with the order

1a < 1b < 1c < 1d < 2a < 2b < 2c < 2d < · · · ,
and difference conditions

P =


a b c d

a 2 1 2 2
b 1 0 1 1
c 0 1 0 2
d 0 1 0 2

.

Let Gk(q; a, b, c , d) (resp. Ek(q; a, b, c, d)) be the generating function for
coloured partitions satisfying the difference conditions from matrix P, with
largest part is at most (resp. equal to) k.
We have 4 equations of the following shape (one for each colour):

Gkd (q; a, b, c , d)− Gkc (q; a, b, c , d) = Ekd (q; a, b, c , d)

= dqk(Ekc (q; a, b, c , d) + Eka(q; a, b, c , d) + G(k−1)c (q; a, b, c , d)).
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First method: finding an iterable relation
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First method: finding an iterable relation

First method: finding an iterable relation
Start by experimenting with a computer (see Maple).

We want to show that for all k ,

G(k+2)ab(q; a, b) = (1 + aq)(1 + bq)Gkb(q; aq, bq).

Then we can deduce that∑
n,i ,j∈N

B(n, i , j)qnaibj = G∞(q; a, b)

= (1 + aq)(1 + bq)G∞(q; aq, bq)

= (1 + aq)(1 + bq)(1 + aq2)(1 + bq2)G∞(q; aq2, bq2)

= · · ·
= (−aq; q)∞(−bq; q)∞G∞(q; 0, 0)

= (−aq; q)∞(−bq; q)∞

=
∑

n,i ,j∈N
A(n, i , j)qnaibj .

Jehanne Dousse (UniGE) q-difference equations for partitions 27 February 2024 18 / 35



First method: finding an iterable relation

First method: finding an iterable relation
Start by experimenting with a computer (see Maple).

We want to show that for all k ,

G(k+2)ab(q; a, b) = (1 + aq)(1 + bq)Gkb(q; aq, bq).

Then we can deduce that∑
n,i ,j∈N

B(n, i , j)qnaibj = G∞(q; a, b)

= (1 + aq)(1 + bq)G∞(q; aq, bq)

= (1 + aq)(1 + bq)(1 + aq2)(1 + bq2)G∞(q; aq2, bq2)

= · · ·
= (−aq; q)∞(−bq; q)∞G∞(q; 0, 0)

= (−aq; q)∞(−bq; q)∞

=
∑

n,i ,j∈N
A(n, i , j)qnaibj .

Jehanne Dousse (UniGE) q-difference equations for partitions 27 February 2024 18 / 35



First method: finding an iterable relation

First method: finding an iterable relation
Start by experimenting with a computer (see Maple).

We want to show that for all k ,

G(k+2)ab(q; a, b) = (1 + aq)(1 + bq)Gkb(q; aq, bq).

Then we can deduce that∑
n,i ,j∈N

B(n, i , j)qnaibj = G∞(q; a, b)

= (1 + aq)(1 + bq)G∞(q; aq, bq)

= (1 + aq)(1 + bq)(1 + aq2)(1 + bq2)G∞(q; aq2, bq2)

= · · ·
= (−aq; q)∞(−bq; q)∞G∞(q; 0, 0)

= (−aq; q)∞(−bq; q)∞

=
∑

n,i ,j∈N
A(n, i , j)qnaibj .

Jehanne Dousse (UniGE) q-difference equations for partitions 27 February 2024 18 / 35



First method: finding an iterable relation

We uncouple our system of three recurrences (by hand or with a computer
algebra system), and obtain:

G(k+2)ab(q; a, b) = (1 + aqk+1 + bqk+1)G(k+1)ab(q; a, b)

+ abqk+2(1− qk+1)Gkab(q; a, b),

Gkb(q; aq, bq) = (1 + aqk+1 + bqk+1)G(k−1)b(q; aq, bq)

+ abqk+2(1− qk+1)G(k−2)b(q; aq, bq).

The recurrences are the same, so we only have to look at initial conditions:

G2ab(q; a, b) = 1 + aq + bq + abq2 = (1 + aq)(1 + bq)G0b(q; aq, bq),

G3ab(q; a, b) = (1 + aq)(1 + bq)G1b(q; aq, bq).

Thus for all k,

G(k+2)ab(q; a, b) = (1 + aq)(1 + bq)Gkb(q; aq, bq).

Jehanne Dousse (UniGE) q-difference equations for partitions 27 February 2024 19 / 35



First method: finding an iterable relation

We uncouple our system of three recurrences (by hand or with a computer
algebra system), and obtain:

G(k+2)ab(q; a, b) = (1 + aqk+1 + bqk+1)G(k+1)ab(q; a, b)

+ abqk+2(1− qk+1)Gkab(q; a, b),

Gkb(q; aq, bq) = (1 + aqk+1 + bqk+1)G(k−1)b(q; aq, bq)

+ abqk+2(1− qk+1)G(k−2)b(q; aq, bq).

The recurrences are the same, so we only have to look at initial conditions:

G2ab(q; a, b) = 1 + aq + bq + abq2 = (1 + aq)(1 + bq)G0b(q; aq, bq),

G3ab(q; a, b) = (1 + aq)(1 + bq)G1b(q; aq, bq).

Thus for all k,

G(k+2)ab(q; a, b) = (1 + aq)(1 + bq)Gkb(q; aq, bq).

Jehanne Dousse (UniGE) q-difference equations for partitions 27 February 2024 19 / 35



First method: finding an iterable relation

We uncouple our system of three recurrences (by hand or with a computer
algebra system), and obtain:

G(k+2)ab(q; a, b) = (1 + aqk+1 + bqk+1)G(k+1)ab(q; a, b)

+ abqk+2(1− qk+1)Gkab(q; a, b),

Gkb(q; aq, bq) = (1 + aqk+1 + bqk+1)G(k−1)b(q; aq, bq)

+ abqk+2(1− qk+1)G(k−2)b(q; aq, bq).

The recurrences are the same, so we only have to look at initial conditions:

G2ab(q; a, b) = 1 + aq + bq + abq2 = (1 + aq)(1 + bq)G0b(q; aq, bq),

G3ab(q; a, b) = (1 + aq)(1 + bq)G1b(q; aq, bq).

Thus for all k,

G(k+2)ab(q; a, b) = (1 + aq)(1 + bq)Gkb(q; aq, bq).

Jehanne Dousse (UniGE) q-difference equations for partitions 27 February 2024 19 / 35



First method: finding an iterable relation

Other example: Siladić’s identity (2002)

The generating function for partitions of n into coloured integers

1ab < 1a < 1b2 < 1b < 2ab < 2a < 3a2 < 2b < 3ab < 3a < 3b2 < · · ·

with minimal differences between consecutive parts given by the matrix

A =



aodd b2 bodd abeven aeven a2 beven abodd

a 2 2 2 1 2 2 2 2
b 1 2 2 1 1 1 2 1
ab 2 3 3 2 2 2 2 2
a2 4 4 4 3 3 4 3 4
b2 2 4 4 3 3 2 3 2


is (−aq; q)∞(−bq; q)∞.
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First method: finding an iterable relation

The recurrences

For all k ∈ N∗,

G2k+1ab(a, b, q) = G2kb(a, b, q) + abq2k+1G2k−1a(a, b, q),

G2k+1a(a, b, q) = G2k+1ab(a, b, q) + aq2k+1G2kab(a, b, q),

G2k+1b2
(a, b, q) = G2k+1a(a, b, q) + b2q2k+1G2k−1a(a, b, q),

G2k+1b(a, b, q) = G2k+1b2
(a, b, q) + bq2k+1G2ka(a, b, q),

G2k+2ab(a, b, q) = G2k+1b + abq2k+2G2ka + ab2q4k+2G2k−1a ,

G2k+2a(a, b, q) = G2k+2ab + aq2k+2G2ka + abq4k+2G2k−1a ,

G2k+3a2
(a, b, q) = G2k+2a + a2q2k+3G2ka + a2bq4k+3G2k−1a ,

G2k+2b(a, b, q) = G2k+3a2
(a, b, q) + bq2k+2G2k+1a(a, b, q).
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First method: finding an iterable relation

Proof (D. 2017)

Show that for all k ,

G2k+1ab(q; a, b) = (1 + aq)G2ka(q; b, aq),

G2k+1b2
(q; a, b) = (1 + aq)G2kb(q; b, aq),

G2k+2ab(q; a, b) = (1 + aq)G2k+1a(q; b, aq),

G2k+1a2
(q; a, b) = (1 + aq)G2k−1b(q; b, aq).

Let k go to infinity and deduce

G∞(q; a, b) = (1 + aq)G∞(q; b, aq)

= (1 + aq)(1 + bq)G∞(q; aq, bq)

= (−aq; q)∞(−bq; q)∞.

Jehanne Dousse (UniGE) q-difference equations for partitions 27 February 2024 22 / 35



First method: finding an iterable relation

Proof (D. 2017)

Show that for all k ,

G2k+1ab(q; a, b) = (1 + aq)G2ka(q; b, aq),

G2k+1b2
(q; a, b) = (1 + aq)G2kb(q; b, aq),

G2k+2ab(q; a, b) = (1 + aq)G2k+1a(q; b, aq),

G2k+1a2
(q; a, b) = (1 + aq)G2k−1b(q; b, aq).

Let k go to infinity and deduce

G∞(q; a, b) = (1 + aq)G∞(q; b, aq)

= (1 + aq)(1 + bq)G∞(q; aq, bq)

= (−aq; q)∞(−bq; q)∞.

Jehanne Dousse (UniGE) q-difference equations for partitions 27 February 2024 22 / 35



First method: finding an iterable relation

Summary of this method

Pros:

The iterable relation can be guessed experimentally.

The proof can be automated (via uncoupling of the system of
recurrences).

Cons:

Requires at least one colour variable (often more!).

It is not always easy (or even possible?) to introduce the right colour
variables.
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Second method: the “back-and-forth” technique
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Second method: the “back-and-forth” technique From recurrences to q-difference equations

Back to Schur’s theorem
Andrews had found the recurrences

G3m+1(q) = G3m(q) + q3m+1G3m−2(q),

G3m+2(q) = G3m+1(q) + q3m+2G3m−1(q),

G3m+3(q) = G3m+2(q) + q3m+3G3m−1(q).

Uncouple them:

G3m+2(q) =
(
1 + q3m+1 + q3m+2

)
G3m−1(q) + q3m(1− q3m)G3m−4(q).

Define

sm(q) =
1

(q3; q3)m
× G3m−1(q).

We have

(1− q3m+3)sm+1(q) =
(
1 + q3m+1 + q3m+2

)
sm(q) + q3msm−1(q).
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Second method: the “back-and-forth” technique From recurrences to q-difference equations

Define
f (x , q) :=

∑
n≥0

sn(q)x
n.

The equation

(1− q3m+3)sm+1(q) =
(
1 + q3m+1 + q3m+2

)
sm(q) + q3msm−1(q)

becomes
(1− x)f (x ; q) = (1 + xq)(1 + xq2)f (xq3; q).

Hence

f (x ; q) =
(−xq; q3)∞(−xq2; q3)∞

(x ; q3)∞
.
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Second method: the “back-and-forth” technique From recurrences to q-difference equations

Lemma

lim
x→1−

(1− x)
∑
n≥0

unx
n = lim

n→∞
un.

lim
m→∞

G3m+2(q) = (q3; q3)∞ lim
m→∞

sm(q)

= (q3; q3)∞ lim
x→1−

(1− x)f (x ; q)

= (q3; q3)∞ lim
x→1−

(1− x)
(−xq; q3)∞(−xq2; q3)∞

(x ; q3)∞

= (q3; q3)∞
(−q; q3)∞(−q2; q3)∞

(q3; q3)∞

= (−q; q3)∞(−q2; q3)∞
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Second method: the “back-and-forth” technique Back and forth between recurrences and q-difference equations
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Second method: the “back-and-forth” technique Back and forth between recurrences and q-difference equations

Primc’s identity (conjecture Primc 1999, D.–Lovejoy 2018,
D. 2020)
Partitions in four colours a, b, c , d , with the order

1a < 1b < 1c < 1d < 2a < 2b < 2c < 2d < · · · ,
and difference conditions

P =


a b c d

a 2 1 2 2
b 1 0 1 1
c 0 1 0 2
d 0 1 0 2

.

Let A(n; k, ℓ,m) denote the number of partitions satisfying the difference
conditions of matrix P, with k parts coloured a, ℓ parts coloured c and m
parts coloured d . Then∑

n,k,ℓ,m≥0

A(n; k , ℓ,m)qnakcℓdm =
(−aq; q2)∞(−dq; q2)∞

(q; q)∞(cq; q2)∞
.
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Second method: the “back-and-forth” technique Back and forth between recurrences and q-difference equations

Recall that Gk = Gk(q; a, c , d) denotes the g.f. for partitions satisfying the
difference conditions and with largest part at most k .

We uncouple the system of recurrences found before and obtain

(1− cqk)Gkd =
1− cq2k

1− qk
G(k−1)d

+
aqk + dqk + adq2k

1− qk−1
G(k−2)d +

adq2k−1

1− qk−2
G(k−3)d .

Let

Hk = Hk(q; a, c , d) :=
Gkd (q; a, c , d)

1− qk+1
.

Then

(1− cqk − qk+1 + cq2k+1)Hk = (1− cq2k)Hk−1

+ (aqk + dqk + adq2k)Hk−2 + adq2k−1Hk−3.
(1)
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Second method: the “back-and-forth” technique Back and forth between recurrences and q-difference equations

Define
f (x) :=

∑
k≥0

Hk−1x
k ,

and convert the recurrence (1) into a q-difference equation on f :

(1− x)f (x) = (1+
c

q
+ ax2q+ dx2q)f (xq)− (1+ xq)(

c

q
− adx2q2)f (xq2).

Define

g(x) :=
f (x)∏

k≥0(1 + xqk)
.

We obtain:

(1− x2)g(x) = (1 +
c

q
+ ax2q + dx2q)g(xq)− (

c

q
− adx2q2)g(xq2).
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Second method: the “back-and-forth” technique Back and forth between recurrences and q-difference equations

Go back to recurrence equations again: define (un)n∈N as∑
n≥0

unx
n := g(x).

Then (un) satisfies

un =

(
1 + aqn−1

) (
1 + dqn−1

)
(1− qn) (1− cqn−1)

un−2,

and the initial conditions
u0 = 1, u1 = 0.

Thus for all n ≥ 0, we have

u2n =
(−aq; q2)n(−dq; q2)n
(q2; q2)n(cq; q2)n

,

u2n+1 = 0.
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Second method: the “back-and-forth” technique Back and forth between recurrences and q-difference equations

Reminder

lim
x→1−

(1− x)
∑
n≥0

unx
n = lim

n→∞
un.

lim
k→∞

Gk(q; a, c , d) = lim
x→1−

(1− x)f (x)

= lim
x→1−

g(x)
∏
k≥0

(1 + xqk)

= (−q; q)∞ lim
x→1−

(1− x2)
∑
n≥0

u2nx
2n

= (−q; q)∞ lim
n→∞

u2n

=
(−q; q)∞(−aq; q2)∞(−dq; q2)∞

(q2; q2)∞(cq; q2)∞

=
(−aq; q2)∞(−dq; q2)∞

(q; q)∞(cq; q2)∞
.
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Second method: the “back-and-forth” technique Back and forth between recurrences and q-difference equations

Exact expression for Gk(q; a, b, c , d)
It is also possible to track back all the changes of unknown functions to
find exact expressions, and keep track of the colour b.

Theorem (Finite version of Primc’s identity (D. 2020))

We have, for every positive integer k ,

Gk(q; a, b, c , d) =
(
1− bqk+1

) k+1∑
j=0

vj(a, b, c , d)q
(k+1−j

2 )

(q; q)k+1−j
,

where for all n ≥ 0,

v2n(a, b, c, d) = (1− b)
n∑

ℓ=0

(−aq2ℓ+1; q2)n−ℓ(−dq2ℓ+1; q2)n−ℓ

(bq2ℓ; q2)n−ℓ+1(cq2ℓ+1; q2)n−ℓ

q2ℓ

(q; q)2ℓ
,

v2n+1(a, b, c , d) = (b−1)
n∑

ℓ=0

(−aq2ℓ+2; q2)n−ℓ(−dq2ℓ+2; q2)n−ℓ

(bq2ℓ+1; q2)n−ℓ+1(cq2ℓ+2; q2)n−ℓ

q2ℓ+1

(q; q)2ℓ+1
.
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Second method: the “back-and-forth” technique Back and forth between recurrences and q-difference equations

Applications of the “back-and-forth” method

Several generalisations of Schur’s theorem (D. 2014-2018) : n steps
of “back-and-forth” starting from the equation

r−1∏
j=0

(
1− dxq2

j
)
f r1 (x) = f r1 (xq

N)

+
r∑

j=1

 r−j∑
m=0

dm
∑
α<2r

w(α)=j+m

xqα

(
(−x)m−1

[
j +m − 1

m − 1

]
qN

+(−x)m
[
j +m

m

]
qN

) j−1∏
h=1

(
1− xqhN

)
f r1

(
xqjN

)
.
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Second method: the “back-and-forth” technique Back and forth between recurrences and q-difference equations

Applications of the “back-and-forth” method

Bringmann–Jennnings-Shaffer–Mahlburg 2019: proof of the mod 12
Kanade–Russell conjectures (partition identities conjectured via
computer search)

Takigiku–Tsuchioka 2019: proof of the Nandi conjecture (partition
identity coming from Lie algebras)

D. 2020: proof of Capparelli’s and Primc’s identities (both coming
from Lie algebras), and bijection between them (thanks to the colours
and the similarity in the “back-and-forth” proofs)

Tsuchioka 2022: proof of a Fibonacci variant of the
Rogers–Ramanujan identities (coming from perfect crystals)
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Second method: the “back-and-forth” technique Back and forth between recurrences and q-difference equations

Questions

Can we characterise the set of equations on which each of the two
methods is applicable? (neither method works on all identities, for
example the Kanade–Russell mod 9 identities)

Can we automate and implement the “back-and-forth” method?

Thank you very much!
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