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Characteristic 0 Characteristic p Exponential Function Abel’s Problem

Definitions

Consider a homogeneous linear ordinary differential equation (ODE) over C

any
(n) + . . .+ a1y

′ + a0y = 0 (⋆)

with ai ∈ C[[x ]]. We can rewrite it in terms of a differential operator as Ly = 0 with
L = an∂

n + . . .+ a1∂ + a0 ∈ C[[x ]][∂].

L has a regular singularity at 0 if ai/an ∈ C((x)) has a pole of order at most n − i at 0.

Write L =
∑∞

i=0

∑n
j=0 ci ,jx

i∂j and set Lk =
∑

i−j=k ci ,jx
i∂j . The minimal τ with Lτ ̸= 0 is

called the shift of L. From now on, we assume w.l.o.g. τ = 0 (multiply L by x−τ ).

The operator L0 =
∑

ci ,ix
i∂i is called the initial form of L. It has the same order as L if and

only if L is regular singular.
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Characteristic 0 Characteristic p Exponential Function Abel’s Problem

Definitions

For the initial form L0 we have L0(x
k) = χL(k)x

k , where χL(k) is the indicial polynomial of
L. Its roots ρi for i = 1, . . . , k of multiplicity mi are the local exponents of L.

A basis of solutions of L0y = 0 (as C-vector space) is given by xρi log(x)j for 1 ≤ i ≤ k and
0 ≤ j ≤ mi − 1.

Example

The differential operator

L = x5∂5 − 2x4∂4 − 2x3∂3 + 16x2∂2 − 16x∂ − x .

is regular singular with shift 0. Its normal form is L0 = L+ x and its indicial polynomial is
χ(s) = s2(s − 2)(s − 5)2. The local exponents are ρ1 = 0, ρ2 = 2 and ρ3 = 5 with m1 = 2,
m2 = 1 and m3 = 2.
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Characteristic 0 Characteristic p Exponential Function Abel’s Problem

Fuchs’ Theorem – Local Solution Theory

Theorem (Fuchs 1866)

Let L ∈ C[[x ]][∂] be a regular singular differential operator of order n. Then the equation
Ly = 0 has a basis of n C-linearly independent solutions of the form

fi = xρ
(
fi ,0 + fi ,1 log(x) + . . .+ fi ,n−1 log(x)

n−1
)
,

where fi ,j ∈ C[[x ]] and ρ ranges over the local exponents (counted with multiplicity).

Fuchs gave a more detailed description on the form of the solution, in particular on the order
of fi ,j and more precise bounds on the powers of the logarithm appearing.

Example

For L = (2x2 − x3) + (−4x2 + 3x3)∂ + (2x2 − 3x3)∂2 + x3∂3 a basis of solutions of Ly = 0 is
given by ex , ex log(x) and xex .
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Characteristic 0 Characteristic p Exponential Function Abel’s Problem

Motivation

Problem (Abel)

When does y ′ = ay for an algebraic series a ∈ Q(x) ∩Q[[x ]] admit an algebraic solution?

Solved 1970 by Risch algorithmically (although not suitable for implementation).

Problem (Liouville, Fuchs)

When does
any

(n) + . . .+ a1y
′ + a0y = 0 (⋆)

with polynomial coefficients ai ∈ Q[x ] admit a basis of n algebraic solutions?

Solved algorithmically by Singer 1979 by reducing to Risch’s algorithm.
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Characteristic 0 Characteristic p Exponential Function Abel’s Problem

Motivation

Grothendieck p-curvature conjecture (1969)

The equation Ly = 0 (⋆) with L ∈ Q[x ][∂] having polynomial coefficients admits a basis of n
algebraic solutions if and only if its reduction Lpy = 0 modulo p admits a basis of n
Fp((x

p))-linearly independent solutions in Fp((x)) for almost all prime numbers p.

The reduction (⋆)p of (⋆) modulo p is well-defined for almost all prime numbers, Lp ∈ Fp[x ][∂].

Rewrite Lpy = 0 into a system of n first order ODEs: Y ′ = AY . The p-curvature of Lp is the
Fp[x ]-linear map (∂ − A)p : Fp((x))

n → Fp((x))
n.

Lemma (Cartier)

Equation Lpy = 0 admits a basis of n Fp((x
p))-linearly independent solutions in Fp((x)) and if

and only if its p-curvature vanishes.
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Characteristic 0 Characteristic p Exponential Function Abel’s Problem

Solution Theory in Characteristic p

Where can solutions of (⋆)p be found, if not in Fp[[x ]]?

Define Rp := Fp(z1, z2, . . .)((x)) with derivation ∂ acting via

∂x = 1, ∂z1 =
1

x
, ∂zk =

1

x · z1 · · · zk−1
=

∂zk−1

zk−1
.

Field of constants: Cp := Fp(z
p
1 , z

p
2 , . . .)((x

p)). Solutions of differential equations in Rp form
a Cp-vector space of dimension at most n.

Note: ∂ reduces degree of a non-constant monomial in x by exactly one.

Parallel to logarithms from characteristic 0:

log(x)′ =
1

x
, logk(x)′ =

1

x · log(x) · · · logk−1(x)
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Characteristic 0 Characteristic p Exponential Function Abel’s Problem

Solution Theory in Characteristic p

Theorem (Honda 1981)

Assume Lpy = 0 with polynomial coefficients has nilpotent p-curvature and n = ord Lp ≤ p.
Then Lpy = 0 has a basis of n Fp(z

p
1 , x

p)-linearly independent solutions in Fp[z1, x ].

Theorem (Dwork 1990)

Assume Lpy = 0 has nilpotent p-curvature. Then Lpy = 0 has a basis of n
Fp(z

p
1 , z

p
2 , . . . , x

p)-linearly independent solutions in Fp[z1, z2, . . . , x ].

Theorem (F.–Hauser 2023)

Let Lpy = 0 be a regular singular differential equation with polynomial or power series
coefficients over Fp, whose local exponents lie in Fp. Then Lpy = 0 has a basis of n
Cp-linearly independent solutions in Rp = Fp(z1, z2, . . .)((x)).
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Characteristic 0 Characteristic p Exponential Function Abel’s Problem

Solution Theory in Characteristic p

Theorem (F.–Hauser 2023)

Let Lpy = 0 be a regular singular differential equation with polynomial or power series
coefficients over Fp, whose local exponents lie in Fp. Then Lpy = 0 has a basis of n
Cp-linearly independent solutions in Rp = Fp(z1, z2, . . .)((x)).

The field Fp can be replaced by any field k of characteristic p.

If the local exponents ρ are not in the prime field, but in k, we can introduce symbols tρ with
tρ · tσ = tρ+σ and ∂tρ = ρtρ/x . Then solutions can be found in

⊕
tρRp (group algebra).

A detailed description of the degree of the monomials appearing in the series expansion of
solutions is possible.
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Characteristic 0 Characteristic p Exponential Function Abel’s Problem

Example: log(1− x)

In characteristic 0:

y1 = − log(1− x) = x +
x2

2
+

x3

3
+ . . . ∈ Q[[x ]]

satisfies Ly = 0 with L = x2∂2 − (x2∂ + x3∂2). The second solution y2 = 1 completes a basis.

For all prime numbers p a basis of solutions of Lpy = 0 is given by

y1 = x +
x2

2
+

x3

3
+ . . .+

xp−1

p − 1
+ xpz1 and y2 = 1.

This is an example for an equation with nilpotent p-curvature for all prime numbers p.
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Characteristic 0 Characteristic p Exponential Function Abel’s Problem

Example: Exponential Function

The exponential differential equation y ′ = y admits a solution expp in Rp. For p = 3 one
obtains:

exp3 = 1 + x + 2x2 + 2x3z1 + x4(1 + 2z1) + x5z1 + 2x6z21 + x7(1 + 2z1 + 2z21 )

+ x8(2 + z21 ) + x9(2z1 + z31 z2) + . . .

This solution is unique up to multiplication with constants. Here the solution is chosen, such
that 1 is the only monomial in the series expansion that is constant.

One checks for example:

(x7(1 + 2z1 + 2z21 ))
′ = x6(1 + 2z1 + 2z21 )) + x7 ·

(
2

x
+

z1
x

)
= 2x6z21

Observation: Setting z1 = z2 = . . . = 0 in expp gives power series in Fp[[x ]]. Computer
experiments (with A. Bostan) suggest that this series is algebraic over Fp(x).

12 / 20
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Characteristic 0 Characteristic p Exponential Function Abel’s Problem

A Different Approach

Proposition (F.–Hauser–Kawanoue, 2024)

Define wi := xp
i
zp

i−1

1 · · · zp
1

i−1zi . Then w
(pi−pi−1+1)
i = −w ′

i−1. Thus,

ẽxpp :=
∞∑
i=0

pi−pi−1∑
k=1

(−1)iw
(k)
i

solves y ′ = y .

ẽxpp up to order pi − 1 is given by
∑pi

k=1(−1)iw
(k)
i .

ẽxpp differs from expp by a multiplicative constant in Cp.

13 / 20



Characteristic 0 Characteristic p Exponential Function Abel’s Problem

A Different Approach

Proposition (F.–Hauser–Kawanoue, 2024)

Define wi := xp
i
zp

i−1

1 · · · zp
1

i−1zi . Then w
(pi−pi−1+1)
i = −w ′

i−1. Thus,
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Characteristic 0 Characteristic p Exponential Function Abel’s Problem

Yet Another Approach

Proposition (F.–Hauser–Kawanoue, 2024)

Define
σ : Fp[[s]] → Fp[[s]], s 7→ s + sp + sp

2
+ . . . .

Define g0 := σ(x) and recursively gi := σ(gp
i−1zi ). Set

H(t) :=

p−1∏
k=1

(
1− t

k

)k

and êxpp :=
∞∏
i=0

H
(
(−1)igi

)
.

Then êxpp solves y ′ = y .

Lemma

êxpp = ẽxpp.
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êxpp = ẽxpp.
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Characteristic 0 Characteristic p Exponential Function Abel’s Problem

Algebraicity of Projections

gi := σ(gp
i−1zi ), êxpp :=

∞∏
i=0

H
(
(−1)igi

)
.

σ is algebraic, as σ(s) = σ(s)p + s. Thus, inductively, gi is algebraic over Fp(x , z1, . . . , zi ).

Note: gi ∈ 1 + zi · Fp[z1, . . . , zi ][[x ]]. Thus, for the projection πj(êxpp) we have

πj(êxpp) := êxpp|zj+1=zj+2=...=0 =

j∏
i=0

H
(
(−1)igi

)
,

which is algebraic over Fp(x , z1, . . . , zj).

In particular: êxpp|z1=z2=...=0 is algebraic over Fp(x). The same holds true for expp.
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Characteristic 0 Characteristic p Exponential Function Abel’s Problem

Abel’s Problem in Characteristic p

Does the same hold true for any differential equation? More precisely:

Question

Let L ∈ Fp[x ][∂] be a regular singular differential operator of order n and assume its local
exponents lie in the prime field Fp. Does there exist a basis of solutions y1, . . . , yn in
Fp[z1, z2, . . .][[x ]], such that its projections πj(yk) = yk |zj+1=zj+2=...=0 ∈ Fp[z1, . . . , zj ][[x ]] are
algebraic over Fp(x , z1, . . . , zj) for all j , k?

Partial answer:

Theorem (F.–Hauser–Kawanoue, 2024)

Let y ′ = ay be an order one regular singular differential equation with rational or algebraic
coefficient a ∈ Fp((x)) and local exponent ρ ∈ Fp. Then there is a solution y such that πj(y)
is algebraic over Fp(z1, . . . , zj , x) for all j .

16 / 20



Characteristic 0 Characteristic p Exponential Function Abel’s Problem

Abel’s Problem in Characteristic p

Does the same hold true for any differential equation? More precisely:

Question

Let L ∈ Fp[x ][∂] be a regular singular differential operator of order n and assume its local
exponents lie in the prime field Fp. Does there exist a basis of solutions y1, . . . , yn in
Fp[z1, z2, . . .][[x ]], such that its projections πj(yk) = yk |zj+1=zj+2=...=0 ∈ Fp[z1, . . . , zj ][[x ]] are
algebraic over Fp(x , z1, . . . , zj) for all j , k?

Partial answer:

Theorem (F.–Hauser–Kawanoue, 2024)

Let y ′ = ay be an order one regular singular differential equation with rational or algebraic
coefficient a ∈ Fp((x)) and local exponent ρ ∈ Fp. Then there is a solution y such that πj(y)
is algebraic over Fp(z1, . . . , zj , x) for all j .
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Ideas of Proof for π0

The p-curvature of y ′ = ay is given by (∂ − a)py = apy , where ap = −a(p−1) − ap.

Solve

a(p−1) + ap +
g

xp
− gp

xp
= 0

implicitly to obtain an algebraic series g ∈ Fp[[x
p]]. Then the p-curvature of y ′ = (a− g/x) y

vanishes, and by a variant of Cartier’s Lemma this equation has an algebraic solution q.

The equation y ′ = (g/x)y = (a− q′/q)y is equivalent to (qy)′ = aqy . Because g ∈ Fp[[x
p]],

its solutions lie in Fp[z1, z2, . . .][[x
p]] and from this it follows that it has a solution

y0 ∈ 1 + z1Fp[z1, z2, . . .][[x
p]]. Thus y = qy0 satisfies y ′ = ay and π0(y) = q is algebraic.
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Product Representations

Iterating this construction leads to a more precise statement, generalizing the product
representation of êxpp:

Theorem (F.–Hauser–Kawanoue, 2024)

Let L = ∂ + a be a first order regular singular linear differential operator with rational function
coefficient a ∈ Fp(x) (or algebraic coefficient a ∈ Fp[[x ]]) and local exponent ρ = 0. Then for
all i ∈ N there exist series hi ∈ 1 + ziFp[z1, . . . , zi ][[x ]], which are algebraic over

Fp(z1, z2, . . . , zi , x) and P =
∏∞

i=0 hi satisfies LP = 0. In particular, πj(P) =
∏j

i=0 hi is
algebraic over Fp(x , z1, . . . , zj) for all j .
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Further Questions

Does this generalizes to higher order differential equations? Idea: Factorisation of differential
operators in Q(x)[∂] into linear factors.

Consider a (first order) differential equation Ly = 0 with L ∈ Q[x ][∂]. Let yp ∈ Rp be a (basis
of) solution(s) of Lpy = 0. Do the Galois groups of πj(yp) relate to the differential Galois
group of Ly = 0? Is there a variant of the differential Galois Group in characteristic p?

Is there a “canonical” basis of solutions of the n-dimensional Cp-vector space of solutions of
Lpy = 0?

The Artin-Hasse exponential function is defined as exp(x + xp/p + xp
2
/p2 + . . .) ∈ Z(p)[[x ]]. Is

there a connection to expp?
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The End

Thank you for your attention!
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