Fuchs' Theorem, an Exponential Function, and Abel's Problem in Positive Characteristic joint work with [H. Hauser](https://homepage.univie.ac.at/herwig.hauser/) and H. Kawanoue [\(arXiv:2307.01712](https://arxiv.org/abs/2307.01712) and [arXiv:2401.14154\)](https://arxiv.org/abs/2401.14154)

Florian Fürnsinn

University of Vienna

Séminaire Différentiel, Versailles November 12, 2024

Overview

[Characteristic 0](#page-2-0) $\hbox{\ \it Characteristic\ }p$ $\hbox{\ \it Characteristic\ }p$ $\hbox{\ \it Characteristic\ }p$ $\hbox{\ \it Exponential\ }F$ and $\hbox{\ \it Encr}$ [Exponential Function](#page-23-0) $\hbox{\ \it Characteristic\ }D$

1. [Introduction: Local Solution Theory in Characteristic 0](#page-2-0)

- 2. [Local Solution Theory in Positive Characteristic](#page-9-0)
- 3. [An Exponential Function in Positive Characteristic](#page-23-0)
- 4. [Abel's Problem in Positive Characteristic](#page-30-0)

[Characteristic 0](#page-2-0) Abel's Problem [Characteristic](#page-9-0) *p* [Exponential Function](#page-23-0) [Abel's Problem](#page-30-0) Abel's Problem Abel's Problem

Consider a homogeneous linear ordinary differential equation (ODE) over C

$$
a_ny^{(n)} + \ldots + a_1y' + a_0y = 0 \qquad (*)
$$

with $a_i \in \mathbb{C}[[x]]$. We can rewrite it in terms of a **differential operator** as $Ly = 0$ with $L = a_n \partial^n + \ldots + a_1 \partial + a_0 \in \mathbb{C}[[x]][\partial].$

[Characteristic 0](#page-2-0) Abel's Problem [Characteristic](#page-9-0) *p* [Exponential Function](#page-23-0) [Abel's Problem](#page-30-0) Abel's Problem Abel's Problem

Consider a homogeneous linear ordinary differential equation (ODE) over C

$$
a_n y^{(n)} + \ldots + a_1 y' + a_0 y = 0 \qquad (*)
$$

with $a_i \in \mathbb{C}[[x]]$. We can rewrite it in terms of a **differential operator** as $Ly = 0$ with $L = a_n \partial^n + \ldots + a_1 \partial + a_0 \in \mathbb{C}[[x]][\partial].$

L has a regular singularity at 0 if $a_i/a_n \in \mathbb{C}(\ell(x))$ has a pole of order at most $n-i$ at 0.

[Characteristic 0](#page-2-0) Abel's Problem [Characteristic](#page-9-0) *p* [Exponential Function](#page-23-0) [Abel's Problem](#page-30-0) Abel's Problem Abel's Problem

Consider a homogeneous linear ordinary differential equation (ODE) over C

$$
a_n y^{(n)} + \ldots + a_1 y' + a_0 y = 0 \qquad (*)
$$

with $a_i \in \mathbb{C}[[x]]$. We can rewrite it in terms of a **differential operator** as $Ly = 0$ with $L = a_n \partial^n + \ldots + a_1 \partial + a_0 \in \mathbb{C}[[x]][\partial].$

L has a regular singularity at 0 if $a_i/a_n \in \mathbb{C}(\ell(x))$ has a pole of order at most $n-i$ at 0.

Write $L=\sum_{i=0}^\infty\sum_{j=0}^nc_{i,j}x^i\partial^j$ and set $L_k=\sum_{i-j=k}c_{i,j}x^i\partial^j.$ The minimal τ with $L_\tau\neq 0$ is called the shift of L. From now on, we assume w.l.o.g. $\tau=0$ (multiply L by $x^{-\tau}).$

The operator $L_0=\sum c_{i,i}\mathsf{x}^i\partial^i$ is called the <mark>initial form</mark> of L. It has the same order as L if and only if L is regular singular.

[Characteristic 0](#page-2-0) Abel's Problem [Characteristic](#page-9-0) *p* [Exponential Function](#page-23-0) [Abel's Problem](#page-30-0) Abel's Problem Abel's Problem

For the initial form L_0 we have $L_0(x^k)=\chi_L(k)x^k$, where $\chi_L(k)$ is the **indicial polynomial** of L. Its roots ρ_i for $i = 1, \ldots, k$ of multiplicity m_i are the local exponents of L.

A basis of solutions of $L_0y=0$ (as $\mathbb C$ -vector space) is given by $x^{\rho_i}\log(x)^j$ for $1\leq i\leq k$ and $0 \leq j \leq m_i - 1$.

[Characteristic 0](#page-2-0) Abel's Problem [Characteristic](#page-9-0) *p* [Exponential Function](#page-23-0) [Abel's Problem](#page-30-0) Abel's Problem Abel's Problem

For the initial form L_0 we have $L_0(x^k)=\chi_L(k)x^k$, where $\chi_L(k)$ is the **indicial polynomial** of L. Its roots ρ_i for $i = 1, \ldots, k$ of multiplicity m_i are the local exponents of L.

A basis of solutions of $L_0y=0$ (as $\mathbb C$ -vector space) is given by $x^{\rho_i}\log(x)^j$ for $1\leq i\leq k$ and $0 \le i \le m_i - 1$.

Example

The differential operator

$$
L = x^5 \partial^5 - 2x^4 \partial^4 - 2x^3 \partial^3 + 16x^2 \partial^2 - 16x \partial - x.
$$

is regular singular with shift 0. Its normal form is $L_0 = L + x$ and its indicial polynomial is $\chi({\sf s})=s^2({\sf s}-2)({\sf s}-5)^2.$ The local exponents are $\rho_1=0$, $\rho_2=2$ and $\rho_3=5$ with $m_1=2,$ $m_2 = 1$ and $m_3 = 2$.

[Characteristic 0](#page-2-0) Abel's Problem [Characteristic](#page-9-0) *p* [Exponential Function](#page-23-0) [Abel's Problem](#page-30-0) Abel's Problem Abel's Problem

Fuchs' Theorem – Local Solution Theory

Theorem (Fuchs 1866)

Let $L \in \mathbb{C}[[x]][\partial]$ be a regular singular differential operator of order n. Then the equation $Ly = 0$ has a basis of n $\mathbb C$ -linearly independent solutions of the form

$$
f_i = x^{\rho} \left(f_{i,0} + f_{i,1} \log(x) + \ldots + f_{i,n-1} \log(x)^{n-1} \right),
$$

where $f_{i,j} \in \mathbb{C}[\![x]\!]$ and ρ ranges over the local exponents (counted with multiplicity).

Fuchs gave a more detailed description on the form of the solution, in particular on the order of $f_{i,j}$ and more precise bounds on the powers of the logarithm appearing.

[Characteristic 0](#page-2-0) Abel's Problem [Characteristic](#page-9-0) *p* [Exponential Function](#page-23-0) [Abel's Problem](#page-30-0) Abel's Problem Abel's Problem

Fuchs' Theorem – Local Solution Theory

Theorem (Fuchs 1866)

Let $L \in \mathbb{C}[[x]][\partial]$ be a regular singular differential operator of order n. Then the equation $Ly = 0$ has a basis of n $\mathbb C$ -linearly independent solutions of the form

$$
f_i = x^{\rho} \left(f_{i,0} + f_{i,1} \log(x) + \ldots + f_{i,n-1} \log(x)^{n-1} \right),
$$

where $f_{i,j} \in \mathbb{C}[\![x]\!]$ and ρ ranges over the local exponents (counted with multiplicity).

Fuchs gave a more detailed description on the form of the solution, in particular on the order of $f_{i,j}$ and more precise bounds on the powers of the logarithm appearing.

Example

For $L=(2x^2-x^3)+(-4x^2+3x^3)\partial+(2x^2-3x^3)\partial^2+x^3\partial^3$ a basis of solutions of $Ly=0$ is given by e^x , e^x log(x) and xe^x .

Motivation

Problem (Abel)

When does $\mathsf{y}'=\mathsf{a}\mathsf{y}$ for an algebraic series $\mathsf{a}\in\overline{\mathbb{Q}(\mathsf{x})}\cap\mathbb{Q}[\![\mathsf{x}]\!]$ admit an $\mathsf{algebraic}$ solution?

Solved 1970 by Risch algorithmically (although not suitable for implementation).

Problem (Abel)

Motivation

When does $\mathsf{y}'=\mathsf{a}\mathsf{y}$ for an algebraic series $\mathsf{a}\in\overline{\mathbb{Q}(\mathsf{x})}\cap\mathbb{Q}[\![\mathsf{x}]\!]$ admit an $\mathsf{algebraic}$ solution?

Solved 1970 by Risch algorithmically (although not suitable for implementation).

Problem (Liouville, Fuchs)

When does

$$
a_n y^{(n)} + \ldots + a_1 y' + a_0 y = 0 \qquad (*)
$$

with polynomial coefficients $a_i \in \mathbb{Q}[x]$ admit a **basis of** *n* algebraic solutions?

Solved algorithmically by Singer 1979 by reducing to Risch's algorithm.

Motivation

[Characteristic 0](#page-2-0) **[Characteristic](#page-9-0)** *p* **E**xponential Function [Abel's Problem](#page-30-0)

Grothendieck p-curvature conjecture (1969)

The equation $Ly = 0$ (*) with $L \in \mathbb{Q}[x][\partial]$ having polynomial coefficients admits a basis of n algebraic solutions if and only if its reduction $L_{p}y = 0$ modulo p admits a basis of n $\mathbb{F}_p(\!(x^p)\!)$ -linearly independent solutions in $\mathbb{F}_p(\!(x)\!)$ for almost all prime numbers p .

The reduction $(\star)_p$ of (\star) modulo p is well-defined for almost all prime numbers, $L_p \in \mathbb{F}_p[x][\partial]$.

Motivation

[Characteristic 0](#page-2-0) **[Characteristic](#page-9-0)** *p* **E**xponential Function [Abel's Problem](#page-30-0)

Grothendieck p-curvature conjecture (1969)

The equation $Ly = 0$ (★) with $L \in \mathbb{Q}[x][\partial]$ having polynomial coefficients admits a basis of n algebraic solutions if and only if its reduction $L_p y = 0$ modulo p admits a basis of n $\mathbb{F}_p(\!(x^p)\!)$ -linearly independent solutions in $\mathbb{F}_p(\!(x)\!)$ for almost all prime numbers p .

The reduction $(\star)_p$ of (\star) modulo p is well-defined for almost all prime numbers, $L_p \in \mathbb{F}_p[x][\partial]$. Rewrite $L_p y = 0$ into a system of *n* first order ODEs: $Y' = AY$. The *p*-curvature of L_p is the $\mathbb{F}_p[\times]$ -linear map $(\partial - A)^p : \mathbb{F}_p(\!(x)\!)^n \to \mathbb{F}_p(\!(x)\!)^n$.

Lemma (Cartier)

Equation $L_p y = 0$ admits a basis of n $\mathbb{F}_p(\!(x^p)\!)$ -linearly independent solutions in $\mathbb{F}_p(\!(x)\!)$ and if and only if its p-curvature vanishes.

Solution Theory in Characteristic p

Where can solutions of $(\star)_p$ be found, if not in $\mathbb{F}_p[[x]]$?

Solution Theory in Characteristic p

Where can solutions of $(\star)_p$ be found, if not in $\mathbb{F}_p[[x]]$?

Define $\mathcal{R}_p := \mathbb{F}_p(z_1, z_2, \ldots)(x)$ with derivation ∂ acting via

$$
\partial x = 1
$$
, $\partial z_1 = \frac{1}{x}$, $\partial z_k = \frac{1}{x \cdot z_1 \cdots z_{k-1}} = \frac{\partial z_{k-1}}{z_{k-1}}$.

Field of constants: $\mathcal{C}_{\bm{\rho}} \coloneqq \mathbb{F}_{\bm{\rho}}(z_1^{\bm{\rho}})$ x_1^p, z_2^p $\mathcal{L}(\mathcal{L}^{\rho}), \ldots)$ $((x^{\rho}))$. Solutions of differential equations in \mathcal{R}_{ρ} form a C_p -vector space of dimension at most *n*.

Solution Theory in Characteristic p

Where can solutions of $(\star)_p$ be found, if not in $\mathbb{F}_p[[x]]$?

Define $\mathcal{R}_p := \mathbb{F}_p(z_1, z_2, \ldots)(x)$ with derivation ∂ acting via

$$
\partial x = 1, \quad \partial z_1 = \frac{1}{x}, \quad \partial z_k = \frac{1}{x \cdot z_1 \cdots z_{k-1}} = \frac{\partial z_{k-1}}{z_{k-1}}.
$$

Field of constants: $\mathcal{C}_{\bm{\rho}} \coloneqq \mathbb{F}_{\bm{\rho}}(z_1^{\bm{\rho}})$ x_1^p, z_2^p $\mathcal{L}(\mathcal{L}^{\rho}), \ldots)$ $((x^{\rho}))$. Solutions of differential equations in \mathcal{R}_{ρ} form a C_p -vector space of dimension at most *n*.

Note: ∂ reduces degree of a non-constant monomial in x by exactly one.

Parallel to **logarithms** from characteristic 0:

$$
\log(x)' = \frac{1}{x}, \quad \log^k(x)' = \frac{1}{x \cdot \log(x) \cdots \log^{k-1}(x)}
$$

Solution Theory in Characteristic p

Theorem (Honda 1981)

Assume $L_p y = 0$ with polynomial coefficients has nilpotent p-curvature and $n = \text{ord } L_p \leq p$. Then $L_p y = 0$ has a basis of n $\mathbb{F}_p(z_1^p)$ \mathbb{F}_p^p, x^p)-linearly independent solutions in $\mathbb{F}_p[z_1, x]$.

Solution Theory in Characteristic p

Theorem (Honda 1981)

Assume $L_p y = 0$ with polynomial coefficients has nilpotent p-curvature and $n = \text{ord } L_p \leq p$. Then $L_p y = 0$ has a basis of n $\mathbb{F}_p(z_1^p)$ \mathbb{F}_p^p, x^p)-linearly independent solutions in $\mathbb{F}_p[z_1, x]$.

Theorem (Dwork 1990)

Assume $L_p y = 0$ has nilpotent p-curvature. Then $L_p y = 0$ has a basis of n $\mathbb{F}_p(z_1^p)$ i_1^p, z_2^p $\mathbb{Z}_2^{p}, \ldots, \mathsf{x}^p$)-linearly independent solutions in $\mathbb{F}_p[z_1, z_2, \ldots, x].$

Solution Theory in Characteristic p

Theorem (Honda 1981)

Assume $L_p y = 0$ with polynomial coefficients has nilpotent p-curvature and $n = \text{ord } L_p \leq p$. Then $L_p y = 0$ has a basis of n $\mathbb{F}_p(z_1^p)$ \mathbb{F}_p^p, x^p)-linearly independent solutions in $\mathbb{F}_p[z_1, x]$.

Theorem (Dwork 1990)

Assume $L_p y = 0$ has nilpotent p-curvature. Then $L_p y = 0$ has a basis of n $\mathbb{F}_p(z_1^p)$ i_1^p, z_2^p $\mathbb{Z}_2^{p}, \ldots, \mathsf{x}^p$)-linearly independent solutions in $\mathbb{F}_p[z_1, z_2, \ldots, x].$

Theorem (F.–Hauser 2023)

Let $L_p y = 0$ be a regular singular differential equation with polynomial or power series coefficients over \mathbb{F}_p , whose local exponents lie in \mathbb{F}_p . Then $L_p y = 0$ has a basis of n C_p -linearly independent solutions in $\mathcal{R}_p = \mathbb{F}_p(z_1, z_2, \ldots)(x_k)$.

Solution Theory in Characteristic p

Theorem (F.–Hauser 2023)

Let $L_{p}y = 0$ be a regular singular differential equation with polynomial or power series coefficients over \mathbb{F}_p , whose local exponents lie in \mathbb{F}_p . Then $L_p y = 0$ has a basis of n C_p -linearly independent solutions in $\mathcal{R}_p = \mathbb{F}_p(z_1, z_2, \ldots)(x_k)$.

The field \mathbb{F}_p can be replaced by any field k of characteristic p.

Solution Theory in Characteristic p

Theorem (F.–Hauser 2023)

Let $L_{p}y = 0$ be a regular singular differential equation with polynomial or power series coefficients over \mathbb{F}_p , whose local exponents lie in \mathbb{F}_p . Then $L_p y = 0$ has a basis of n C_p -linearly independent solutions in $\mathcal{R}_p = \mathbb{F}_p(z_1, z_2, \ldots)(x_k)$.

The field \mathbb{F}_p can be replaced by any field k of characteristic p.

If the local exponents ρ are not in the prime field, but in $\overline{\Bbbk}$, we can introduce symbols t^ρ with $t^{\rho}\cdot t^{\sigma}=t^{\rho+\sigma}$ and $\partial t^{\rho}=\rho t^{\rho}/x$. Then solutions can be found in $\bigoplus t^{\rho}\mathcal{R}_{\rho}$ (group algebra).

Solution Theory in Characteristic p

Theorem (F.–Hauser 2023)

Let $L_{p}y = 0$ be a regular singular differential equation with polynomial or power series coefficients over \mathbb{F}_p , whose local exponents lie in \mathbb{F}_p . Then $L_p y = 0$ has a basis of n C_p -linearly independent solutions in $\mathcal{R}_p = \mathbb{F}_p(z_1, z_2, \ldots)(x_k)$.

The field \mathbb{F}_p can be replaced by any field $\mathbb k$ of characteristic p.

If the local exponents ρ are not in the prime field, but in $\overline{\Bbbk}$, we can introduce symbols t^ρ with $t^{\rho}\cdot t^{\sigma}=t^{\rho+\sigma}$ and $\partial t^{\rho}=\rho t^{\rho}/x$. Then solutions can be found in $\bigoplus t^{\rho}\mathcal{R}_{\rho}$ (group algebra).

A detailed description of the degree of the monomials appearing in the series expansion of solutions is possible.

Example: $log(1 - x)$

In characteristic 0:

$$
y_1 = -\log(1 - x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots \in \mathbb{Q}[\![x]\!]
$$

satisfies $Ly=0$ with $L=x^2\partial^2-(x^2\partial+x^3\partial^2).$ The second solution $y_2=1$ completes a basis.

For all prime numbers p a basis of solutions of $L_{p}y = 0$ is given by

$$
y_1 = x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots + \frac{x^{p-1}}{p-1} + x^p z_1
$$
 and $y_2 = 1$.

This is an example for an equation with nilpotent p -curvature for all prime numbers p .

Example: Exponential Function

The exponential differential equation $y'=y$ admits a solution \exp_{ρ} in \mathcal{R}_{ρ} . For $\rho=3$ one obtains:

$$
\begin{aligned} \exp_3 &= 1 + x + 2x^2 + 2x^3z_1 + x^4(1+2z_1) + x^5z_1 + 2x^6z_1^2 + x^7(1+2z_1+2z_1^2) \\ &+ x^8(2+z_1^2) + x^9(2z_1+z_1^3z_2) + \dots \end{aligned}
$$

This solution is unique up to multiplication with constants. Here the solution is chosen, such that 1 is the only monomial in the series expansion that is constant.

Example: Exponential Function

The exponential differential equation $y'=y$ admits a solution \exp_{ρ} in \mathcal{R}_{ρ} . For $\rho=3$ one obtains:

$$
\begin{aligned} \exp_3 &= 1 + x + 2x^2 + 2x^3z_1 + x^4(1+2z_1) + x^5z_1 + 2x^6z_1^2 + x^7(1+2z_1+2z_1^2) \\ &+ x^8(2+z_1^2) + x^9(2z_1+z_1^3z_2) + \dots \end{aligned}
$$

This solution is unique up to multiplication with constants. Here the solution is chosen, such that 1 is the only monomial in the series expansion that is constant.

One checks for example:

$$
(x^{7}(1+2z_1+2z_1^{2}))'=x^{6}(1+2z_1+2z_1^{2}))+x^{7}\cdot\left(\frac{2}{x}+\frac{z_1}{x}\right)=2x^{6}z_1^{2}
$$

Example: Exponential Function

The exponential differential equation $y'=y$ admits a solution \exp_{ρ} in \mathcal{R}_{ρ} . For $\rho=3$ one obtains:

$$
\begin{aligned} \exp_3 &= 1 + x + 2x^2 + 2x^3z_1 + x^4(1+2z_1) + x^5z_1 + 2x^6z_1^2 + x^7(1+2z_1+2z_1^2) \\ &+ x^8(2+z_1^2) + x^9(2z_1+z_1^3z_2) + \dots \end{aligned}
$$

This solution is unique up to multiplication with constants. Here the solution is chosen, such that 1 is the only monomial in the series expansion that is constant.

One checks for example:

$$
(x^{7}(1+2z_1+2z_1^{2}))'=x^{6}(1+2z_1+2z_1^{2}))+x^{7}\cdot\left(\frac{2}{x}+\frac{z_1}{x}\right)=2x^{6}z_1^{2}
$$

Observation: Setting $z_1 = z_2 = \ldots = 0$ in exp_p gives power series in $\mathbb{F}_p[\![x]\!]$. Computer experiments (with A. Bostan) suggest that this series is **algebraic** over $\mathbb{F}_p(x)$.

A Different Approach

Proposition (F.–Hauser–Kawanoue, 2024)

Define
$$
w_i := x^{p^i} z_1^{p^{i-1}} \cdots z_{i-1}^{p^1} z_i
$$
. Then $w_i^{(p^i - p^{i-1} + 1)} = -w_{i-1}'$. Thus,

$$
\widetilde{\exp}_p := \sum_{i=0}^{\infty} \sum_{k=1}^{p^i - p^{i-1}} (-1)^i w_i^{(k)}
$$

solves $y' = y$.

A Different Approach

Proposition (F.–Hauser–Kawanoue, 2024)

Define
$$
w_i := x^{p^i} z_1^{p^{i-1}} \cdots z_{i-1}^{p^1} z_i
$$
. Then $w_i^{(p^i - p^{i-1} + 1)} = -w_{i-1}'$. Thus,

$$
\widetilde{\exp}_p := \sum_{i=0}^\infty \sum_{k=1}^{p^i-p^{i-1}} (-1)^i w_i^{(k)}
$$

solves $y' = y$.

 $\widetilde{\exp}_{p}$ up to order $p^{i}-1$ is given by $\sum_{k=1}^{p^{i}}(-1)^{i}w_{i}^{(k)}$,(*).
i

 $\widetilde{\exp}_{p}$ differs from \exp_{p} by a multiplicative constant in \mathcal{C}_{p} .

Yet Another Approach

Proposition (F.–Hauser–Kawanoue, 2024)

Define

$$
\sigma: \mathbb{F}_p[\![s]\!]\to \mathbb{F}_p[\![s]\!], s\mapsto s+s^p+s^{p^2}+\ldots.
$$

Define $g_0\coloneqq\sigma(x)$ and recursively $g_i\coloneqq\sigma(g_i^p)$ $\binom{p}{i-1}$ z_i). Set

$$
H(t) := \prod_{k=1}^{p-1} \left(1 - \frac{t}{k}\right)^k \quad \text{and} \quad \widehat{\exp}_p := \prod_{i=0}^{\infty} H\left((-1)^i g_i\right).
$$

Then $\widehat{\exp}_p$ solves $y' = y$.

Yet Another Approach

Proposition (F.–Hauser–Kawanoue, 2024)

Define

$$
\sigma: \mathbb{F}_p[\![s]\!] \to \mathbb{F}_p[\![s]\!], s \mapsto s + s^p + s^{p^2} + \dots
$$

Define $g_0\coloneqq\sigma(x)$ and recursively $g_i\coloneqq\sigma(g_i^p)$ $\binom{p}{i-1}$ z_i). Set

$$
H(t) := \prod_{k=1}^{p-1} \left(1 - \frac{t}{k}\right)^k \quad \text{and} \quad \widehat{\exp}_p := \prod_{i=0}^{\infty} H\left((-1)^i g_i\right).
$$

Then $\widehat{\exp}_p$ solves $y' = y$.

Lemma

$$
\widehat{\exp}_p = \widetilde{\exp}_p.
$$

Algebraicity of Projections

$$
g_i := \sigma(g_{i-1}^p z_i), \qquad \widehat{\exp}_p := \prod_{i=0}^\infty H\left((-1)^i g_i\right).
$$

 σ is algebraic, as $\sigma(s)=\sigma(s)^p+s$. Thus, inductively, g_i is algebraic over $\mathbb{F}_p(x,z_1,\ldots,z_i)$.

Note: $g_i \in 1 + z_i \cdot \mathbb{F}_p[z_1, \ldots, z_i] [\![x]\!]$. Thus, for the **projection** $\pi_j(\widehat{\exp}_p)$ we have

$$
\pi_j(\widehat{\exp}_p) := \widehat{\exp}_p|_{z_{j+1} = z_{j+2} = \ldots = 0} = \prod_{i=0}^j H\left((-1)^i g_i\right),
$$

which is algebraic over $\mathbb{F}_p(x, z_1, \ldots, z_i)$.

In particular: $\widehat{\exp}_p|_{z_1=z_2=\ldots=0}$ is algebraic over $\mathbb{F}_p(x)$. The same holds true for \exp_p .

Abel's Problem in Characteristic p

Does the same hold true for any differential equation? More precisely:

Question

Let $L \in \mathbb{F}_p[x][\partial]$ be a regular singular differential operator of order *n* and assume its local exponents lie in the prime field \mathbb{F}_p . Does there exist a basis of solutions y_1, \ldots, y_n in $\mathbb{F}_p[z_1,z_2,\ldots]\llbracket x\rrbracket$, such that its projections $\pi_j(y_k)=y_k|_{z_{j+1}=z_{j+2}=...=0}\in \mathbb{F}_p[z_1,\ldots,z_j]\llbracket x\rrbracket$ are algebraic over $\mathbb{F}_p(x, z_1, \ldots, z_i)$ for all *j*, *k*?

Abel's Problem in Charac<u>teristic *p*</u>

Does the same hold true for any differential equation? More precisely:

Question

Let $L \in \mathbb{F}_p[x][\partial]$ be a regular singular differential operator of order *n* and assume its local exponents lie in the prime field \mathbb{F}_p . Does there exist a basis of solutions y_1, \ldots, y_n in $\mathbb{F}_p[z_1,z_2,\ldots]\llbracket x\rrbracket$, such that its projections $\pi_j(y_k)=y_k|_{z_{j+1}=z_{j+2}=...=0}\in \mathbb{F}_p[z_1,\ldots,z_j]\llbracket x\rrbracket$ are algebraic over $\mathbb{F}_p(x, z_1, \ldots, z_i)$ for all *j*, *k*?

Partial answer:

Theorem (F.–Hauser–Kawanoue, 2024)

Let $y' = ay$ be an order one regular singular differential equation with rational or algebraic coefficient $a \in \mathbb{F}_{p}(\{x\})$ and local exponent $\rho \in \mathbb{F}_{p}$. Then there is a solution y such that $\pi_{i}(y)$ is algebraic over $\mathbb{F}_p(z_1,\ldots,z_j,x)$ for all j.

Ideas of Proof for π_0

The p -curvature of $y'=$ ay is given by $(\partial -a)^p y =$ $a_p y$, where $a_p = -a^{(p-1)} - a^p$.

Ideas of Proof for π_0

The p -curvature of $y'=$ ay is given by $(\partial -a)^p y =$ $a_p y$, where $a_p = -a^{(p-1)} - a^p$.

Solve

$$
a^{(p-1)} + a^p + \frac{g}{x^p} - \frac{g^p}{x^p} = 0
$$

implicitly to obtain an algebraic series $g\in \mathbb{F}_p\llbracket x^p\rrbracket$. Then the p -curvature of $y'=(a-g/x)$ y vanishes, and by a variant of Cartier's Lemma this equation has an algebraic solution q .

Ideas of Proof for π_0

The p -curvature of $y'=$ ay is given by $(\partial -a)^p y =$ $a_p y$, where $a_p = -a^{(p-1)} - a^p$.

Solve

$$
a^{(p-1)} + a^p + \frac{g}{x^p} - \frac{g^p}{x^p} = 0
$$

implicitly to obtain an algebraic series $g\in \mathbb{F}_p\llbracket x^p\rrbracket$. Then the p -curvature of $y'=(a-g/x)$ y vanishes, and by a variant of Cartier's Lemma this equation has an **algebraic** solution q .

The equation $y' = (g/x)y = (a - q'/q)y$ is equivalent to $(qy)' = aqy$. Because $g \in \mathbb{F}_p[\![x^p]\!]$, its solutions lie in $\mathbb{F}_p[z_1,z_2,\ldots]$ $\llbracket x^p \rrbracket$ and from this it follows that it has a solution $y_0 \in 1 + z_1 \mathbb{F}_p[z_1, z_2, \ldots]$ $\llbracket x^p \rrbracket$. Thus $y = qy_0$ satisfies $y' = ay$ and $\pi_0(y) = q$ is algebraic.

Product Representations

Iterating this construction leads to a more precise statement, generalizing the product representation of $\widehat{\exp}_p$:

Theorem (F.–Hauser–Kawanoue, 2024)

Let $L = \partial + a$ be a first order regular singular linear differential operator with rational function coefficient $a \in \mathbb{F}_p(x)$ (or algebraic coefficient $a \in \mathbb{F}_p[[x]]$) and local exponent $\rho = 0$. Then for all $i\in\mathbb{N}$ there exist series $h_i\in 1+z_i\mathbb{F}_p[z_1,\ldots,z_i]\llbracket x\rrbracket$, which are algebraic over $\mathbb{F}_p(z_1,z_2,\ldots,z_i,x)$ and $P=\prod_{i=0}^\infty h_i$ satisfies $LP=0.$ In particular, $\pi_j(P)=\prod_{i=0}^j h_i$ is algebraic over $\mathbb{F}_p(x, z_1, \ldots, z_i)$ for all j.

Further Questions

- Does this generalizes to higher order differential equations? Idea: Factorisation of differential operators in $\overline{\mathbb{Q}(x)}[\partial]$ into linear factors.
- Consider a (first order) differential equation $Ly = 0$ with $L \in \mathbb{Q}[x][\partial]$. Let $y_p \in \mathcal{R}_p$ be a (basis of) solution(s) of $L_p y = 0$. Do the Galois groups of $\pi_i(y_p)$ relate to the differential Galois **group** of $Ly = 0$? Is there a variant of the differential Galois Group in characteristic p?
- Is there a "canonical" basis of solutions of the *n*-dimensional C_p -vector space of solutions of $L_p v = 0?$
- The Artin-Hasse exponential function is defined as $\exp(x+x^p/p+x^{p^2}/p^2+\ldots) \in \Z_{(p)}[\![x]\!]$. Is there a connection to \exp_p ?

The End

[Characteristic 0](#page-2-0) [Characteristic](#page-9-0) *p* [Exponential Function](#page-23-0) **[Abel's Problem](#page-30-0)**

Thank you for your attention!