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Definitions

Consider a homogeneous linear ordinary differential equation (ODE) over C

any™ + ...+ a1y +ay=0 (%)

with a; € C[[x]. We can rewrite it in terms of a differential operator as Ly = 0 with
L=a,0"+...+a10+ a € (Cl[X]][a]
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any™ + ...+ a1y +ay=0 (%)

with a; € C[[x]. We can rewrite it in terms of a differential operator as Ly = 0 with
L=a,0"+...+a10+ a € (Cl[X]][a]

L has a regular singularity at 0 if a;/a, € C((x)) has a pole of order at most n — i at 0.
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Definitions

Consider a homogeneous linear ordinary differential equation (ODE) over C
any™ 4+ ...+ a1y + a0y =0 (*)

with a; € C[[x]. We can rewrite it in terms of a differential operator as Ly = 0 with
L=a,0"+...+a10+ a € (Cl[X]][a]

L has a regular singularity at 0 if a;/a, € C((x)) has a pole of order at most n — i at 0.

Write L = 3772 Y7 g cijx'@ and set Ly =37, ;_, ¢ jx'®. The minimal 7 with L, # 0 is
called the shift of L. From now on, we assume w.l.o.g. 7 =0 (multiply L by x~7).

The operator Lo =) c;’;x"c()" is called the initial form of L. It has the same order as L if and
only if L is regular singular.
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Definitions

For the initial form Lo we have Lo(x¥) = x(k)x¥, where x (k) is the indicial polynomial of
L. lts roots p; for i =1,..., k of multiplicity m; are the local exponents of L.

A basis of solutions of Loy = 0 (as C-vector space) is given by x”i log(x)/ for 1 < i < k and
0 Sj S m; — 1.
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Definitions

For the initial form Lo we have Lo(x¥) = x(k)x¥, where x (k) is the indicial polynomial of
L. lts roots p; for i =1,..., k of multiplicity m; are the local exponents of L.

A basis of solutions of Loy = 0 (as C-vector space) is given by x”i log(x)/ for 1 < i < k and
0 SJ S m; — 1.

The differential operator
L=x0° —2x*0* — 2x39° + 16x20° — 16x0 — x.
is regular singular with shift 0. Its normal form is Ly = L 4+ x and its indicial polynomial is

x(s) = s%(s — 2)(s — 5)2. The local exponents are p; = 0, po =2 and p3 = 5 with m; = 2,
my =1 and m3 = 2.

4/20



Characteristic 0 < cp ponential Function
ooe 0o

Fuchs' Theorem — Local Solution Theory

Theorem (Fuchs 1866)

Let L € C[x][0] be a regular singular differential operator of order n. Then the equation
Ly = 0 has a basis of n C-linearly independent solutions of the form

fo = xP (fio+ i1 1og(x) + ... + fin1log(x)" ),

where f; j € C[x] and p ranges over the local exponents (counted with multiplicity).

Fuchs gave a more detailed description on the form of the solution, in particular on the order
of f; j and more precise bounds on the powers of the logarithm appearing.
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Fuchs' Theorem — Local Solution Theory

Theorem (Fuchs 1866)

Let L € C[x][0] be a regular singular differential operator of order n. Then the equation
Ly = 0 has a basis of n C-linearly independent solutions of the form

fo = xP (fio+ i1 1og(x) + ... + fin1log(x)" ),

where f; j € C[x] and p ranges over the local exponents (counted with multiplicity).

Fuchs gave a more detailed description on the form of the solution, in particular on the order
of f; j and more precise bounds on the powers of the logarithm appearing.

For L = (2x% — x3) + (—4x2 + 3x3)0 + (2x® — 3x3)0? + x303 a basis of solutions of Ly = 0 is
given by e*, e*log(x) and xe*.
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Motivation

Problem (Abel)

When does y’ = ay for an algebraic series a € Q(x) N Q[x] admit an algebraic solution?

Solved 1970 by Risch algorithmically (although not suitable for implementation).
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Motivation

Problem (Abel)

When does y’ = ay for an algebraic series a € Q(x) N Q[x] admit an algebraic solution?

Solved 1970 by Risch algorithmically (although not suitable for implementation).

Problem (Liouville, Fuchs)

When does

any™ + ...+ a1y +ay =0 (%)

with polynomial coefficients a; € Q[x] admit a basis of n algebraic solutions?

Solved algorithmically by Singer 1979 by reducing to Risch’s algorithm.
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Motivation

Grothendieck p-curvature conjecture (1969)

The equation Ly =0 (%) with L € Q[x][0] having polynomial coefficients admits a basis of n
algebraic solutions if and only if its reduction L,y = 0 modulo p admits a basis of n

Fp((xP))-linearly independent solutions in F,((x)) for almost all prime numbers p.

The reduction (%), of (x) modulo p is well-defined for almost all prime numbers, L, € F,[x][0].
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Motivation

Grothendieck p-curvature conjecture (1969)

The equation Ly =0 (%) with L € Q[x][0] having polynomial coefficients admits a basis of n
algebraic solutions if and only if its reduction L,y = 0 modulo p admits a basis of n
Fp((xP))-linearly independent solutions in F,((x)) for almost all prime numbers p.

The reduction (%), of (x) modulo p is well-defined for almost all prime numbers, L, € F,[x][0].

Rewrite L,y = 0 into a system of n first order ODEs: Y’ = AY. The p-curvature of L, is the
Fp[x]-linear map (0 — A)P : Fp((x))" — Fp((x))".

Lemma (Cartier)

Equation L,y = 0 admits a basis of n F,((x”))-linearly independent solutions in Fy((x)) and if
and only if its p-curvature vanishes.
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Solution Theory in Characteristic p

Where can solutions of (x), be found, if not in F,[x]?
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Solution Theory in Characteristic p

Where can solutions of (x), be found, if not in F,[x]?
Define Rp = Fp(z1, 22, . ..)((x)) with derivation 0 acting via

1 1 0zy_
ox=1, 0z1=—, O0Oz= — I%k-1
X

X-2Z1 - Zk-1 Zk—1

Field of constants: C, == Fp(zf, z5,...)(xP)). Solutions of differential equations in R, form
a Cp-vector space of dimension at most n.
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Solution Theory in Characteristic p

Where can solutions of (x), be found, if not in F,[x]?
Define Rp = Fp(z1, 22, . ..)((x)) with derivation 0 acting via

1 1 0zy_
ox=1, 0z1=—, O0Oz= — I%k-1
X

X-2Z1 - Zk-1 Zk—1

Field of constants: C, == Fp(zf, z5,...)(xP)). Solutions of differential equations in R, form
a Cp-vector space of dimension at most n.

Note: O reduces degree of a non-constant monomial in x by exactly one.

Parallel to logarithms from characteristic 0:
1
x - log(x) - - - logh™(x)

1
log(x)' = =, logh(x)' =
X
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Solution Theory in Characteristic p

Theorem (Honda 1981)

Assume L,y = 0 with polynomial coefficients has nilpotent p-curvature and n = ord L, < p.
Then Lpy = 0 has a basis of n Fp(z{, xP)-linearly independent solutions in Fp[z1, x].
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Solution Theory in Characteristic p

Theorem (Honda 1981)

Assume L,y = 0 with polynomial coefficients has nilpotent p-curvature and n = ord L, < p.
Then Lpy = 0 has a basis of n Fp(z{, xP)-linearly independent solutions in Fp[z1, x].

Theorem (Dwork 1990)

Assume L,y = 0 has nilpotent p-curvature. Then L,y = 0 has a basis of n
Fo(z},25, ..., xP)-linearly independent solutions in Fplz1, zp, . .., x].
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Solution Theory in Characteristic p

Theorem (Honda 1981)

Assume L,y = 0 with polynomial coefficients has nilpotent p-curvature and n = ord L, < p.
Then Lpy = 0 has a basis of n Fp(z{, xP)-linearly independent solutions in Fp[z1, x].

Theorem (Dwork 1990)

Assume L,y = 0 has nilpotent p-curvature. Then L,y = 0 has a basis of n
Fo(z},25, ..., xP)-linearly independent solutions in Fplz1, zp, . .., x].

Theorem (F.—Hauser 2023)

Let L,y = 0 be a regular singular differential equation with polynomial or power series
coefficients over F,, whose local exponents lie in F,. Then L,y = 0 has a basis of n
Cp-linearly independent solutions in Rp = Fp(z1, z2,...)((x))-
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Solution Theory in Characteristic p

Theorem (F.—Hauser 2023)

Let Loy = 0 be a regular singular differential equation with polynomial or power series
coefficients over IF,, whose local exponents lie in IF,. Then Lyy = 0 has a basis of n
Cp-linearly independent solutions in R, = Fp(z1, 22, .. .)((x))-

The field F, can be replaced by any field k of characteristic p.
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Solution Theory in Characteristic p

Theorem (F.—Hauser 2023)

Let Loy = 0 be a regular singular differential equation with polynomial or power series
coefficients over IF,, whose local exponents lie in IF,. Then Lyy = 0 has a basis of n
Cp-linearly independent solutions in R, = Fp(z1, 22, .. .)((x))-

The field F, can be replaced by any field k of characteristic p.

If the local exponents p are not in the prime field, but in k, we can introduce symbols t” with
tP - t7 = tP*7 and Ot” = pt” /x. Then solutions can be found in @ t*R,, (group algebra).
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Solution Theory in Characteristic p

Theorem (F.—Hauser 2023)

Let Loy = 0 be a regular singular differential equation with polynomial or power series
coefficients over IF,, whose local exponents lie in IF,. Then Lyy = 0 has a basis of n
Cp-linearly independent solutions in R, = Fp(z1, 22, .. .)((x))-

The field F, can be replaced by any field k of characteristic p.

If the local exponents p are not in the prime field, but in k, we can introduce symbols t” with
tP - t7 = tP*7 and Ot” = pt” /x. Then solutions can be found in @ t*R,, (group algebra).

A detailed description of the degree of the monomials appearing in the series expansion of
solutions is possible.
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Example: log(1 — x)

In characteristic O: ) 5

y1:—Iog(l—x):x+%+%+...GQHX]]

satisfies Ly = 0 with L = x20? — (x?0 4 x30?). The second solution y» = 1 completes a basis.
For all prime numbers p a basis of solutions of L,y = 0 is given by
2 3 -1

N
=X —_— —_—
n 273 p—1

+xPz; and yp =1.

This is an example for an equation with nilpotent p-curvature for all prime numbers p.
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Example: Exponential Function

The exponential differential equation y’ = y admits a solution exp, in Rp. For p =3 one
obtains:

expy = 14+ x4+ 2x2 + 2x32; + x*(1 4 221) + x°z1 + 2x028 4+ x"(1 + 2z, + 22)
+x3Q2+ )+ Xz + )+ ...

This solution is unique up to multiplication with constants. Here the solution is chosen, such
that 1 is the only monomial in the series expansion that is constant.
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Example: Exponential Function

The exponential differential equation y’ = y admits a solution exp, in Rp. For p =3 one
obtains:

expy = 14+ x4+ 2x2 + 2x32; + x*(1 4 221) + x°z1 + 2x028 4+ x"(1 + 2z, + 22)
+x3Q2+ )+ Xz + )+ ...

This solution is unique up to multiplication with constants. Here the solution is chosen, such
that 1 is the only monomial in the series expansion that is constant.

One checks for example:

2
(x"(1 42z +222)) = xO(1 4+ 2z, + 222)) + x" - <x + j) = 2x%72
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Example: Exponential Function

The exponential differential equation y’ = y admits a solution exp, in Rp. For p =3 one
obtains:

expy = 14+ x4+ 2x2 + 2x32; + x*(1 4 221) + x°z1 + 2x028 4+ x"(1 + 2z, + 22)
+x3Q2+ )+ Xz + )+ ...

This solution is unique up to multiplication with constants. Here the solution is chosen, such
that 1 is the only monomial in the series expansion that is constant.

One checks for example:

2
(x"(1 42z +222)) = xO(1 4+ 2z, + 222)) + x" - < + Zl) = 2x%72
X X
Observation: Setting z1 =z = ... = 0 in exp, gives power series in Fp[x]. Computer
experiments (with A. Bostan) suggest that this series is algebraic over Fp(x).
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i— i—1
Define w; == xP' 2 Lz o 1z, Then W( Pl —w/_;. Thus,
5o Gl )
&by =) > (1w
i=0 k=1
solves y' = y.
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i— i—1
Define w; == xP' 2 Lz o 1z, Then W( Pl —w/_;. Thus,
i i—1
N v (k)
&XPp = Z Z (=1)'w;
i=0 k=1

solves y' = y.

exp, up to order p’ — 1 is given by Zi;l(—l)iwi(k).

&Top differs from exp, by a multiplicative constant in Cp.
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Yet Another Approach

Proposition (F.—Hauser—Kawanoue, 2024)

Define ,
o :Fp[s] = Fp[s],s+—s+sP+s” +....

Define go := o(x) and recursively g; .= o(gF ,z;). Set

p—1 k 00 )
H(t) = H (1 - %) and exp, = H H((-1)'g) -
k=1 i=0

Then éxp, solves y' = y.
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Yet Another Approach

Proposition (F.—Hauser—Kawanoue, 2024)
Define

o Fols] = Fols],s —s+s"+s” +....
Define go := o(x) and recursively g; .= o(gF ,z;). Set

p—1

H(t) = H (1 - i)k and exp, = H H((-1)g).
i=0

k=1

Then éxp, solves y' = y.

&Xp, = &P,
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Algebraicity of Projections

8 = O-(gip—lzi)’ e/X\pp H H 1) gl .
o is algebraic, as o(s) = o(s)? +s. Thus, inductively, g; is algebraic over Fy(x, z1, ..., z).
Note: gj € 1+ z - Fplz1,...,z][x]. Thus, for the projection m;(éxp,) we have

J
7rj(efx\pp) = e/)a)p|2j+1zzj+2:-~-:0 = H H ((_1)Igf) )
i=0

which is algebraic over Fp(x, z1, . . ., Z)).

In particular: €xp,|z=z=..=0 is algebraic over F5(x). The same holds true for exp,,.
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Abel’s Problem in Characteristic p

Does the same hold true for any differential equation? More precisely:

Let L € F,[x][0] be a regular singular differential operator of order n and assume its local

exponents lie in the prime field IF,. Does there exist a basis of solutions y1,...,y, in
Fplz1, 22, . . ][x], such that its projections 7;(yk) = Yk|z.1=z;,,=..=0 € Fp[z1, ..., Z][x] are
algebraic over Fp(x, z1, . .., z;) for all j, k7
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Abel’s Problem in Characteristic p

Does the same hold true for any differential equation? More precisely:

Let L € F,[x][0] be a regular singular differential operator of order n and assume its local

exponents lie in the prime field IF,. Does there exist a basis of solutions y1,...,y, in
Fplz1, 22, . . ][x], such that its projections 7;(yk) = Yk|z.1=z;,,=..=0 € Fp[z1, ..., Z][x] are
algebraic over Fp(x, z1, . .., z;) for all j, k7

Partial answer:

Theorem (F.—Hauser—Kawanoue, 2024)

Let y' = ay be an order one regular singular differential equation with rational or algebraic
coefficient a € F,((x)) and local exponent p € IF,. Then there is a solution y such that m;(y)
is algebraic over Fp(z1,. .., zj,x) for all j.

16 /20



Abel’s Problem
[e]e] lelele)

|deas of Proof for g

The p-curvature of y’ = ay is given by (0 — a)Py = apy, where a, = —alP=1) — g,
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|deas of Proof for g

The p-curvature of y’ = ay is given by (0 — a)Py = apy, where a, = —alP=1) — P,
Solve ,
(-1, py & & _
a + a" + P o 0

implicitly to obtain an algebraic series g € Fy[xP]. Then the p-curvature of y' = (a — g/x)y
vanishes, and by a variant of Cartier's Lemma this equation has an algebraic solution q.
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|deas of Proof for

The p-curvature of y’ = ay is given by (0 — a)Py = apy, where a, = —alP=1) — P,
Solve ,
(-1, py & & _
a + a" + P o 0

implicitly to obtain an algebraic series g € Fy[xP]. Then the p-curvature of y' = (a — g/x)y
vanishes, and by a variant of Cartier's Lemma this equation has an algebraic solution q.

The equation y’ = (g/x)y = (a— q'/q)y is equivalent to (qy)’ = aqy. Because g € F,[x"],
its solutions lie in Fp[z1, 2o, ...][xP] and from this it follows that it has a solution
Yo € 14+ z1Fp[z1, 22, .. .][xP]. Thus y = qyo satisfies y’ = ay and mo(y) = q is algebraic.
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Product Representations

Iterating this construction leads to a more precise statement, generalizing the product
representation of éxp,,:

Theorem (F.—Hauser—-Kawanoue, 2024)
Let L = O + a be a first order regular singular linear differential operator with rational function
coefficient a € Fp(x) (or algebraic coefficient a € F,[x]) and local exponent p = 0. Then for
all i € N there exist series hj € 1 + zj[Fp[z1, ..., z][x], which are algebraic over

Fo(z1, 22,. .., 2i,x) and P = ]2, h; satisfies LP = 0. In particular, 70j(P) = HJ,::o hi is
algebraic over Fp(x, z1, ..., z) for all j.
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Further Questions

Does this generalizes to higher order differential equations? ldea: Factorisation of differential

operators in Q(x)[0] into linear factors.

Consider a (first order) differential equation Ly = 0 with L € Q[x][0]. Let y, € R, be a (basis
of) solution(s) of L,y = 0. Do the Galois groups of 7(y,) relate to the differential Galois
group of Ly = 07 Is there a variant of the differential Galois Group in characteristic p?

Is there a “canonical” basis of solutions of the n-dimensional C,-vector space of solutions of
L,y =07
p

The Artin-Hasse exponential function is defined as exp(x + xP/p + xP* /p> +...) € Zipy[x]- 1s
there a connection to exp,”?
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Thank you for your attention!
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