Some thoughts on Zagier's Conjecture: *From Functions to Numbers* Séminaire Différentiel

INRIA (Saclay)

February 27th 2024

Quentin Gazda

École Polytechnique (CMLS)

Feb. 27th 2024

1/25

"Linear relations among **polylogarithms** evaluated at algebraic numbers come from relations among symbols in K-theory"

K-theory

R : commutative ring with unit,

S(R): spectrum built out of the commutative algebra of R.

:

Points of S(R)Paths on S(R)Filled triangles on S(R)

- finite projective modules over R,
- isomorphisms of R-modules,
- : commutative diagrams, etc.

Quentin Gazda

Operations \oplus and \otimes extend to S(R) into operations that are associative and commutative only up to homotopy. The K-theory spectrum is obtained by groupifying S(R) for \oplus :

 $K(R) := S(R)^{\rm grp}$

For $i \ge 0$, we set $K_i(R) := \pi_i K(R)$.

Examples

 $K_0(R)$ is the Grothendieck ring of R, $K_1(R)$ is the abelianization of the infinite linear group GL(R), $K_2(R) \ldots =?$

Polylogarithms

Let $n \ge 1$ be an integer.

For
$$|x| < 1$$
: $\text{Li}_n(x) = \sum_{m>0} \frac{x^m}{m^n}$

Bloch–Wigner–Ramakrishnan polylogarithms

$$\mathcal{D}_n(x) = (-1)^n (n-1)! \sum_{n>k\ge 0} \frac{(-1)^k}{k!} \log(x)^k \operatorname{Li}_{n-k}(x).$$

The monodromy of \mathcal{D}_n is simpler than that of Li_n. We get a univaluated function

$$\mathcal{D}_n: \mathbb{C} \setminus \{0,1\} \longrightarrow \mathbb{C}/(2\pi i)^n \mathbb{Z}.$$

Examples $\mathcal{D}_1(x) = -\text{Li}_1(x) = \log(1-x), \ \mathcal{D}_2(x) = \text{Li}_2(x) - \log(x)\log(1-x), \text{ etc.}$

Let $n \geq 1$ be an integer. Let F be a number field (which we assume included in \mathbb{C}).

Conjecture (Zagier)

There exist an (explicit) subgroup $\operatorname{Symb}_n(F) \subseteq \mathbb{Z}[F \setminus \{0, 1\}]$ together with a map $\operatorname{Symb}_n(F) \longrightarrow K_{2n-1}(F)$ surjective up to torsion such that, for all $\sum_{\alpha} n_{\alpha}[\alpha] \in \operatorname{Symb}_n(F)$,

$$\sum_{\alpha} n_{\alpha}[\alpha] = 0 \text{ dans } K_{2n-1}(F) \quad \Longleftrightarrow \quad \sum_{\alpha} n_{\alpha} \mathcal{D}_{n}(\alpha) \in (2\pi i)^{n} \mathbb{Z}$$

For n = 1. Symb₁(F) = $\mathbb{Z}[F \setminus \{0, 1\}] \longrightarrow F^{\times}$, $[\alpha] \longmapsto 1 - \alpha$. The conjecture is equivalent to the injectivity of log : $F^{\times} \to \mathbb{C}/(2\pi i)\mathbb{Z}$.

Examples

For n = 2. Symb₂(F) consists in elements $\sum_{\alpha} n_{\alpha}[\alpha]$ such that

$$\sum_{\alpha} n_{\alpha} \cdot \alpha \wedge (1 - \alpha) = 0 \quad \text{dans} \quad F^{\times} \bigwedge F^{\times}.$$

We have a map $\operatorname{Symb}_2(F) \longrightarrow K_3(F)$ constructed by Bloch–Suslin. The elements

$$2\left([x] + \left[\frac{1}{x}\right]\right), \quad [x] + [1-x], \quad [x] + [y] + \left[\frac{1-x}{1-xy}\right] + [1-xy] + \left[\frac{1-y}{1-xy}\right],$$

are in its kernel, e.g. testifying of the celebrated five-term relation:

$$\mathcal{D}_2(x) + \mathcal{D}_2(y) + \mathcal{D}_2\left(\frac{1-x}{1-xy}\right) + \mathcal{D}_2(1-xy) + \mathcal{D}_2\left(\frac{1-y}{1-xy}\right) \in (2\pi i)^2 \mathbb{Z}.$$

Motivic interpretation (after Beilinson–Deligne '94)

 \mathcal{MM}_F : hypothetical category of *mixed motives* over F. It is supposed to be abelian, \mathbb{Q} -linear, symmetric monoidal \otimes It possesses objects $\mathbb{Q}(n)$ called *Tate twists*.

 $\operatorname{Ext}^{1}_{\mathcal{MM}_{F}}(\mathbb{1},\mathbb{Q}(n))$

Recall: In any abelian category \mathcal{A} , the group of extensions of two objects X and Y of \mathcal{A} is given by

$$\operatorname{Ext}^{1}_{\mathcal{A}}(X,Y) \stackrel{\text{def}}{=} \{ [Z] : 0 \to Y \to Z \to X \to 0 \} / \{ [Z] \sim [Z'] \}$$

where $[Z] \sim [Z']$ means that there exists a diagram of the form:

Motivic interpretation (after Beilinson–Deligne '94)

The vertical map, called *regulator*, is expected to be injective: this is *Beilinson's conjecture*. It implies Zagier's conjecture:

$$\ker \left(\operatorname{Symb}_n(F)_{\mathbb{Q}} \to K_{2n-1}(F)_{\mathbb{Q}} \right) = \ker \left(\mathcal{D}_n \mid \operatorname{Symb}_n(F) \right).$$

Let \mathbb{F} be a finite field with q elements.

$$\mathbb{F}[\theta] \subset \mathbb{F}(\theta) \subset K_{\infty} := \mathbb{F}((\frac{1}{\theta})) \subset \mathbb{C}_{\infty} := (K_{\infty}^{\mathrm{alg}})^{\wedge} \\
 \stackrel{?}{\underset{\mathbb{Z}}{\sim}} \quad \stackrel{?}{\underset{\mathbb{Q}}{\sim}} \quad \stackrel{?}{\underset{\mathbb{R}}{\sim}} \quad \stackrel{?}{\underset{\mathbb{C}}{\sim}} \quad \stackrel{?}{\underset{\mathbb{C}}{\sim} \quad \stackrel{?}{\underset{\mathbb{C}}{\sim}} \quad \stackrel{?}{\underset{\mathbb{C}}{\sim}} \quad \stackrel{?}{\underset{\mathbb{C}}{\sim}} \quad \stackrel{?}{\underset{\mathbb{C}}{\sim}} \quad \stackrel{?}{\underset{\mathbb{C}}{\sim} \quad \stackrel{?}{\underset{\mathbb{C}}{\sim}} \quad \stackrel{?}{\underset{\mathbb{C}}{\sim}} \quad \stackrel{?}{\underset{\mathbb{C}}{\sim} \quad \stackrel{?}{\underset{\mathbb{C}}{\sim} \quad \stackrel{?}{\underset{\mathbb{C}}{\sim}} \quad \stackrel{?}{\underset{\mathbb{C}}{\sim}} \quad \stackrel{?}{\underset{\mathbb{C}}{\sim} \quad \stackrel{!}{\underset{\mathbb{C}}{\sim} \quad \stackrel{!}{\underset{$$

For
$$z \in \mathbb{C}_{\infty}$$
, $\exp_C(z) := \sum_{i \ge 0} \frac{z^{q^i}}{(\theta^{q^i} - \theta)(\theta^{q^i} - \theta^q) \cdots (\theta^{q^i} - \theta^{q^{i-1}})}.$

The fundamental exact sequence

$$0 \longrightarrow \tilde{\pi} \cdot \mathbb{F}[\theta] \longrightarrow \mathbb{C}_{\infty} \xrightarrow{\exp_C} \mathbb{C}_{\infty} \longrightarrow 0.$$

where $\tilde{\pi}$ is *Carlitz's period*, analogue to $2\pi i$,

$$\tilde{\pi} := (-\theta)^{\frac{q}{q-1}} \prod_{i \ge 1} \left(1 - \theta^{1-q^i}\right)^{-1}.$$

12/25

$$0 \longrightarrow \tilde{\pi} \cdot \mathbb{F}[\theta] \longrightarrow \mathbb{C}_{\infty} \xrightarrow[]{\operatorname{exp}_C} \mathbb{C}_{\infty} \longrightarrow 0.$$

Carlitz's logarithm:

For
$$|z| < |\theta|^{\frac{q}{q-1}}$$
, $\log_C(z) = \sum_{i \ge 0} \frac{z^{q^i}}{(\theta - \theta^q)(\theta - \theta^{q^2}) \cdots (\theta - \theta^{q^i})}$.

For $n \ge 1$, the nth Carlitz's polylogarithm:

For
$$|z| < |\theta|^{\frac{qn}{q-1}}$$
, $\operatorname{Li}_n(z) = \sum_{i \ge 0} \frac{z^{q^i}}{(\theta - \theta^q)^n (\theta - \theta^{q^2})^n \cdots (\theta - \theta^{q^i})^n}$.

t-motives (after Anderson, 1986)

Let R be an $\mathbb{F}[\theta]\text{-algebra}.$

Definition (t-motive)

A *t*-motive over R is the data of $\underline{M} = (M, \phi_M)$

1 a finite projective R[t]-module M of constant rank,

2 an isomorphism ϕ_M

$$\phi_M : (\operatorname{Frob}_R^* M) \left[\frac{1}{t - \theta} \right] \xrightarrow{\sim} M \left[\frac{1}{t - \theta} \right]$$

The neutral *t*-motive : $\mathbb{1} = (R[t], 1)$, The *n*th Carlitz's twist : $\underline{A}(n) = (R[t], (t - \theta)^{-n})$, Let $\alpha \in R$.

$$\mathcal{L}_n(\alpha) = \left(R[t]^{\oplus 2}, \begin{pmatrix} (t-\theta)^{-n} & (t-\theta)^{-n}\alpha \\ 0 & 1 \end{pmatrix} \right).$$

Zagier's Conjecture in equal characteristic

This *t*-motive inserts in a short exact sequence $0 \to \underline{A}(n) \to \mathcal{L}_n(\alpha) \to \mathbb{1} \to 0$. We denote its class by

$$[\alpha] \in \operatorname{Ext}^{1}_{t\mathbf{Mot}_{R}}(\mathbb{1}, \underline{A}(n)).$$

Let $F \subset \mathbb{C}_{\infty}$ be a finite field extension of $\mathbb{F}(\theta)$ (not necessarily separated).

Theorem (G–Maurischat)

Let
$$\alpha_1, \ldots, \alpha_s \in F$$
 of norm $< |\theta|^{\frac{qn}{q-1}}, a_1(t), \ldots, a_s(t) \in \mathbb{F}[t]$. Then,

$$\sum_{i=1}^{s} a_i(t)[\alpha_i] = 0 \text{ in } \operatorname{Ext}^1_{t\mathbf{Mot}_F}(\mathbb{1}, \underline{A}(n)) \iff \sum_{i=1}^{s} a_i(\theta) \operatorname{Li}_n(\alpha_i) \in \tilde{\pi}^n \mathbb{F}[\theta]$$

15 / 25

We consider the operator:

$$\xi(t) \in \mathbb{C}_{\infty}\langle t \rangle, \quad \Delta_n(\xi) = (t - \theta)^n \xi - \operatorname{Frob}_{\mathbb{C}_{\infty}}(\xi).$$

Solutions of $\Delta_n(\xi) = 0$ are the $\mathbb{F}[t]$ -multiples of the *n*th power of the Anderson-Thakur function

$$\omega(t) := (-\theta)^{\frac{1}{q-1}} \prod_{i \ge 0} \left(1 - \frac{t}{\theta^{q^i}}\right)^{-1}$$

For $\alpha \in F$ of norm $< |\theta|^{\frac{qn}{q-1}}$, a solution of $\Delta_n(\xi) = \alpha$ is given by

$$\operatorname{Li}_{n}(\alpha)_{t} := \sum_{i \ge 0} \frac{\alpha^{q^{i}}}{(t-\theta)^{n}(t-\theta^{q})^{n}\cdots(t-\theta^{q^{i}})^{n}}.$$

٠

The class of $\operatorname{Li}_n(\alpha)_t$ is mapped horizontally to $[\alpha]$, vertically to $\operatorname{Li}_n(\alpha)$. The two arrows are injective. For the horizontal, this is a formality. For the vertical one, this follows from Anderson-Brownawell-Papanikolas criterion.

(t

 $\left(\Lambda \left(c \right) \right)$

Hope

$$\operatorname{Li}_{n}(\alpha)_{t} = \sum_{i \geq 0} \frac{\alpha^{q^{i}}}{(t-\theta)^{n}(t-\theta^{q})^{n}\cdots(t-\theta^{q^{i}})^{n}} \quad is \ to \quad \operatorname{Li}_{n}(\alpha)$$
what
$$\operatorname{Li}_{n}(T)_{q} = \sum_{m>0} \frac{T^{m}}{[m]_{q}^{n}} \qquad is \ to \quad \operatorname{Li}_{n}(T)$$

where $[m]_q = 1 + q + \ldots + q^{m-1}$ is the q-analogue of m.

Today, we do not possess the technology to redo this proof in number theory. We find ourselves powerless at the very definition of a t-motive as we do not have a counterpart for

 $\mathbb{F}[t, heta]$ \sim " $\mathbb{Z}\otimes_{\mathbb{F}_1}\mathbb{Z}$ "

For p a prime, however, recent breakthroughs allow to realize some parts of this paradigm *after* p-completion:

$$\left(\mathbb{F}[t,\theta]^{\wedge}_{(\mathfrak{p}(t),\mathfrak{p}(\theta))}, \operatorname{Frob}^{\operatorname{deg}\mathfrak{p}}_{\theta}\right) \sim (\mathbb{A}_{\mathbb{Z}_p},\phi)$$

where $\mathfrak{p}(t) \in \mathbb{F}[t]$ is a prime element; i.e. an irreducible polynomial. Δ_R denotes the *prismatic cohomology*¹ of a \mathbb{Z}_p -algebra R and ϕ its Frobenius.

If K/\mathbb{Q}_p is an unramified finite field extension, then

$$(\mathbb{\Delta}_{\mathcal{O}_K}, \phi) = (\mathcal{O}_K \llbracket q - 1 \rrbracket, \ \phi_K + q \mapsto q^p)$$

¹ \uparrow We rather consider *q*-crystalline cohomology.

prismatic q-crystals (after Bhatt–Scholze)

Definition (q-crystal)

A *q*-crystal <u>M</u> over \mathcal{O}_K is the data of a couple (M, ϕ_M) where

1 *M* is a finite projective module over $\mathbb{A}_{\mathcal{O}_K}$

 $\mathbf{2} \phi_M$ is an isomorphism

$$\phi_M : (\phi^* M) \left[\frac{1}{[p]_q} \right] \xrightarrow{\sim} M \left[\frac{1}{[p]_q} \right].$$

Similarly, we have a neutral q-crystal $1 = (\Delta_{\mathcal{O}_K}, 1)$ and Tate twists $\mathbb{Z}_p(n) = (\Delta_{\mathcal{O}_K}, [p]_q^{-n})$. A subgroup of the group of extensions of q-crystals $\operatorname{Ext}_q^1(1, \mathbb{Z}_p(n))$ is computed as the H¹ of the q-syntomic complex

$$R\Gamma_{qsyn}(\mathcal{O}_K, \mathbb{Z}_p(n)) = \left[(q-1)^n \mathbb{A}_{\mathcal{O}_K} \xrightarrow{\operatorname{id} - \frac{\phi}{[p]_q^n}} \mathbb{A}_{\mathcal{O}_K} \right].$$

Case n = 1: q-syntomic Chern classes

We are looking for a group homomorphism $\mathcal{O}_K^{\times} \to \operatorname{Ext}_q^1(\mathbb{1}, \mathbb{Z}_p(1))$. Such a morphism was recently constructed by Bhatt–Lurie! This is the H¹ of the *q*-syntomic Chern class

$$c_1^{qsyn}: R\Gamma_{\acute{e}t}(R, \mathbb{G}_m)[-1] \longrightarrow R\Gamma_{qsyn}(R, \mathbb{Z}_p(1))$$

Conjecture (joint work with T. Bouis)

Let $r \in 1 + \mathcal{O}_K^{\times}$. The *q*-syntomic Chern class $c_1^{q \operatorname{syn}}$ of Bhatt–Lurie in cohomological degree one $\mathcal{O}_K^{\times} \to \operatorname{H}_{q \operatorname{syn}}^1(\mathcal{O}_K, \mathbb{Z}_p(1))$, maps the element 1 - r towards the class of $-\operatorname{Li}_1^{(p)}(r)_q$. The underlying extension of *q*-crystals is represented by

$$\mathcal{L}_1(1-r) := \begin{bmatrix} \mathbb{A}_{\mathcal{O}_K}^{\oplus 2}, \begin{pmatrix} [p]_q^{-1} & -\operatorname{Li}_1^{(p)}(r)_q \\ 0 & 1 \end{pmatrix} \end{bmatrix}$$

p-adic q-polylogarithms

For $n \ge 1$ an integer, it is formally given by

$$\operatorname{Li}_{n}^{(p)}(T)_{q} = \sum_{\substack{m > 0 \\ (m,p) = 1}} \frac{T^{m}}{[m]_{q}^{n}}.$$

Proposition

Consider the ring
$$B = \varprojlim_r \mathbb{Z}[q, T^{\pm 1}, (1 - T^{p^r})^{-1}]/[p^r]_q.$$

D The sequence

$$\left(\frac{1}{1 - T^{p^r}} \sum_{\substack{p^r > m > 0 \\ (p,m) = 1}} \frac{T^m}{[m]_q^n}\right)_{r > 0}$$

forms a projective system in *B*. We denote by $\operatorname{Li}_{n}^{(p)}(T)_{q}$ its limit. We have the relation: $\operatorname{Li}_{n}^{(p)}(T)_{q} + (-1)^{n} \operatorname{Li}_{n}^{(p)}(1/T)_{q} = 0.$ Two observations:

1 No need of the enormous ring $\mathcal{O}_K[[q-1]]$. The ring

 $\varprojlim_r \mathcal{O}_K[q]/[p^r]_q$

suffices. It is a q-deformation of the p-completion.

2 Let p and ℓ be two prime numbers. The p-Frobenius commutes to the ℓ -Frobenius!

Many thanks for your kind attention!

Quentin Gazda

École Polytechnique (CMLS)

Feb. 27th 2024

25/25