Some thoughts on Zagier's Conjecture: From Functions to Numbers
 Séminaire Différentiel

Quentin Gazda

INRIA (Saclay)

February 27th 2024

Zagier's Conjecture

"Linear relations among polylogarithms evaluated at algebraic numbers come from relations among symbols in K-theory"

K-theory

R : commutative ring with unit, $S(R)$: spectrum built out of the commutative algebra of R.

Points of $S(R)$
Paths on $S(R)$
Filled triangles on $S(R)$: commutative diagrams, etc.

K-theory

Operations \oplus and \otimes extend to $S(R)$ into operations that are associative and commutative only up to homotopy.
The K-theory spectrum is obtained by groupifying $S(R)$ for \oplus :

$$
K(R):=S(R)^{\operatorname{grp}}
$$

For $i \geq 0$, we set $K_{i}(R):=\pi_{i} K(R)$.

Examples

$K_{0}(R)$ is the Grothendieck ring of R, $K_{1}(R)$ is the abelianization of the infinite linear group $\mathrm{GL}(R)$, $K_{2}(R) \ldots=$?

Polylogarithms

Let $n \geq 1$ be an integer.

$$
\text { For }|x|<1: \quad \operatorname{Li}_{n}(x)=\sum_{m>0} \frac{x^{m}}{m^{n}}
$$

Bloch-Wigner-Ramakrishnan polylogarithms

$$
\mathcal{D}_{n}(x)=(-1)^{n}(n-1)!\sum_{n>k \geq 0} \frac{(-1)^{k}}{k!} \log (x)^{k} \operatorname{Li}_{n-k}(x)
$$

The monodromy of \mathcal{D}_{n} is simpler than that of Li_{n}. We get a univaluated function

$$
\mathcal{D}_{n}: \mathbb{C} \backslash\{0,1\} \longrightarrow \mathbb{C} /(2 \pi i)^{n} \mathbb{Z}
$$

Examples

$\mathcal{D}_{1}(x)=-\operatorname{Li}_{1}(x)=\log (1-x), \mathcal{D}_{2}(x)=\operatorname{Li}_{2}(x)-\log (x) \log (1-x)$, etc.

Statement

Let $n \geq 1$ be an integer.
Let F be a number field (which we assume included in \mathbb{C}).

Conjecture (Zagier)

There exist an (explicit) subgroup $\operatorname{Symb}_{n}(F) \subseteq \mathbb{Z}[F \backslash\{0,1\}]$ together with a map $\operatorname{Symb}_{n}(F) \longrightarrow K_{2 n-1}(F)$ surjective up to torsion such that, for all $\sum_{\alpha} n_{\alpha}[\alpha] \in \operatorname{Symb}_{n}(F)$,

$$
\sum_{\alpha} n_{\alpha}[\alpha]=0 \text { dans } K_{2 n-1}(F) \Longleftrightarrow \sum_{\alpha} n_{\alpha} \mathcal{D}_{n}(\alpha) \in(2 \pi i)^{n} \mathbb{Z}
$$

For $n=1 . \operatorname{Symb}_{1}(F)=\mathbb{Z}[F \backslash\{0,1\}] \longrightarrow F^{\times},[\alpha] \longmapsto 1-\alpha$. The conjecture is equivalent to the injectivity of $\log : F^{\times} \rightarrow \mathbb{C} /(2 \pi i) \mathbb{Z}$.

Examples

For $n=2 . \operatorname{Symb}_{2}(F)$ consists in elements $\sum_{\alpha} n_{\alpha}[\alpha]$ such that

$$
\sum_{\alpha} n_{\alpha} \cdot \alpha \wedge(1-\alpha)=0 \quad \text { dans } \quad F^{\times} \bigwedge F^{\times}
$$

We have a map $\operatorname{Symb}_{2}(F) \longrightarrow K_{3}(F)$ constructed by Bloch-Suslin. The elements
$2\left([x]+\left[\frac{1}{x}\right]\right), \quad[x]+[1-x], \quad[x]+[y]+\left[\frac{1-x}{1-x y}\right]+[1-x y]+\left[\frac{1-y}{1-x y}\right]$,
are in its kernel, e.g. testifying of the celebrated five-term relation:
$\mathcal{D}_{2}(x)+\mathcal{D}_{2}(y)+\mathcal{D}_{2}\left(\frac{1-x}{1-x y}\right)+\mathcal{D}_{2}(1-x y)+\mathcal{D}_{2}\left(\frac{1-y}{1-x y}\right) \in(2 \pi i)^{2} \mathbb{Z}$.

Motivic interpretation (after Beilinson-Deligne '94)

$\mathcal{M M}_{F}$: hypothetical category of mixed motives over F.
It is supposed to be abelian, \mathbb{Q}-linear, symmetric monoidal \otimes
It possesses objects $\mathbb{Q}(n)$ called Tate twists.

$$
\operatorname{Ext}_{\mathcal{M} \mathcal{M}_{F}}^{1}(\mathbb{1}, \mathbb{Q}(n))
$$

Recall: In any abelian category \mathcal{A}, the group of extensions of two objects X and Y of \mathcal{A} is given by

$$
\operatorname{Ext}_{\mathcal{A}}^{1}(X, Y) \stackrel{\text { def }}{=}\{[Z]: 0 \rightarrow Y \rightarrow Z \rightarrow X \rightarrow 0\} /\left\{[Z] \sim\left[Z^{\prime}\right]\right\}
$$

where $[Z] \sim\left[Z^{\prime}\right]$ means that there exists a diagram of the form:

Motivic interpretation (after Beilinson-Deligne '94)

$$
\begin{gathered}
\operatorname{Ext}_{\mathcal{M M}_{F}}^{1}(\mathbb{1}, \mathbb{Q}(n)) \longleftrightarrow K_{2 n-1}(F)_{\mathbb{Q}} \longleftrightarrow \operatorname{Symb}_{n}(F)_{\mathbb{Q}} \\
\text { réal. Hodge } \downarrow \\
\operatorname{Ext}_{\mathrm{Hdg}_{\mathbb{Q}}}^{1}\left(\mathbb{1}_{\mathrm{Hdg}}, \mathbb{Q}(n)_{\mathrm{Hdg}}\right) \stackrel{\sim}{\sim} \underset{\sim}{\sim} /(2 \pi i)^{n} \mathbb{Q} \stackrel{\mathcal{D}_{n}}{\longleftrightarrow} \mathbb{Z}[F \backslash\{0,1\}]
\end{gathered}
$$

The vertical map, called regulator, is expected to be injective: this is Beilinson's conjecture. It implies Zagier's conjecture:

$$
\operatorname{ker}\left(\operatorname{Symb}_{n}(F)_{\mathbb{Q}} \rightarrow K_{2 n-1}(F)_{\mathbb{Q}}\right)=\operatorname{ker}\left(\mathcal{D}_{n} \mid \operatorname{Symb}_{n}(F)\right)
$$

Function fields arithmetic

Let \mathbb{F} be a finite field with q elements.

Carlitz exponential

$$
\text { For } z \in \mathbb{C}_{\infty}, \quad \exp _{C}(z):=\sum_{i \geq 0} \frac{z^{q^{i}}}{\left(\theta^{q^{i}}-\theta\right)\left(\theta^{q^{i}}-\theta^{q}\right) \cdots\left(\theta^{q^{i}}-\theta^{q^{i-1}}\right)}
$$

The fundamental exact sequence

$$
0 \longrightarrow \tilde{\pi} \cdot \mathbb{F}[\theta] \longrightarrow \mathbb{C}_{\infty} \xrightarrow{\exp _{C}} \mathbb{C}_{\infty} \longrightarrow 0
$$

where $\tilde{\pi}$ is Carlitz's period, analogue to $2 \pi i$,

$$
\tilde{\pi}:=(-\theta)^{\frac{q}{q-1}} \prod_{i \geq 1}\left(1-\theta^{1-q^{i}}\right)^{-1}
$$

Carlitz's polylogarithms

$$
0 \longrightarrow \tilde{\pi} \cdot \mathbb{F}[\theta] \longrightarrow \mathbb{C}_{\infty} \xrightarrow[\substack{\log _{C},}]{\exp _{C}} \mathbb{C}_{\infty} \longrightarrow 0
$$

Carlitz's logarithm:

$$
\text { For }|z|<|\theta|^{\frac{q}{q-1}}, \quad \log _{C}(z)=\sum_{i \geq 0} \frac{z^{q^{i}}}{\left(\theta-\theta^{q}\right)\left(\theta-\theta^{q^{2}}\right) \cdots\left(\theta-\theta^{q^{i}}\right)}
$$

For $n \geq 1$, the nth Carlitz's polylogarithm:

$$
\text { For }|z|<|\theta|^{\frac{q n}{q-1}}, \quad \operatorname{Li}_{n}(z)=\sum_{i \geq 0} \frac{z^{q^{i}}}{\left(\theta-\theta^{q}\right)^{n}\left(\theta-\theta^{q^{2}}\right)^{n} \cdots\left(\theta-\theta^{q^{i}}\right)^{n}}
$$

t-motives (after Anderson, 1986)

Let R be an $\mathbb{F}[\theta]$-algebra.

Definition (t-motive)

A t-motive over R is the data of $\underline{M}=\left(M, \phi_{M}\right)$
(1) a finite projective $R[t]$-module M of constant rank,
(2) an isomorphism ϕ_{M}

$$
\phi_{M}:\left(\operatorname{Frob}_{R}^{*} M\right)\left[\frac{1}{t-\theta}\right] \xrightarrow{\sim} M\left[\frac{1}{t-\theta}\right] .
$$

The neutral t-motive : $\mathbb{1}=(R[t], 1)$,
The nth Carlitz's twist : $\underline{A}(n)=\left(R[t],(t-\theta)^{-n}\right)$,
Let $\alpha \in R$.

$$
\mathcal{L}_{n}(\alpha)=\left(R[t]^{\oplus 2},\left(\begin{array}{cc}
(t-\theta)^{-n} & (t-\theta)^{-n} \alpha \\
0 & 1
\end{array}\right)\right) .
$$

Zagier's Conjecture in equal characteristic

This t-motive inserts in a short exact sequence
$0 \rightarrow \underline{A}(n) \rightarrow \mathcal{L}_{n}(\alpha) \rightarrow \mathbb{1} \rightarrow 0$. We denote its class by

$$
[\alpha] \in \operatorname{Ext}_{t \operatorname{Mot}_{R}}^{1}(\mathbb{1}, \underline{A}(n))
$$

Let $F \subset \mathbb{C}_{\infty}$ be a finite field extension of $\mathbb{F}(\theta)$ (not necessarily separated).

Theorem (G-Maurischat)

Let $\alpha_{1}, \ldots, \alpha_{s} \in F$ of norm $<|\theta|^{\frac{q n}{q-1}}, a_{1}(t), \ldots, a_{s}(t) \in \mathbb{F}[t]$. Then,

$$
\sum_{i=1}^{s} a_{i}(t)\left[\alpha_{i}\right]=0 \text { in } \operatorname{Ext}_{t \operatorname{Mot}_{F}}^{1}(\mathbb{1}, \underline{A}(n)) \Longleftrightarrow \sum_{i=1}^{s} a_{i}(\theta) \operatorname{Li}_{n}\left(\alpha_{i}\right) \in \tilde{\pi}^{n} \mathbb{F}[\theta]
$$

Sketch of proof

We consider the operator:

$$
\xi(t) \in \mathbb{C}_{\infty}\langle t\rangle, \quad \Delta_{n}(\xi)=(t-\theta)^{n} \xi-\operatorname{Frob}_{\mathbb{C}_{\infty}}(\xi)
$$

Solutions of $\Delta_{n}(\xi)=0$ are the $\mathbb{F}[t]$-multiples of the nth power of the Anderson-Thakur function

$$
\omega(t):=(-\theta)^{\frac{1}{q-1}} \prod_{i \geq 0}\left(1-\frac{t}{\theta^{q^{i}}}\right)^{-1} .
$$

For $\alpha \in F$ of norm $<|\theta|^{\frac{q n}{q-1}}$, a solution of $\Delta_{n}(\xi)=\alpha$ is given by

$$
\operatorname{Li}_{n}(\alpha)_{t}:=\sum_{i \geq 0} \frac{\alpha^{q^{i}}}{(t-\theta)^{n}\left(t-\theta^{q}\right)^{n} \cdots\left(t-\theta^{q^{i}}\right)^{n}}
$$

Sketch of proof

$$
\xi \longmapsto \mathcal{L}_{n}\left(\frac{\Delta_{n}(\xi)}{(t-\theta)^{n}}\right)
$$

$$
\begin{gathered}
\frac{\left\{\xi \in \mathbb{C}_{\infty}\langle t\rangle \mid \Delta_{n}(\xi) \in F[t]\right\}}{\mathbb{F}[t] \omega(t)^{n}+F[t]} \rightarrow \operatorname{Ext}_{t \operatorname{Mot}_{F}}^{1}(\mathbb{1}, \underline{A}(n)) \\
\mathfrak{C}_{\infty} / \tilde{\pi}^{n} \mathbb{F}[\theta]
\end{gathered}
$$

The class of $\operatorname{Li}_{n}(\alpha)_{t}$ is mapped horizontally to $[\alpha]$, vertically to $\operatorname{Li}_{n}(\alpha)$. The two arrows are injective. For the horizontal, this is a formality. For the vertical one, this follows from Anderson-Brownawell-Papanikolas criterion.

q-Delirium

Hope

$$
\begin{gathered}
\operatorname{Li}_{n}(\alpha)_{t}=\sum_{i \geq 0} \frac{\alpha^{q^{i}}}{(t-\theta)^{n}\left(t-\theta^{q}\right)^{n} \cdots\left(t-\theta^{q^{i}}\right)^{n}} \\
\text { what to } \quad \operatorname{Li}_{n}(\alpha) \\
\operatorname{Li}_{n}(T)_{q}=\sum_{m>0} \frac{T^{m}}{[m]_{q}^{n}} \quad \text { is to } \quad \operatorname{Li}_{n}(T)
\end{gathered}
$$

where $[m]_{q}=1+q+\ldots+q^{m-1}$ is the q-analogue of m.

Today, we do not possess the technology to redo this proof in number theory. We find ourselves powerless at the very definition of a t-motive as we do not have a counterpart for

$$
\mathbb{F}[t, \theta] \quad \sim " \mathbb{Z} \otimes_{\mathbb{F}_{1}} \mathbb{Z} "
$$

For p a prime, however, recent breakthroughs allow to realize some parts of this paradigm after p-completion:

$$
\left(\mathbb{F}[t, \theta]_{(\mathfrak{p}(t), \mathfrak{p}(\theta))}^{\wedge}, \operatorname{Frob}_{\theta}^{\operatorname{deg} \mathfrak{p}}\right) \sim\left(\triangle_{\mathbb{Z}_{p}}, \phi\right)
$$

where $\mathfrak{p}(t) \in \mathbb{F}[t]$ is a prime element; i.e. an irreducible polynomial. \triangle_{R} denotes the prismatic cohomology ${ }^{1}$ of a \mathbb{Z}_{p}-algebra R and ϕ its Frobenius.
If K / \mathbb{Q}_{p} is an unramified finite field extension, then

$$
\left(\triangle_{\mathcal{O}_{K}}, \phi\right)=\left(\mathcal{O}_{K} \llbracket q-1 \rrbracket, \phi_{K}+q \mapsto q^{p}\right)
$$

${ }^{1} \uparrow$ We rather consider q-crystalline cohomology.

prismatic q-crystals (after Bhatt-Scholze)

Definition (q-crystal)

A q-crystal \underline{M} over \mathcal{O}_{K} is the data of a couple $\left(M, \phi_{M}\right)$ where
(1) M is a finite projective module over $\Delta_{\mathcal{O}_{K}}$
(2) ϕ_{M} is an isomorphism

$$
\phi_{M}:\left(\phi^{*} M\right)\left[\frac{1}{[p]_{q}}\right] \xrightarrow{\sim} M\left[\frac{1}{[p]_{q}}\right] .
$$

Similarly, we have a neutral q-crystal $\mathbb{1}=\left(\triangle_{\mathcal{O}_{K}}, 1\right)$ and Tate twists $\mathbb{Z}_{p}(n)=\left(\triangle_{\mathcal{O}_{K}},[p]_{q}^{-n}\right)$. A subgroup of the group of extensions of q-crystals $\operatorname{Ext}_{q}^{1}\left(\mathbb{1}, \mathbb{Z}_{p}(n)\right)$ is computed as the H^{1} of the q-syntomic complex

$$
R \Gamma_{q \operatorname{syn}}\left(\mathcal{O}_{K}, \mathbb{Z}_{p}(n)\right)=\left[(q-1)^{n} \triangle_{\mathcal{O}_{K}} \xrightarrow{\mathrm{id}-\frac{\phi}{[p]_{q}^{\eta}}} \triangle_{\mathcal{O}_{K}}\right]
$$

Case $n=1: q$-syntomic Chern classes

We are looking for a group homomorphism $\mathcal{O}_{K}^{\times} \rightarrow \operatorname{Ext}_{q}^{1}\left(\mathbb{1}, \mathbb{Z}_{p}(1)\right)$. Such a morphism was recently constructed by Bhatt-Lurie! This is the H^{1} of the q-syntomic Chern class

$$
c_{1}^{q \text { syn }}: R \Gamma_{\text {ét }}\left(R, \mathbb{G}_{m}\right)[-1] \longrightarrow R \Gamma_{q \mathrm{syn}}\left(R, \mathbb{Z}_{p}(1)\right)
$$

Conjecture (joint work with T. Bouis)

Let $r \in 1+\mathcal{O}_{K}^{\times}$. The q-syntomic Chern class $c_{1}^{q \text { syn }}$ of Bhatt-Lurie in cohomological degree one $\mathcal{O}_{K}^{\times} \rightarrow \mathrm{H}_{q \text { syn }}^{1}\left(\mathcal{O}_{K}, \mathbf{Z}_{p}(1)\right)$, maps the element $1-r$ towards the class of $-\mathrm{Li}_{1}^{(p)}(r)_{q}$. The underlying extension of q-crystals is represented by

$$
\mathcal{L}_{1}(1-r):=\left[\Delta_{\mathcal{O}_{K}}^{\oplus 2},\left(\begin{array}{cc}
{[p]_{q}^{-1}} & -\mathrm{Li}_{1}^{(p)}(r)_{q} \\
0 & 1
\end{array}\right)\right]
$$

p-adic q-polylogarithms

For $n \geq 1$ an integer, it is formally given by

$$
\operatorname{Li}_{n}^{(p)}(T)_{q}=\sum_{\substack{m>0 \\(m, p)=1}} \frac{T^{m}}{[m]_{q}^{n}}
$$

Proposition

Consider the ring $B=\lim _{\varlimsup_{r}} \mathbb{Z}\left[q, T^{ \pm 1},\left(1-T^{p^{r}}\right)^{-1}\right] /\left[p^{r}\right]_{q}$.
(1) The sequence

$$
\left(\frac{1}{1-T^{p^{r}}} \sum_{\substack{p^{r}>m>0 \\(p, m)=1}} \frac{T^{m}}{[m]_{q}^{n}}\right)_{r>0}
$$

forms a projective system in B. We denote by $\mathrm{Li}_{n}^{(p)}(T)_{q}$ its limit.
(2) We have the relation: $\mathrm{Li}_{n}^{(p)}(T)_{q}+(-1)^{n} \operatorname{Li}_{n}^{(p)}(1 / T)_{q}=0$.

q-motives?

Two observations:
(1) No need of the enormous ring $\mathcal{O}_{K} \llbracket q-1 \rrbracket$. The ring

$$
{\underset{\underset{r}{2}}{ }}_{\underset{r}{ }} \mathcal{O}_{K}[q] /\left[p^{r}\right]_{q}
$$

suffices. It is a q-deformation of the p-completion.
(2) Let p and ℓ be two prime numbers. The p-Frobenius commutes to the ℓ-Frobenius!

Many thanks for your kind attention!

